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Abstract

We consider fragments of first-order logic and as models we allow finite and infinite words simulta-

neously. The only binary relations apart from equality are order comparison < and the successor

predicate +1. We give characterizations of the fragments Σ2 = Σ2[<, +1] and FO2 = FO2[<, +1]

in terms of algebraic and topological properties. To this end we introduce the factor topology

over infinite words. It turns out that a language L is in FO2 ∩ Σ2 if and only if L is the interior

of an FO2 language. Symmetrically, a language is in FO2 ∩ Π2 if and only if it is the topological

closure of an FO2 language. The fragment ∆2 = Σ2 ∩Π2 contains exactly the clopen languages in

FO2. In particular, over infinite words ∆2 is a strict subclass of FO2. Our characterizations yield

decidability of the membership problem for all these fragments over finite and infinite words; and

as a corollary we also obtain decidability for infinite words. Moreover, we give a new decidable

algebraic characterization of dot-depth 3/2 over finite words.

Decidability of dot-depth 3/2 over finite words was first shown by Glaßer and Schmitz in

STACS 2000, and decidability of the membership problem for FO2 over infinite words was shown

1998 by Wilke in his habilitation thesis whereas decidability of Σ2 over infinite words is new.
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groups, topology
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1 Introduction

The dot-depth hierarchy of star-free languages Bn for n ∈ N+ {1/2, 1} over finite words has

been introduced by Brzozowski and Cohen [5]. Later, the Straubing-Thérien Ln hierarchy

has been considered [20, 23] and a tight connection in terms of so-called wreath products

was discovered [19, 21]. It is known that both hierarchies are strict [4] and that they have

very natural closure properties [5, 18]. Effectively determining the level n of a language in

the dot-depth hierarchy or the Straubing-Thérien hierarchy is one of the most challenging

open problems in automata theory. So far, the only decidable classes are Bn and Ln for

n ∈ {1/2, 1, 3/2}, see e.g. [17] for an overview and [10] for level B3/2.

Thomas showed that there is a one-to-one correspondence between the quantifier alter-

nation hierarchy of first-order logic and the dot-depth hierarchy [25]. This correspondence
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holds if one allows [<, +1, min, max] as a signature (we always assume that we have equality

and predicates for labels of positions; in order to simplify notation, these symbols are omitted

here). The same correspondence between the Straubing-Thérien hierarchy and the quanti-

fier alternation hierarchy holds, if we restrict the signature to [<], cf. [18]. In particular, all

decidability results for the dot-depth hierarchy and the Straubing-Thérien hierarchy yield

decidability of the membership problem for the respective levels of the quantifier alternation

hierarchy.

The intersection ∆2[<] = Σ2[<] ∩ Π2[<] of the language classes Σ2[<] and Π2[<] of the

quantifier alternation hierarchy over finite words has a huge number of different characteriza-

tions, see [22] for an overview. One of them turns out to be the first-order fragment FO2[<]

where one can use (and reuse) only two variables [24]. The fragment FO2[<] is a natural

restriction since three variables are already sufficient to express any first-order language

over finite and infinite words [12]. Using the wreath product principle [21], one can extend

∆2[<] = FO2[<] to ∆2[<, +1] = FO2[<, +1], see e.g. [14]. Decidability of FO2[<] follows

from the decidability of Σ2[<], but there is also a more direct effective characterization: A

language over finite words is definable in FO2[<] if and only if its syntactic monoid is in

the variety DA, and the latter property is decidable. The wreath product principle yields

DA ∗ D as an algebraic characterization of FO2[<, +1], but this does not immediately help

with decidability. Almeida [1] has shown that DA ∗ D = LDA. Now, since LDA is decid-

able, membership in FO2[<, +1] is decidable. Note that min and max do not yield additional

expressive power for ∆2[<] and FO2[<].

Some of the characterizations and decidability results for the quantifier alternation hi-

erarchy and for FO2[<] have been extended to infinite words. Decidability of Σ1[<] and

its Boolean closure BΣ1[<] over infinite words is due to Perrin and Pin [15]; decidability

of Σ2[<] over infinite words was shown by Bojańczyk [3]. The fragments ∆2[<] and FO2[<]

do not coincide for infinite words. In particular, decidability of FO2[<] does not follow from

the respective result for ∆2[<]. Decidability of FO2[<] over infinite words was first shown

by Wilke [27].

Over infinite words, using a conjunction of algebraic and topological properties yields

further effective characterizations of the fragments Σ2[<] and FO2[<], cf. [7]. The key

ingredient is the alphabetic topology which is a refinement of the usual Cantor topology.

In addition, languages in FO2[<] ∩ Σ2[<] can be characterized using topological notions;

namely, a language L over infinite words is in FO2[<] ∩ Σ2[<] if and only if L is the interior

of a language in FO2[<] with respect to the alphabetic topology. By complementation,

a language is in FO2[<] ∩ Π2[<] if and only if it is the topological closure of a language

in FO2[<]. This shows that topology reveals natural properties of first-order fragments over

infinite words. In this paper, we continue this line of work.

Outline We combine algebraic and topological properties in order to give effective charac-

terizations of Σ2[<, +1] (Theorem 3.1) and FO2[<, +1] (Theorem 4.1) over finite and infinite

words. The key ingredient is a generalization of the alphabetic topology which we call the

factor topology. As a byproduct, we give a new effective characterization of Σ2[<, +1] over

finite words (Theorem 3.2), i.e., of the level 3/2 of the dot-depth hierarchy. Dually, we get

a characterization of Π2[<, +1] over infinite words (Theorem 3.4). Moreover, we also obtain

decidability results for the respective fragments over infinite words (in contrast to finite and

infinite words simultaneously; Corollary 3.3 and Corollary 4.2). Concerning the intersection

of fragments, we show that L is in FO2[<, +1]∩Σ2[<, +1] if and only if L is the interior of a

language in FO2[<, +1] with respect to the factor topology (Theorem 6.1) and dually, L is
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358 First-order Fragments with Successor over Infinite Words

definable in FO2[<, +1] ∩ Π2[<, +1] if and only if L is the topological closure of a language

in FO2[<, +1] with respect to the factor topology (Theorem 6.2). Finally, we show that

∆2[<, +1] is a strict subclass of FO2[<, +1] and that a language L is in ∆2[<, +1] if and

only if L is in FO2[<, +1] and clopen in the factor topology (Theorem 5.1).

Due to lack of space, some proofs are omitted. For complete proofs, we refer to the full

version of this paper [11].

2 Preliminaries

Words Throughout, Γ is a finite alphabet and unless stated otherwise u, v, w are finite

words, and α, β, γ are finite or infinite words over the alphabet Γ. The set of all finite words

is Γ∗ and the set of all infinite words is Γω. The empty word is denoted by 1. We write Γ∞

for the set of all finite and infinite words Γ∗ ∪ Γω. As usual, Γ+ is the set of all non-empty

finite words Γ∗ \{1}. If L is a subset of a monoid, then L∗ is the submonoid generated by L.

For L ⊆ Γ∗ we let Lω = {u1u2 · · · | ui ∈ L for all i ≥ 1} be the set of infinite products. We

also let L∞ = L∗∪Lω. The infinite product of the empty word is empty, i.e., we have 1ω = 1.

Thus, L∞ = Lω if and only if 1 ∈ L. The length of a word w ∈ Γ∗ is denoted by |w|. We

write Γk for all words of length k and Γ≥k is the set of finite words of length at least k;

similarly, Γ<k consist of all words of length less than k. By alphk(α) we denote the factors

of length k of α, i.e.,

alphk(α) =
{

w ∈ Γk
∣

∣ α = vwβ for some v ∈ Γ∗, β ∈ Γ∞
}

.

As a special case, we have that alph1(α) = alph(α) is the alphabet (also called content) of α.

We write imk(α) for those factors in alphk(α) which have infinitely many occurrences in α.

The notation imk(α) comes from “imaginary”.

Languages We introduce a non-standard composition ◦ for sufficiently long words. Let

k ≥ 1. For u ∈ Γ∗ and α ∈ Γ∞ define w ◦k α by

w ◦k α = vxβ if there exists x ∈ Γk−1 such that w = vx and α = xβ.

Furthermore w ◦k 1 = w and 1 ◦k α = α. In all other cases w ◦k α is undefined. Note that

alphk(u◦k α) = alphk(u)∪alphk(α), if u◦k α is defined. In particular, the operation ◦k does

not introduce new factors of length k. For A ⊆ Γk we define

A∗k = {w1 ◦k · · · ◦k wn | n ≥ 0, wi ∈ A} ,

Aωk = {w1 ◦k w2 ◦k · · · | wi ∈ A} ,

A∞k = A∗k ∪ Aωk ,

Aimk = {α ∈ Γ∞ | imk(α) = A} .

If k is clear from the context, then we write w ◦ α instead of w ◦k α, we write A∗ instead

of A∗k , we write A∞ instead of A∞k , and we write A im instead of Aimk . Note that Γ∗ = ∅ im .

A k-factor monomial is a language of the form

P = A∗
1 ◦ u1 ◦ · · · ◦ A∗

s ◦ us ◦ A
∞

s+1

for ui ∈ Γ≥k and Ai ⊆ Γk. The degree of P is the length of the word u1 · · · us. A k-factor

polynomial is a finite union of k-factor monomials and of words of length less than k. A

language L is a factor polynomial (resp. monomial) if there is a number k such that L is

a k-factor polynomial (resp. monomial).
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Fragments of First-order Logic We think of words as labeled linear orders, and we write

x < y, if position x comes before position y. Similarly, x = y + 1 means that x is the

successor of y. A position x of a word α is an a-position, if the label of x in α is the letter a.

We denote by FO the first-order logic over words. Atomic formulas in FO are ⊤ (for true),

unary predicates λ(x) = a for a ∈ Γ, and binary predicates x < y and x = y+1 for variables x

and y. Variables range over positions in N and λ(x) = a means that x is an a-position.

Formulas may be composed using Boolean connectives as well as existential quantification

∃x : ϕ and universal quantification ∀x : ϕ for ϕ ∈ FO. The semantics is as usual. A sentence

in FO is a formula without free variables. Let ϕ ∈ FO be a sentence. We write α |= ϕ if α

models ϕ. The language defined by ϕ is L(ϕ) = {α ∈ Γ∞ | α |= ϕ}.

The fragment Σn[C] of FO for C ⊆ {<, +1} consists of all sentences in prenex normal form

with n blocks of quantifiers starting with a block of existential quantifiers. In addition, only

binary predicates in C are allowed. The fragment Πn[C] consists of negations of formulas

in Σn[C]. We frequently identify first-order fragments with the classes of languages they

define. For example, ∆n[C] = Σn[C] ∩ Πn[C] is the class of all languages which are definable

in both Σn[C] and Πn[C]. Another important fragment is FO2[C]. It consists of all sentences

using (and reusing) only two different names for the variables, say x and y, and where

only binary predicates from C are allowed. Let F be a fragment of first-order logic. We

say that L is F-definable over some subset K ⊆ Γ∞, if there exists some formula ϕ ∈ F

with L = {α ∈ K | α |= ϕ}. We frequently use this notion for either K = Γ∗ or K = Γω.

Finite Monoids We repeat some basic notions and properties concerning finite monoids.

For further details we refer to standard textbooks such as [16]. Let M be a finite monoid.

For every such monoid there exists a number n ≥ 1 such that an = a2n for all a ∈ M , i.e., an

is the unique idempotent power of a. The set of all idempotents of M is denoted by E(M).

An important tool in the study of finite monoids are Green’s relations. At this point, we

only introduce their ordered versions. We have a ≤R b if and only if aM ⊆ bM , we have

a ≤L b if and only if Ma ⊆ Mb, and we have a ≤J b if and only if MaM ⊆ MbM .

An ordered monoid M is equipped with a partial order ≤ which is compatible with

multiplication, i.e., a ≤ b and c ≤ d implies ac ≤ bd. We can always assume that M is

ordered, since equality is a compatible partial order.

The theory of first-order fragments over finite non-empty words is presented more con-

cisely in the context of semigroups instead of monoids. In this paper however, we want to

incorporate finite and infinite words in a uniform model, and our approach is heavily based

on allowing words to be empty. In order to state “semigroup conditions” for monoids, we

have to use surjective homomorphisms h : Γ∗ → M instead of monoids M only.

Let h : Γ∗ → M be a surjective homomorphism and let e ∈ M be an idempotent. The

set Pe consists of all products of the form x0f1 · · · xm−1fmxm with elements x0, . . . , xm ∈ M

and idempotents f1, . . . , fm ∈ h(Γ+) ⊆ M satisfying the following three conditions

e ≤R x0f1,

e ≤J fixifi+1 for all 1 ≤ i ≤ m − 1,

e ≤L fmxm.

If e 6∈ h(Γ+), then we set Pe = {1}. Note that in this case we necessarily have e = 1 in M .

The notation Pe is for paths in e. An idempotent e is said to be locally path-top with respect

to h if ePee ≤ e. Symmetrically, it is locally path-bottom with respect to h if ePee ≥ e. If

the underlying homomorphism is clear from the context, we omit the reference to it. The
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homomorphism h is locally path-top (resp. locally path-bottom) if all idempotents in M are

locally path-top (resp. locally path-bottom).

◮ Lemma 2.1. Let h : Γ∗ → M be a surjective homomorphism onto a finite monoid M . It

is decidable whether M is locally path-top.

Proof. We give an algorithm computing Pe for a given idempotent e. We define a com-

position on triples T = E(M) × M × E(M) by (f1, x1, f2)(f3, x2, f4) = (f1, x1f2x2, f4) if

f2 = f3; otherwise the composition is undefined. Compute the fixed point P of the equa-

tion P = P ∪ P Te with Te = {(f1, x1, f2) ∈ T | f1, f2 ∈ h(Γ+), e ≤J f1x1f2} and initial

value P = Te. This requires at most |M |3 iterations. Then Pe is the set of all x0f1xf2x2

where (f1, x, f2) ∈ P , e ≤R x0f1 and e ≤L f2x2. ◭

Let h : Γ∗ → M be a surjective homomorphism and let n ∈ N such that an is idempotent

for all a ∈ M . The homomorphism h : Γ∗ → M is in LDA if

(eaebe)n eae (eaebe)n = (eaebe)n

for all idempotents e ∈ h(Γ+) and for all a, b ∈ M . If the reference to the homomorphism is

clear from the context, then we say “M ∈ P” for some property P meaning that “h ∈ P”.

Recognizability A language L ⊆ Γ∞ is regular if it is recognized be some extended Büchi

automaton, see e.g. [6], or equivalently, if it is definable in monadic second order logic [26].

Below, we present a more algebraic framework for recognition of L ⊆ Γ∞. The syntactic

preorder ≤L over Γ∗ is defined as follows. We let s ≤L t if for all u, v, w ∈ Γ∗ we have the

following two implications:

utvwω ∈ L ⇒ usvwω ∈ L and u(tv)ω ∈ L ⇒ u(sv)ω ∈ L.

Remember that 1ω = 1. Two words s, t ∈ Γ∗ are syntactically equivalent, written as

s ≡L t, if both s ≤L t and t ≤L s. This is a congruence and the congruence classes

[s]L = {t ∈ Γ∗ | s ≡L t} form the syntactic monoid Synt(L) of L. The preorder ≤L on

words induces a partial order ≤L on congruence classes, and (Synt(L), ≤L) becomes an

ordered monoid. It is a well-known classical result that the syntactic monoid of a regular

language L ⊆ Γ∞ is finite, see e.g. [15, 26]. Moreover, in this case L can be written as a

finite union of languages of the form [s]L [t]ωL with s, t ∈ Γ∗ and st ≡L s and t2 ≡L t.

Now, let h : Γ∗ → M be any surjective homomorphism onto a finite ordered monoid M

and let L ⊆ Γ∞. If the reference to h is clear from the context, then we denote by [s] the

set of finite words h−1(s) for s ∈ M . The following notations are used:

(s, e) ∈ M × M is a linked pair, if se = s and e2 = e.

h weakly recognizes L, if

L =
⋃

{[s][e]ω | (s, e) is a linked pair and [s][e]ω ⊆ L} .

h strongly recognizes L (or simply recognizes L), if

L =
⋃

{[s][e]ω | (s, e) is a linked pair and [s][e]ω ∩ L 6= ∅} .

L is downward closed (on finite prefixes) for h, if [s][e]ω ⊆ L implies [t][e]ω ⊆ L for all

s, t, e ∈ M where t ≤ s.
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Using Ramsey’s Theorem, one can show that for every word α ∈ Γ∞ there exists a linked

pair (s, e) such that α ∈ [s][e]ω. On the other hand, two different languages of the form

[s][e]ω are not necessarily disjoint. Therefore, if L is weakly recognized by h, then there

could exist some linked pair (s, e) such that [s][e]ω and L are incomparable. If L is strongly

recognized by h, then for every linked pair we have either [s][e]ω ⊆ L or [s][e]ω ∩ L = ∅. In

particular, whenever L is strongly recognized by h, then Γ∞ \ L is also strongly recognized

by h. Every regular language L is strongly recognized by its syntactic homomorphism

hL : Γ∗ → Synt(L); s 7→ [s]L. Moreover, L is downward closed for hL.

2.1 The factor topology

Topological properties play a crucial role in this paper. Very often a combination of algebraic

and topological properties yields a decidable characterization of the fragments. Moreover,

topology can be used to describe the relation between the fragments. This section introduces

the topology matching the fragments Σ2[<, +1] and Π2[<, +1].

We define the k-factor topology by its basis. All sets of the form u ◦ A∞ for u ∈ Γ∗

and A ⊆ Γk are open. Therefore, singleton sets {u} for u ∈ Γ∗ are open in the k-factor

topology since {u} = u ◦ ∅∞ . A language is said to be factor open (resp. factor closed) if

there is a natural number k such that L is open (resp. closed) in the k-factor topology.

◮ Proposition 2.2. Let L ⊆ Γ∞ be a regular language. Then L is factor open if and only

if L is open in the (2 |Synt(L)|)-factor topology.

◮ Proposition 2.3. It is decidable whether a regular language L ⊆ Γ∞ is factor open.

3 The first-order fragment Σ2

One of our main results is a decidable characterization of the fragment Σ2[<, +1] over finite

and infinite words. It is a combination of a decidable algebraic and a decidable topological

property. For finite words only, this yields a new decidable algebraic characterization for

dot-depth 3/2, which in turn coincides with Σ2[<, +1] over finite words [25].

◮ Theorem 3.1. Let L ⊆ Γ∞ be a regular language. The following are equivalent:

1. L is Σ2[<, +1]-definable.

2. L is a factor polynomial.

3. L is factor open and there exists a surjective locally path-top homomorphism h : Γ∗ → M

which weakly recognizes L such that L is downward closed for h.

4. L is factor open and Synt(L) is locally path-top.

Next, we give a counterpart of the preceding theorem for finite words, which in turn yields

a new decidable characterization of dot-depth 3/2. The first decidable characterization was

discovered by Glaßer and Schmitz [9, 10]. It is based on so-called forbidden patterns. Later,

a decidable algebraic characterization was given by Pin and Weil [19].

◮ Theorem 3.2. Let L ⊆ Γ∗ be a language. The following are equivalent over finite words:

1. L is Σ2[<, +1]-definable over finite words.

2. L is a factor polynomial.

3. Synt(L) is finite and locally path-top.

Proof. The language Γ∗ of finite words is definable in Σ2[<] by stating that there is a

position such that all other positions are smaller. Hence, if L = {w ∈ Γ∗ | w |= ϕ} for some
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ϕ ∈ Σ2[<, +1], then there also exists some ϕ′ ∈ Σ2[<, +1] such that L = {α ∈ Γ∞ | α |= ϕ′}.

Using Theorem 3.1, this shows “1 ⇒ 2”. Trivially, “2 ⇒ 3” follows from the same theorem.

Finally, “3 ⇒ 1” uses the fact that every language over finite words is factor open. ◭

The equivalence of (1) and (2) in Theorem 3.2 was also shown by Glaßer and Schmitz

using different techniques and with another formalism for defining factor polynomials [10].

As a corollary of Theorem 3.1 and Theorem 3.2 we obtain the following decidability results.

◮ Corollary 3.3. Let L be a regular language.

1. For L ⊆ Γ∞ it is decidable, whether L is Σ2[<, +1]-definable.

2. For L ⊆ Γ∗ it is decidable, whether L is Σ2[<, +1]-definable over finite words.

3. For L ⊆ Γω it is decidable, whether L is Σ2[<, +1]-definable over infinite words.

Proof. For “1” we note that the syntactic monoid is effectively computable. Therefore,

Theorem 3.1 (4) can be verified effectively by Lemma 2.1 and Proposition 2.3. Similarly, “2”

follows from the decidability of Theorem 3.2 (3). The set Γ∗ is definable in Σ2[<, +1] over

Γ∞. Hence, L ⊆ Γω is Σ2[<, +1]-definable over Γω if and only if L∪Γ∗ is Σ2[<, +1]-definable

over Γ∞, and the latter condition is decidable by “1”. Therefore, assertion “3” holds. ◭

By duality, the properties of Σ2[<, +1] in Theorem 3.1 yield a decidable characterization

of Π2[<, +1], which we state here for completeness.

◮ Theorem 3.4. Let L ⊆ Γ∞ be a regular language. The following are equivalent:

1. L is Π2[<, +1]-definable.

2. L is factor closed and Synt(L) is locally path-bottom.

4 First-order logic with two variables

In this section, we consider two-variable first-order logic with order < and successor +1 over

finite and infinite words. The fragment FO2[<, +1] admits a temporal logic counterpart

having the same expressive power [8]. It is based on unary modalities only. Wilke [27] has

shown that membership is decidable for FO2[<, +1]. We complement these results by giving

a simple algebraic characterization of this fragment. An important concept in our proof is a

refinement of the factor topology. A set of the form A im is definable in FO2[<, +1] but it is

neither open nor closed in the factor topology. This observation leads to the strict k-factor

topology. A basis of this topology is given by all sets of the form u ◦ A∞ ∩ A im for u ∈ Γ∗

and A ⊆ Γk. We do not use this topology outside this section.

◮ Theorem 4.1. Let L ⊆ Γ∞ be a regular language. The following are equivalent:

1. L is FO2[<, +1]-definable.

2. L is weakly recognized by some homomorphism h : Γ∗ → M ∈ LDA and closed in the

strict (2 |M |)-factor topology.

3. Synt(L) ∈ LDA.

The syntactic monoid of a regular language is effectively computable. Hence, one can

verify whether property (3) in Theorem 4.1 holds. Since both Γ∗ and Γω are FO2[<, +1]-

definable over Γ∞, this gives us the following corollary.

◮ Corollary 4.2. Let L be a regular language.

1. For L ⊆ Γ∞ it is decidable, whether L is FO2[<, +1]-definable.

2. For L ⊆ Γ∗ it is decidable, whether L is FO2[<, +1]-definable over finite words.

3. For L ⊆ Γω it is decidable, whether L is FO2[<, +1]-definable over infinite words.
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The following proposition relates monoids in LDA with monoids which are simultane-

ously locally path-top and locally path-bottom. It is a useful tool in the proof of Theorem 4.1.

Moreover, it immediately follows that ∆2[<, +1] is a subclass of FO2[<, +1]. We will further

explore the relation between these two fragments in the next section.

◮ Proposition 4.3. Let M be finite and let h : Γ∗ → M be a surjective homomorphism. The

following are equivalent:

1. h : Γ∗ → M ∈ LDA.

2. ePee = e for all idempotents e of M .

◮ Example 4.4. Let Γ = {a, b, c}. Consider the language L1 = Γ∗ab∗aΓ∞ consisting

of all words such that there are two a’s that only contain b’s in between. It is easy to

see that L1 is Σ2[<]-definable. Next, we will show that L1 is not FO2[<, +1]-definable.

Choose n ∈ N such that sn is idempotent for every s ∈ Synt(L1). Then (bnabncbn)n 6∈ L1

whereas (bnabncbn)nbnabn(bnabncbn)n ∈ L1. This shows that Synt(L1) is not in LDA. By

Theorem 4.1 we conclude that L1 is not FO2[<, +1]-definable. Similarly, L2 = Γ∞ \ L1 is

definable in Π2[<] but not in FO2[<, +1]. ⊳

5 The first-order fragment ∆2

Over finite words, the first-order fragments FO2[<, +1] and ∆2[<, +1] have the same ex-

pressive power [14, 24]. This is not true for infinite words. Here, it turns out that ∆2[<, +1]

is a strict subclass of FO2[<, +1] and that the ∆2[<, +1]-languages are exactly the clopen

languages in FO2[<, +1].

◮ Theorem 5.1. Let L ⊆ Γ∞ be a language. The following are equivalent:

1. L is ∆2[<, +1]-definable.

2. L is FO2[<, +1]-definable and clopen in the factor topology.

A consequence of Theorem 5.1 is that ∆2[<, +1] is a strict subclass of FO2[<, +1]. In

fact, it is a strict subclass of the intersection for the fragments FO2[<, +1] and Σ2[<, +1].

◮ Corollary 5.2. Over Γ∞, the fragment ∆2[<, +1] is a strict subclass of the fragment

FO2[<, +1] ∩ Σ2[<, +1] and also of the fragment FO2[<, +1] ∩ Π2[<, +1].

Proof. The set of non-empty finite words Γ+ is defined by the sentence

∃x ∀y : y ≤ x

in FO2[<] ∩ Σ2[<]. We have to show that Γ+ is not definable in Π2[<, +1]. By Theo-

rem 3.4 it suffices to show that Γ+ is not factor closed. Let a ∈ Γ, and consider the word

α = aω 6∈ Γ+. Every factor open set containing α also contains some finite word am ∈ Γ+.

Hence, the complement of Γ+ is not factor open, and therefore, Γ+ is not factor closed. By

complementation, we see that Γω is definable in FO2[<] ∩ Π2[<] but not in ∆2[<, +1]. ◭

◮ Example 5.3. We consider another language which is definable in FO2[<]∩Σ2[<] but not

in ∆2[<, +1]. Let Γ = {a, b} and L3 = Γ∗ab∞. The language L3 is FO2[<]∩Σ2[<]-definable:

∃x ∀y : λ(x) = a ∧
(

λ(y) = a ⇒ y ≤ x
)

.

In order to show that L3 is not definable in Π2[<, +1], it suffices to show that L3 is not

factor closed (Theorem 3.4). Let k ∈ N. Every open set containing the word (bka)ω 6∈ L3
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also contains some word (bka)mbω ∈ L3. Hence, the complement of L3 is not k-factor open,

and therefore, there is no k such that L3 is closed in the k-factor topology.

The same reasoning also works over Γω, since the language of all infinite words is definable

in Π2[<, +1]. Hence, L′
3 = Γ∗abω is definable in Σ2[<] over infinite words and in FO2[<]

but not in ∆2[<, +1] over infinite words. The language L′
3 is the standard example of a

language which cannot be recognized by a deterministic Büchi automaton [26, Example 4.2].

In particular, none of the fragments FO2[<, +1] or Σ2[<, +1] contains only deterministic

languages. ⊳

◮ Example 5.4. Let Γ = {a, b, c} and consider the language L4 = (Γ2 \ {bb})∗ ◦ aa ◦ (Γ2)∗

consisting of all words such that there is no factor bb before the first factor aa. The language

L4 is defined by the Σ2[<, +1]-sentence

∃x∀y < x : λ(x) = aa ∧ λ(y) 6= bb.

Here, λ(x) = w is a shortcut saying that a factor w starts at position x. A word α is in L4

if and only if aa is a factor of α and for every factor bb there is a factor aa to the left.

These properties are Π2[<, +1]-definable and hence L4 ∈ ∆2[<, +1]. The language L4 is

not definable in any of the fragments FO2[<], Σ2[<], or Π2[<] without successor, since its

syntactic monoid is neither locally top nor locally bottom, cf. [7]. The language L4 ∩ Γ∗ has

been used as an example of a language not definable in the Boolean closure of Σ2[<] over

finite words by Almeida and Klíma [2, Proposition 6.1] as well as by Lodaya, Pandya, and

Shah [14, Theorem 4]. The Boolean closure of Σ2[<] over finite words coincides with the

second level of the Straubing-Thérien hierarchy, cf. [18, 25]. ⊳

6 The first-order fragments FO2 ∩ Σ2 and FO2 ∩ Π2

In this section, we show that topological concepts can not only be used as an ingredient

for characterizing first-order fragments, but also for describing some relations between frag-

ments. More precisely, we relate languages definable in both Σ2[<, +1] and FO2[<, +1]

with the interiors of FO2[<, +1]-languages with respect to the factor topology. Dually,

the languages in the fragment FO2[<, +1] ∩ Π2[<, +1] are precisely the topological closures

of FO2[<, +1]-languages. Remember that for a language L, its closure L is the intersection

of all closed sets containing L. It can be “computed” as

L = {α ∈ Γ∞ | ∀U ⊆ Γ∞ open with α ∈ U : U ∩ L 6= ∅} .

The interior of L is the union of all open sets contained in L. The interior of a language is

the complement of the closure of its complement.

◮ Theorem 6.1. Let L ⊆ Γ∞ be a regular language. The following are equivalent:

1. L ∈ FO2[<, +1] ∩ Σ2[<, +1].

2. L ∈ FO2[<, +1] and L is open in the factor topology.

3. L is the factor interior of some FO2[<, +1]-definable language.

The equivalence of (1) and (2) is an immediate consequence of Theorems 3.1 and 4.1.

The surprising property is (3); for example, it is not obvious that the factor interior of

an FO2[<, +1]-definable language is again in FO2[<, +1]. The following theorem is an

immediate consequence of Theorem 6.1, obtained by complementation. In fact, the actual

proof is slightly easier the other way round — proving Theorem 6.2 and then obtaining

Theorem 6.1 by complementation — since the closure of a language is easier to “compute”.
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◮ Theorem 6.2. Let L ⊆ Γ∞ be a regular language. The following are equivalent:

1. L ∈ FO2[<, +1] ∩ Π2[<, +1].

2. L ∈ FO2[<, +1] and L is closed in the factor topology.

3. L is the factor closure of some FO2[<, +1]-definable language.

The language L3 from Example 5.3 is definable in FO2[<, +1] ∩ Σ2[<, +1]. For any k,

the k-factor closure of L3 is Γ∞. Hence, one could conjecture that the factor closure of

every language in FO2[<, +1] ∩ Σ2[<, +1] is again in FO2[<, +1] ∩ Σ2[<, +1] and therefore

in ∆2[<, +1]. Among other things, the following example shows that this is not the case.

◮ Example 6.3. Let Γ = {a, b, c}. We consider the factor closure of the language L5 defined

by the FO2[<, +1]-sentence

∃x : λ(x) = aba ∧
(

∃y > x : λ(y) = aba
)

∧
(

¬∃y > x : λ(y) = bab
)

with λ(x) = w being a macro for “an occurrence of the factor w ∈ Γ+ starts at position x”.

The language L5 contains all words of the form u · aba · v · aba · β with u, v ∈ Γ∗, β ∈ Γ∞,

and bab 6∈ alph3(aba · v · aba · β).

The (k+1)-factor closure of a language is always contained in its k-factor closure. For L5,

we show that this inclusion is strict for k ∈ {1, 2}. The word (ab)ω is in the 1-factor closure

of L5, but not in its 2-factor closure. The word (abacbabc)ω is in the 2-factor closure of L5,

but not in its 3-factor closure. The 1-factor closure of L5 is L5 ∪ {α ∈ Γω | a, b ∈ im1(α)}.

The 2-factor closure of L5 consists of L5 and all words α with either {ab, ba, aa} ⊆ im2(α)

or {ab, ba, ac, ca} ⊆ im2(α). The 3-factor closure of L5 is similar, but it requires more case

distinctions.

There is no k such that L5 is k-factor closed. By Theorem 3.4, we see that L5 is

not Π2[<, +1]-definable. On the other hand, Theorem 6.2 says that every k-factor clo-

sure of L5 is Π2[<, +1]-definable. Moreover, almost the same sentence as above yields

Σ2[<, +1]-definability of L5. Since the 1-factor closure of L5 is not factor open, the frag-

ment FO2[<, +1] ∩ Σ2[<, +1] is not closed under taking factor closures, whereas FO2[<, +1]

has this closure property by Theorem 6.2. ⊳

7 Summary

We considered fragments of first-order logic over finite and infinite words. As binary pred-

icates we allow order comparison x < y and the successor predicate x = y + 1. Figure 1

depicts the relation between the fragments Σ2[<, +1], Π2[<, +1], and FO2[<, +1]. More-

over, the languages L1, L2, L3, L4, and L5 from Examples 4.4, 5.3, 5.4, and 6.3 are included.

For the other languages, we fix Γ = {a, b, c} and ∅ 6= A ( Γ.

Σ2 Π2∆2

FO2

•
L1

•
Γ∗

•
L3

•
L5

•
Aim

•
Γω

•
L4

•
L2

Figure 1 The fragments Σ2[<, +1], Π2[<, +1], and FO2[<, +1] over Γ∞.
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The central notion for presenting our results is a partially defined composition u ◦k v =

u′xv′ where u = u′x, v = xv′, and |x| = k − 1. Using this composition, one can show that

the languages definable in Σ2[<, +1] is exactly the class of factor polynomials. Moreover,

the composition ◦k leads to the k-factor topology, which we use in further characterizations

of the successor fragments. A set is factor open if there exists some number k such that L

is k-factor open. For every regular language L, Proposition 2.2 gives a bound k such that L

is factor open if and only if L is k-factor open. Then, in Proposition 2.3, we essentially

show that for a given number k it is decidable whether a regular language L is k-factor

open. Altogether, in order to check whether L is factor open, we can check whether L

is k-factor open, with k being the bound given by Proposition 2.2. Hence, the topological

properties, which we use in the characterizations of the fragments, are decidable. Together

with the decidable algebraic properties, this gives a decision procedure for deciding whether

a given regular language L ⊆ Γ∞ or L ⊆ Γω is definable in one of the fragments under

consideration. In Table 1 we summarize our main results. All fragments are using binary

predicates [<, +1]. The first decidable characterization of FO2[<, +1] is due to Wilke [27].

Decidability for Σ2[<, +1] over infinite words is new (Corollary 3.3).

Logic Algebra + Topology Languages

Σ2 ePee ≤ e + factor open factor polynomials Thm. 3.1

Π2 ePee ≥ e + factor closed Thm. 3.4

FO2
LDA

Thm. 4.1weak LDA + strictly factor closed

∆2 LDA + factor clopen Thm. 5.1

FO2
∩ Σ2 LDA + factor open factor interior of FO2 Thm. 6.1

FO2
∩ Π2 LDA + factor closed factor closure of FO2 Thm. 6.2

Table 1 Main characterizations of some first-order fragments

Open problems The fragment Σ2[<, +1] has a language description in terms of factor

polynomials. Without the successor predicate similar characterizations in terms of so-called

unambiguous polynomials exist for the fragments FO2[<], for FO2[<]∩Σ2[<], and for ∆2[<],

cf. [7]. It is open whether these fragments admit similar characterizations if we allow the

successor predicate.

Moreover, for the fragment ∆2[<, +1] we only have an implicit decidable characteriza-

tion based on the decidability of Σ2[<, +1] and Π2[<, +1] (or alternatively, based on the

decidability of FO2[<, +1] and being clopen). A more direct characterization of this frag-

ment remains open. For ∆2[<] without successor, such a characterization shows that all

languages in ∆2[<] over infinite words are recognizable by deterministic Büchi automata.

Another important fragment is BΣ1, the Boolean closure of Σ1. A result of Knast [13]

shows that, over finite words, it is decidable whether a regular language is definable in

BΣ1[<, +1, min, max], which over finite words corresponds to the first level of the dot-depth

hierarchy. A similar result over infinite words is still missing.
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