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Abstract

This paper studies the “explanation problem” for tree- and linearly-ordered array data, a

problem motivated by database applications and recently solved for the one-dimensional tree-

ordered case. In this paper, one is given a matrix A = (aij) whose rows and columns have

semantics: special subsets of the rows and special subsets of the columns are meaningful, others

are not. A submatrix in A is said to be meaningful if and only if it is the cross product of

a meaningful row subset and a meaningful column subset, in which case we call it an “allowed

rectangle.” The goal is to “explain” A as a sparse sum of weighted allowed rectangles. Specifically,

we wish to find as few weighted allowed rectangles as possible such that, for all i, j, aij equals

the sum of the weights of all rectangles which include cell (i, j).

In this paper we consider the natural cases in which the matrix dimensions are tree-ordered

or linearly-ordered. In the tree-ordered case, we are given a rooted tree T1 whose leaves are the

rows of A and another, T2, whose leaves are the columns. Nodes of the trees correspond in an

obvious way to the sets of their leaf descendants. In the linearly-ordered case, a set of rows or

columns is meaningful if and only if it is contiguous.

For tree-ordered data, we prove the explanation problem NP-Hard and give a randomized

2-approximation algorithm for it. For linearly-ordered data, we prove the explanation problem

NP-Hard and give a 2.56-approximation algorithm. To our knowledge, these are the first results

for the problem of sparsely and exactly representing matrices by weighted rectangles.

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.332

1 Introduction

This paper studies two related problems of “explaining" data parsimoniously. In the first part

of this paper, we focus on providing a top-down “hierarchical explanation” of “tree-ordered”

matrix data. We motivate the problem as follows. Suppose that one is given a matrix

A = (aij) of data, and that the rows naturally correspond to the leaves of a rooted tree T1,

and the columns, to the leaves of a rooted tree T2. For example, T1 and T2 could represent

hierarchical IP addresses spaces with nodes corresponding to IP prefixes. Each node of either

T1 or T2 is then said to correspond to the set of rows (or columns, respectively) corresponding

to its leaf descendants. Say 128.* (i.e., the set of all 224 IP addresses beginning with

“128”, which happens to correspond to the .edu domain) is a node in T1 and 209.85.225.*

(i.e., the set of all 28 IP addresses beginning with 209.85.225, which is www.google.com’s
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domain) is a node in T2. Then (128.*, 209.85.225.*) could, say, represent the amount

of traffic flowing from all hosts in the .edu domain (e.g., 128.8.127.3) to all hosts in the

www.google.com domain (e.g., 209.85.225.99). It is easy to relabel the rows or columns

so that each internal node of T1 or T2 corresponds to a contiguous block of rows or columns.

We need a few definitions. Let us say a rectangle in an m × n matrix A is a set

Rect(i1, i2, j1, j2) = {i : i1 ≤ i ≤ i2} × {j : j1 ≤ j ≤ j2}, for some 1 ≤ i1 ≤ i2 ≤ m,

1 ≤ j1 ≤ j2 ≤ n. Certain rectangles are allowed; others are not. Let R denote the set of

allowed rectangles. Say a set of w(R)-weighted rectangles R represents A = (aij) if for any

cell (i, j), the sum of w(R) over cells that contain (i, j) is aij .

Returning to the Internet example, a pair (u, v), u a node of T1, v a node of T2, cor-

responds to a rectangle. Say that a rectangle is allowed, relative to T1 and T2, if it is the

cross product of the set of rows corresponding to some node u in T1 and the set of columns

corresponding to some node v in T2. In this scenario, we attempt to “explain” or “describe”

the matrix by writing it as a sum of weighted allowed rectangles. Formally, we wish to assign

a weight wR to each allowed rectangle R such that the set of weighted rectangles represents

A.

Of course there is always a solution: one can just assign weights to the 1 × 1 rectangles.

But this is a trivial description of the matrix. Usually more concise explanations are prefer-

able. For this reason we seek an “explanation” with as few nonzero terms as possible. More

precisely, we seek to assign a weight wR to each allowed rectangle R such that the set of

weighted rectangles represents A, and such that the number of nonzero weights wR assigned

is minimized. (We define problems formally in Section 3.)

Here is a 1-dimensional example. Suppose that a media retailer sells items in exactly

four categories: action-movie DVD’s, comedy DVD’s, books, and CD’s. The retailer builds

a hierarchy with four leaves, one for each of the categories of items. A node “DVD’s" is the

parent of leaves “action-movie DVD’s" and “comedy DVD’s”. There is one more node, a

root labeled “all”, with children “DVD’s", “books”, and “CD’s”.

Suppose that one year, sales of action-movie DVD’s increased by $6000 and sales of the

other three categories increased by $8000 each. One could represent the sales data by giving

those four numbers, one for each leaf of the hierarchy, yet one could more parsimoniously say

that there was a general increase of $8000 for all (leaf) categories, in addition to which there

was a decrease of $2000 for action-movie DVD’s. This is represented by assigning $8000 to

node “all” and $-2000 to “action-movie DVD’s”. While many different linear combinations

may be possible, simple explanations tend to be most informative. Therefore, we seek

an answer minimizing the explanation size (the number of nonzero terms required in the

explanation).

Here is a definition of Tree×Tree. An instance consists of an m × n matrix A = (aij),

along with two rooted trees, a tree T1 whose leaf set is the set of rows of the matrix, and a tree

T2 whose leaf set is the set of columns. Let Li(v) be the leaf descendants of node v in tree Ti,

i ∈ {1, 2}. Now R is just the set {L1(u) × L2(v) : u is a node in T1 and v is a node in T2}.

The goal is to find the smallest set of weighted rectangles which represents A. We prove this

problem NP-hard and give a randomized 2-approximation algorithm for it. APX-hardness

is not known.

The second problem, AllRects, is motivated by the need to concisely describe or explain

linearly-ordered data. Imagine that one has two ordered parameters, such as horizontal and

vertical location, or age and salary. No trees are involved now. Instead we allow any interval

of rows (i.e., {i : i1 ≤ i ≤ i2} for any 1 ≤ i1 ≤ i2 ≤ m) and any interval of columns (i.e.,

{j : j1 ≤ j ≤ j2} for any 1 ≤ j1 ≤ j2 ≤ n). For example, [800, 1000] × [500, 1500] could
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be used to represent a geographical region extending eastward from 800 to 1000 miles and

northward from 500 to 1500 miles, and [35.0, 45.0]×[80000, 95000] could be used to represent

the subset of people 35-44 years old and earning a salary of $80000-$95000. Then we can use

the former “rectangles” to summarize the change (say, in population counts) with respect

to location, or use the latter with respect to demographic attributes age and salary.

Hence in AllRects the set R of allowed rectangles is the cross product between the

set of row intervals and the set of column intervals. As a linear combination of how few

arbitrary rectangles can we write the given matrix? We prove this problem NP-hard and

give a 2.56-approximation algorithm for it. Again, APX-hardness is unknown.

2 Related Work

To our knowledge, while numerous papers have studied similar problems, none proposes any

algorithm for either of the two problems we study. One very relevant prior piece of work is

a polynomial-time exact algorithm solving the 1-dimensional version of Tree×Tree (more

properly called the “tree” case in 1-d, since only one tree is involved) [1]. Here, as in the

media-retailer example above, we have a sequence of integers and a tree whose leaves are

the elements of the sequence. Indeed, we use this algorithm heavily in constructing our

randomized constant-factor approximation algorithm for the tree×tree case.

Relevant to our work is [4] by Bansal, Coppersmith, and Schieber, which (in our lan-

guage) studies the 1-d (exact) problem in which all intervals are allowed and all must have

nonnegative weights, proves the problem NP-hard, and gives a constant-factor approxima-

tion algorithm.

Also very relevant is a paper by Natarajan [13], which studies an “inexact” version of the

problem: instead of finding weighted rectangles whose sum of weights is aij exactly, for each

matrix cell (i, j), these sums approximate the aij ’s. (Natarajan’s algorithm is more general

and can handle any arbitrary set R of allowed rectangles; however, the algorithm is very

slow.) More precisely, in the output set of rectangles, define a′
ij to be the sum of the weights

of the rectangles containing cell (i, j). Natarajan’s algorithm ensures, given a tolerance

∆ > 0, that the L2 error
√

∑m

i=1

∑n

j=1(a′
ij − aij)2 is at most ∆. (Natarajan’s algorithm

cannot be used for ∆ = 0.) The upper bound on the number of rectangles produced by

Natarajan’s algorithm is a factor of approximately 18 ln(||A||2/∆) (where ||A||2 is the square

root of the sum of squares of the entries of A) larger than the optimal number used by an

adversary who is allowed, instead, only L2-error ∆/2. Furthermore, Natarajan’s algorithm

is very slow, much slower than our algorithms. See the full version of our paper for details.

Frieze and Kannan in [9] show how to inexactly represent a matrix as a sum of a small

number of rank-1 matrices, but their method is unsuitable to solve our problem, as not

only is there no way to restrict the rank-1 matrices to be rectangles, the error is of L1 type

rather than L∞. In other words, the sum of the mn errors is bounded by ∆mn, rather than

individual errors’ being bounded by ∆.

Our problem may remind readers of compressed sensing, the decoding aspect of which

requires one to seek a solution x with fewest nonzeroes to a linear system Hx = b. The key

insight of compressed sensing is that when H satisfies the “restricted isometry property"

[16, 6, 8], as do almost all random matrices, the solution x of minimum L1 norm is also the

sparsest solution. The problem with applying compressed sensing to the problems mentioned

herein, when the matrix A is m×n, is that the associated matrix H, which has mn rows and

a number of columns equal to the number of allowed rectangles, is anything but random.

On a small set of test instances, the authors found the solutions of minimum L1 norm (using
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linear programming) and discovered that they were far from sparsest.

Other authors have studied other ways of representing matrices. Applegate et al. [2]

studied the problem of representing a binary matrix, starting from an all-zero matrix, by

an ordered sequence of rectangles, each of whose entries is all 0 or all 1, in which aij should

equal the entry of the last rectangle which contains cell (i, j). Anil Kumar and Ramesh [3]

study the same model in which only all-1 rectangles are allowed (in which case the order

clearly doesn’t matter). Two papers [14, 11] study the Gale-Berlekamp switching game and

can be thought of as a variant of our problem over Z2.

3 Formal Definitions and Examples

Given an m × n matrix A = (aij) and 1 ≤ i1 ≤ i2 ≤ m, 1 ≤ j1 ≤ j2 ≤ n, recall that

Rect(i1, i2, j1, j2) = {(i, j)|i1 ≤ i ≤ i2, j1 ≤ j ≤ j2}. Define Rects = {Rect(i1, i2, j1, j2)|1 ≤

i1 ≤ i2 ≤ m, 1 ≤ j1 ≤ j2 ≤ n}. For each of the two problems, we are given a subset

R ⊆ Rects; the only difference between the two problems we discuss is the definition of R.

The goal is to find a smallest subset OPT2(A) of R, and an associated weight w(R) (positive

or negative) for each rectangle R, such that every cell (i, j) is covered by rectangles whose

weights sum to aij , that is,

aij =
∑

R:R∈OP T2(A) and R∋(i,j)

w(R), (1)

the “2” in “OPT2(A)” referring to the fact that A is 2-dimensional.

While the algorithm for the tree×tree case appears (in Section 4) before that for the

arbitrary-rectangles case (in Section 5), here we define AllRects, the latter, first, since it’s

easier to define. As mentioned above, we call the case of R = Rects AllRects.

Example. Since the matrix

A =

[

2 2 2 2
5 3 1 2
6 4 1 3
5 5 2 2

]

= 2

[

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

]

+ 3

[

0 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0

]

+ 1

[

0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0

]

− 2

[

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

]

+ 1

[

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

]

,

A can be written as a linear combination with w({1, 2, 3, 4} × {1, 2, 3, 4}) = 2, w({2, 3, 4} ×

{1, 2}) = 3, w({3} × {1, 2, 3, 4}) = 1, w({2, 3} × {2, 3}) = −2, and w({2} × {3}) = 1. Hence

|OPT2(A)| ≤ 5.

We need some notation in order to define Tree×Tree, in which we are also given trees

T1 and T2. We use Ri to denote the row vector in the ith row of the input matrix, 1 ≤ i ≤ m.

For a node u ∈ T1, let S1
u = {Rl : l is a leaf descendant in T1 of u}. Similarly, we use Cj

to denote the column vector in the jth column of the input matrix, 1 ≤ j ≤ n. For a node

v ∈ T2, let S2
v = {Cl : l is a leaf descendant in T2 of v}. Note that, since T1 and T2 are

trees, {S1
u|u ∈ T1} and {S2

v |v ∈ T2} are laminar.

In this notation, in Tree×Tree, R = {S1
u|u ∈ T1} × {S2

v |v ∈ T2}.

Example. Using trees T1, T2 having a root with four children (and no other nodes) apiece,

we may use any single row or all rows, and any single column or all columns. For example,

since the matrix

A =

[

5 3 4 5
3 0 2 4
2 2 1 3
3 3 2 3

]

= 3

[

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

]

+ 2

[

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

]

− 1

[

0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0

]

− 1

[

0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0

]

− 2

[

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]

− 3

[

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]

+ 1

[

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]

+ 1

[

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]

,

we can write A as a sum with w({1, 2, 3, 4} × {1, 2, 3, 4}) = 3, w({1} × {1, 2, 3, 4}) = 2,

w({3}×{1, 2, 3, 4}) = −1, w({1, 2, 3, 4}×{3}) = −1, w({1}×{2}) = −2, w({2}×{2}) = −3,

w({2} × {4}) = 1, and w({3} × {4}) = 1. Since there are eight matrices, |OPT2(A)| ≤ 8.
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Note that we use the same notation, OPT2(A), for the optimal solutions of both All-

Rects and Tree×Tree.

4 Approximation Algorithm for Tree×Tree

We defer the (interesting) proof of NP-Hardness of Tree×Tree to the full version of the

paper. Our algorithm will rely upon the exact algorithm, due to Agarwal et al. [1], for the

case in which the matrix has just one column (that is, the 1-dimensional case).

◮ Definition 1. Given a fixed rooted tree T1 with m leaves, and an m-vector V = (vi),

let OPT1(V ) denote a smallest set of intervals I = {i : i1 ≤ i ≤ i2} ⊆ [1, m] and as-

sociated weights w(I), each I corresponding to a node of T1, such that for all i, vi =
∑

I:I∈OP T1(V ) and I∋i
w(I).

Clearly |OPT1(V )| equals |OPT2(V ′)|, where V ′ is the m × 1 matrix containing V as

a column. The difference is that OPT1(V ) is a set of vectors while OPT2(V ′) is a set of

rectangles. We emphasize that V is a vector and that the definition depends on T1 and not

T2 by putting the “1” in “OPT1(V )”. The key point is that [1] showed how to compute

OPT1(V ) exactly.

In order to charge the algorithm’s cost against OPT2(A), we need to know some facts

about OPT2(A). Recall that OPT2(A) is a smallest subset of R such that there are weights

w(R) such that equation (1) holds.

◮ Definition 2.

1. For each rectangle R and associated weight wR, let R′
wR

denote the m × n matrix which

is 0 for every cell (i, j), except that (R′
wR

)
ij

:= wR if (i, j) ∈ R.

2. Given a vertex v of T2, let Dv be the set of all R ∈ OPT2(A) such that R has column

set exactly equal to S2
v .

3. Now let Kv =
∑

R∈Dv
R′

wR
. By definition of Dv, all columns j of Kv for j ∈ Dv are the

same. Let Vv be column j of Kv for any j ∈ Dv.

◮ Lemma 3. The column vectors (Vv) satisfy the following:

1. For all leaves l in T2, the vector Cl equals the sum of Vv over all ancestors v of l in T2.

2. For all leaves l′ and l′′ in T2 with a common ancestor u, the vector Cl′ − Cl′′ equals the

sum of Vv over all vertices v on the path from u down to l′ (not including v = u) minus

the sum of Vv over all vertices v on the path from u down to l′′ (not including v = u).

3. The union, over all vertices v ∈ T2, of OPT1(Vv) × {S2
v} (which obviously has size

|OPT1(Vv)|), with the corresponding weights, is an optimal solution for Tree×Tree on

A.

4. |OPT2(A)| =
∑

v∈T2
|OPT1(Vv)|.

Proof. The nodes v which correspond to sets of columns containing column Cl are exactly

the ancestors in T2 of l. Hence, Part 1 follows.

Part 2 is an immediate corollary of Part 1. Clearly, by Part 1, the union over all vertices

v ∈ T2 of OPT1(Vv) × {S2
v} is a feasible solution for Tree×Tree on A. It is also optimal,

and here is a proof. The size of the optimal solution OPT2(A) equals the sum, over vertices

v ∈ T2, of the number of rectangles in OPT2(A) having column set S2
v . Fix a vertex v ∈ T2.

Since the weighted sum of the rectangles in OPT2(A) with column set S2
v is Vv, and each has

a row set S1
u for some u ∈ T1, the number of such rectangles must be at least OPT1(Vv). If

the number of rectangles with column set S2
v strictly exceeded OPT1(Vv), we could replace

all rectangles in OPT2(A) having column set S2
v by a smaller set of weighted rectangles
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having column set S2
v , each of whose columns is the same, and summing to Vv in each

column; since the new set and the old set have the same weighted sum, the new solution

would still sum to A, and have better-than-optimal size, thereby contradicting optimality

of OPT2(A). Part 3 follows.

Part 4 follows from Part 3. ◭

Lemma 3 will be instrumental in analyzing the algorithm.

While the algorithm is very simple to state, it was nontrivial to develop and analyze. In

the algorithm, we use the algorithm by Agarwal et al. [1] to obtain OPT1(V ) given a vector

V .

Algorithm for Tree×Tree

1. For every internal node u in the tree T2, pick a random child u∗ of u and let c(u) = u∗.

Let path(u) be the random path going from u to a leaf: u 7→ c(u) 7→ c(c(u)) 7→ · · · 7→ l(u),

where we denote the last node on the path, the leaf, by l(u).

2. Where root denotes the root of T2, for every node u in T2, in increasing order by depth,

do:

If u is the root of T2, then

Output OPT1(Cl(root)) × {S2
root} with the corresponding weights (those of the op-

timal solution for Cl(root)).

Else

Let p(u) be the parent of u.

Output OPT1(Cl(u) − Cl(p(u))) × {S2
u} with the corresponding weights.

◮ Theorem 4. The expected cost of the algorithm is at most 2|OPT2(A)|.

In the main part of the paper we prove a weaker guarantee for exposition: the expected

cost of the algorithm is at most 4|OPT2(A)|. We defer the improvement to the full version

of the paper. The algorithm can be easily derandomized using dynamic programming.

Proof. Every column Cu is covered by rectangles with sum

(Cu − Cl(p(u))) + (Cl(p(u)) − Cl(p(p(u)))) + · · · + Cl(root) = Cu.

Thus the algorithm produces a valid solution. We now must estimate the expected cost of

the solution. The total cost incurred by the algorithm is

|OPT1(Cl(root))| +
∑

u 6=root

|OPT1(Cl(u) − Cl(p(u)))|.

Assume, without loss of generality, that all nodes in the tree either have two or more children

or are leaves. Denote the number of children of a node v, the degree of v, by d(v). Denote

by 1 the indicator function. Observe that for the root node we have

|OPT1(Cl(root))| =

∣

∣

∣

∣

∣

∣

OPT1

(

∑

v∈path(root)

Vv

)

∣

∣

∣

∣

∣

∣

≤
∑

v∈path(root)

|OPT1(Vv)|;

for a nonroot vertex u, we have by Lemma 3 (2), keeping in mind that l(·), c(·), and path(·)

are random,

|OPT1(Cl(u) − Cl(p(u)))| =
∣

∣

∣
OPT1

(

∑

v∈path(u)

Vv −
∑

v∈path(c(p(u)))

Vv

)∣

∣

∣

≤
(

∑

v∈path(u)

|OPT1(Vv)| +
∑

v∈path(c(p(u)))

|OPT1(Vv)|
)

· 1(u 6= c(p(u))).
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Here we used the triangle inequality for the function |OPT1(·)|.

Consider the second sum in the right-hand side. For every child u′ of p(u), the random

node c(p(u)) takes value u′ with probability 1/d(p(u)). Thus

E

[

∑

v∈path(c(p(u)))

|OPT1(Vv)| · 1(u 6= c(p(u)))
]

=
1

d(p(u))

∑

u′:u′ is a sibling of u

E

[(

∑

v∈path(c(p(u)))

|OPT1(Vv)|
)

| c(p(u)) = u′
]

=
1

d(p(u))

∑

u′:u′ is a sibling of u

E

[

∑

v∈path(u′)

|OPT1(Vv)|
]

.

Pr
(

u 6= c(p(u))
)

equals (d(p(u)) − 1)/d(p(u)). Denote this expression by αu. The total

expected size of the solution returned by the algorithm is bounded by

E

[

∑

v∈path(root)

|OPT1(Vv)|
]

+
∑

u 6=root

αuE

[

∑

v∈path(u)

|OPT1(Vv)|
]

(2)

+
∑

u 6=root
1

d(p(u))

∑

u′:u′ is a sibling of u E

[

∑

v∈path(u′) |OPT1(Vv)|
]

= E

[

∑

v∈path(root) |OPT1(Vv)|
]

+
∑

u 6=root αuE

[

∑

v∈path(u) |OPT1(Vv)|
]

+
∑

u′ 6=root

(

∑

u 6=root
1(u′ is a sibling of u)

d(p(u′))

)

E

[

∑

v∈path(u′) |OPT1(Vv)|
]

. (3)

Notice that, for a fixed u′ 6= root,

∑

u 6=root

1(u′ is a sibling of u)

d(p(u′))
=

d(p(u′)) − 1

d(p(u′))
= αu′ < 1. (4)

Hence, the total cost of the solution is bounded by

∑

u

E

[

∑

v∈path(u)

|OPT1(Vv)|
]

+
∑

u′ 6=root

E

[

∑

v∈path(u′)

|OPT1(Vv)|
]

≤ 2
∑

u

E

[

∑

v∈path(u)

|OPT1(Vv)|
]

.

Finally, observe that node v belongs to path(v) with probability 1; it belongs to the

path(p(v)) with probability at most 1/2; it belongs to the path path(p(p(v))) with probability

at most 1/4, etc. It belongs to path(u) with probability 0 if u is not an ancestor of v. Thus

2
∑

u

E

[

∑

v∈path(u)

|OPT1(Vv)|
]

= 2
∑

v

|OPT1(Vv)| ·
(

∑

u

Pr
(

v ∈ path(u)
))

≤ 2
∑

v

|OPT1(Vv)| ·
(

1 + 1/2 + 1/4 + · · ·
)

< 4
∑

v

|OPT1(Vv)| ≤ 4|OPT2(A)|.

We have proven that the algorithm finds a 4-approximation. A slightly more careful analysis,

in the full version of the paper, shows that the approximation ratio of the algorithm is at

most 2. ◭

What is the running time of the 2-approximation algorithm? The time needed to run

the 1-dimensional algorithm of [1] is O(dn) where there are n leaves in each tree and the

smaller of the two depths is d. One can verify that the running time of our 2-approximation

algorithm is a factor O(n) larger, or O(dn2). In most applications at least one of the trees

would have depth O(log n), giving O(n2 log n) in total.



Howard Karloff, Flip Korn, Konstantin Makarychev, and Yuval Rabani 339

5 Approximation Algorithm For AllRects

5.1 The 1-Dimensional Problem

First we consider the one-dimensional case, for which we will give a (23/18+ε)-approximation

algorithm; 23/18 < 1.278. We are given a sequence a1, a2, . . . , an of numbers and we need to

find a collection of closed intervals [i, j] with arbitrary real weights wij so that every integral

point k ∈ {1, . . . , n} is covered by a set of intervals with total weight ak. That is, for all k,

∑

i,j:k∈[i,j]

wij = ak. (5)

Our goal is to find the smallest possible collection. We shall use the approach of Bansal,

Coppersmith, and Schieber [4] (in their problem all ai ≥ 0 and all wij > 0). Set a0 = 0 and

an+1 = 0. Observe that if ak = ak+1, then in the optimal solution every interval covering

k also covers k + 1. On the other hand, since every rectangle covering both k and k + 1

contributes the same weight to ak and ak+1, if ak 6= ak+1, then there should be at least one

interval that either covers k but not k + 1, or covers k + 1 but not k. By the same reason,

the difference ak+1 − ak, which we denote by ∆k = ak+1 − ak, equals the difference between

the weight of intervals with the left end-point at k + 1 and the weight of rectangles with the

right endpoint at k:

∆k =
∑

j:k+1≤j

wk+1,j −
∑

i:i≤k

wik. (6)

Note that if we find a collection of rectangles with weights satisfying (6), then this collection

of intervals is a valid solution to our problem, i.e., then equality (5) holds. Define a directed

graph on vertices {0, . . . , n}. For every interval [i, j], we add an arc going from i − 1 to j.

Then the condition (6) can be restated as follows: The sum of weights of arcs outgoing from

k minus the sum of weights of arcs entering k equals ∆k. Our goal is to find the smallest

set of arcs with non-zero weights satisfying this property. Consider an arbitrary solution

and one of the weakly connected components S. The sum
∑

k∈S ∆k = 0, since every arc is

counted twice in the sum, once with the plus sign and once with the minus sign. Since S is

a connected component the number of arcs connecting nodes in S is at least |S| − 1. Thus

a lower bound on the number of arcs or intervals in the optimal solution is the minimum of

M
∑

t=1

(|St| − 1) = n + 1 − M

among all partitions of the set of items {0, . . . , n} into M disjoint sets S1, . . . , SM such that
∑

k∈St
∆k = 0 for all t. On the other hand, given such a partition (S1, . . . , SM ), we can

easily construct a set of intervals. Let kt be the minimal element in St. For every element

k in St \ {kt}, we add an interval [kt + 1, k] with weight −∆k. We now verify that these

intervals satisfy (6). If k belongs to St and k 6= kt, then there is only one interval in the

solution with right endpoint at k. This interval is [kt + 1, k] and its weight is −∆k. The

solution does not contain intervals with left endpoint at k + 1 (since k 6= kt). Thus (6)

holds as well. If k belongs to St and k = kt, the solution does not contain intervals with the

right endpoint at k, but for all k′ ∈ St there is an interval [k + 1, k′] with weight −∆k′ . The

total weight of these intervals equals
∑

k′∈St;k′ 6=k

−∆k′ = −
∑

k′∈St

∆k′ + ∆k = ∆k.
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Condition (6) again holds.

Thus the problem is equivalent to the problem of partitioning the set of items {0, . . . , n}

into a family of M sets {S1, . . . , SM } satisfying the condition
∑

k∈St
∆k = 0 for all t, so as

to minimize
∑

t(|St| − 1) = (n + 1) − M . Notice that the sum of all ∆k equals 0. Moreover,

every set with the sum of ∆k equal to 0 corresponds to an instance of the 1-dimensional

rectangle covering problem. We shall refer to the problem as Zero-Weight Partition.

We now describe the approximation algorithm for Zero-Weight Partition which is

a modification of the algorithm of Bansal, Coppersmith, and Schieber [4] designed for a

slightly different problem (that of minimizing setup times in radiation therapy).

◮ Remark. For Zero-Weight Partition, our algorithm gives a slightly better approxi-

mation guarantee than that of [4]: 23/18 ≈ 1.278 vs 9/7 ≈ 1.286. The difference between

algorithms is that the algorithm of Bansal, Coppersmith, and Schieber [4] performs either

the first and third steps (in terms of our algorithm; see below), or the second and third

steps; while our algorithm always performs all three steps.

In the first step the algorithm picks all singleton sets {k} with ∆k = 0 and pairs {i, j}

with ∆i = −∆j . It removes the items covered by any of the chosen sets. At the second step,

with probability 2/3 the algorithm enumerates all triples {i, j, k} with ∆i +∆j +∆k = 0 and

finds the largest 3-set packing among them using the (3/2+ε)-approximation algorithm due

to Hurkens and Schrijver [10], i.e., it finds the largest (up to a factor of (3/2 + ε)) disjoint

family of triples {i, j, k} with ∆i + ∆j + ∆k = 0. Otherwise (with probability 1/3), the

algorithm enumerates all quadruples {i, j, k, l} having ∆i + ∆j + ∆k + ∆l = 0 and finds the

largest 4-set packing among them using the (2+ε)-approximation algorithm due to Hurkens

and Schrijver [10]. At the third, final, step the algorithm covers all remaining items, whose

sum of ∆k’s is zero, with one set.

Before we start analyzing the algorithm, let us consider a simple example. Suppose

that (a1, a2, a2, a4, a5, a6) = (15, 8, 10, 17, 18, 15). First we surround the vector with two 0’s:

(a0, a1, a2, a2, a4, a5, a6, a7) = (0, 15, 8, 10, 17, 18, 15, 0). Then compute the vector of ∆k’s:

(∆0, ∆1, ∆2, ∆2, ∆4, ∆5, ∆6) = (15 − 0, 8 − 15, 10 − 8, 17 − 10, 18 − 17, 15 − 18, 0 − 15) =

(15, −7, 2, 7, 1, −3, −15). Notice that (−15)+7+(−2)+(−7)+(−1)+3+15 = 0. We partition

the set into sets of weight 0: {∆0, ∆6}, {∆1, ∆3}, {∆2, ∆4, ∆5}. This partition corresponds

to the following solution of the 1-dimensional problem: interval [1, 6] with weight 15, interval

[2, 3] with weight −7, interval [3, 4] with weight −1, interval [3, 5] with weight 3.

◮ Lemma 5. For every positive ε > 0, the approximation ratio of the algorithm when using

ε is at most 23/18 + O(ε), with 23/18 < 1.278.

Proof. First, observe that the partitioning returned by the algorithm is a valid partitioning,

i.e., every item belongs to exactly one set and the sum of ∆k’s in every set equals 0. We

show that the first step of the algorithm is optimal. That is, there exists an optimal solution

that contains exactly the same set of singletons and pairs as in the partition returned by

the algorithm. Suppose that the optimal solution breaks one pair {i, j} (∆i = −∆j) and

puts i in S and j in T . Then we can replace sets S and T with two new sets {i, j} and

S ∪ T \ {i, j}. The new solution has the same cost as before; the sum of ∆k’s in every set

is 0, but the pair {i, j} belongs to the partitioning. Repeating this procedure several times,

we can transform an arbitrary optimal solution into an optimal solution that contains the

same set of singletons and pairs as the solution obtained by the approximation algorithm.

For the sake of the presentation let us assume that ε = 0 (that is, we assume that the

approximation algorithms due to Hurkens and Schrijver [10], we use in our algorithm, have

approximation guarantees at most 3/2 and 2). Let pk be the number of sets of size k in the
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optimal solution. The cost of the optimal solution is p2 + 2p3 + 3p4 + 4p5 + · · · , because the

objective function charges |S|−1 to a set of size |S|. Our approximation algorithm also finds

p1 singleton sets and p2 pairs. Then with probability 2/3, it finds s3 ≥ (2/3)p3 triples and

covers the remaining 3 · (p3 −s3)+4p4 +5p5 + · · · vertices with one set; and with probability

1/3, it finds s4 ≥ p4/2 quadruples and covers the remaining 3p3 +4·(p4 −s4)+4p4 +5p5 +· · ·

vertices with one set. Thus the expected cost of the solution returned by the algorithm equals

2

3

(

p2 + 2 ·
2p3

3
+ 3 ·

p3

3
+ 4p4 +

∑

k≥5

kpk − 1
)

+
1

3

(

p2 + 3 ·
p4

2
+ 3p3 + 4 ·

p4

2
+

∑

k≥5

kpk − 1
)

= p2 +
23

9
p3 +

23

6
p4 +

∑

k≥5

kpk − 1. (7)

Therefore, the approximation ratio of the algorithm, assuming that ε = 0, is

p2 + 23
9 p3 + 23

6 p4 +
∑

k≥5 kpk − 1

p2 + 2p3 + 3p4 +
∑

k≥5(k − 1)pk

≤ max

{

1

1
,

23
9

2
,

23
6

3
,

5

4
,

6

5
, . . .

}

=
23

18
.

It is easy to verify that if ε > 0, the approximation ratio of the algorithm is at most

23/18 + O(ε). ◭

In the full version of the paper we prove that finding the exact solution of the problem

is NP-hard.

5.2 The 2-Dimensional Case

We now consider the 2-dimensional case (which does not appear in [4]). We are given an

m × n matrix A = (aij) (1 ≤ i ≤ m, 1 ≤ j ≤ n) and we need to cover it with the

minimum number of weighted rectangles Rect(i1, i2, j1, j2) (for arbitrary i1, i2, j1, j2); we

use w(i1, i2, j1, j2) for the weight of Rect(i1, i2, j1, j2). We assume that aij = 0 for i and j

outside the rectangle {1, . . . , m} × {1, . . . , n}.

By analogy to the 1-dimensional case, define ∆ij = ai,j − ai,j+1 + ai+1,j+1 − ai+1,j . Call

a pair (i, j) with 0 ≤ i ≤ m, 0 ≤ j ≤ n, with ∆ij 6= 0 an array corner. Imagine that the

matrix is written in an m×n table, and ∆ij ’s are written at the grid nodes. The key point is

that every rectangle covers exactly one, two, or four of the cells (i+1, j +1), (i, j), (i, j +1),

(i + 1, j) bordering a grid point, and that those covering two or four of those cells cannot

affect ∆ij . This means that only rectangles having a corner at the intersection of the ith

and jth grid line contribute to ∆ij . (This is why the definition of ∆ij was “by analogy” to

the 1-d case.) This means that the number of rectangles in the optimal solution must be

at least one quarter of the number of array corners, the “one-quarter" arising from the fact

that each rectangle has exactly four corners and can hence be responsible for at most four

of the array corners.

It is easy now to give a 4-approximation algorithm, which we sketch without proof, based

on this observation. Build a matrix M , initially all zero, which will eventually equal the

input matrix A. Until no more array corners exist in A − M , find an array corner (i, j) with

i < m and j < n. (As long as array corners exist, there must be one with i < m and j < n.)

Let ∆ 6= 0 be ∆ij . Add to M a rectangle of weight ∆ with upper left corner at (i, j) and

extending as far as possible to the right and downward, eliminating the array corner at (i, j)

in A − M .

It is easy to see that (1) when the algorithm terminates, M = A, and that (2) the

number of rectangles used is at most the number of array corners in A, and hence at most

4|OPT2(A)|.
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Now we give, instead, a more sophisticated, 23/9+ε < 2.56-approximation algorithm for

the 2D problem. The idea is to make more efficient use of the rectangles. Instead of using

only one corner of each (in contrast to the adversary, who might use all four), now we will

use two. In fact, we will deal separately with different horizontal (between-consecutive-row)

grid lines, using a good 1-dimensional approximation algorithm to decide how to eliminate

the array corners on that grid line. Every time the 1-d algorithm tells us to use an interval

[j1, j2], we will instead inject a rectangle which starts in column j1 and ends in column j2,

and extends all the way to the bottom. Because we use 2 of each rectangle’s 4 corners, we

pay a price of a factor of 4/2 over the 1-d approximation ratio of 23/18 + O(ε). Hence we

will get 23/9 + O(ε).

Here are the details. Fix i and consider the restriction of the zero-weight partition

problem to the ith horizontal grid line, i.e., the 1-dimensional zero-weight partition problem

with ∆j = ∆ij . Denote by OPT i the cost of the optimal solution. The number of rectangles

touching the ith horizontal grid line from above or below is at least OPT i, since only these

rectangles contribute ∆ij ’s. Every rectangle touches only two horizontal grid lines, thus the

total number of rectangles is at least
∑m

i=1 OPT i/2.

All rectangles generated by our algorithm will touch the bottom line of the table; that is

why we lose a factor of 2. Note that if we could solve the 1-dimensional problem exactly we

would be able to find a covering with
∑m

i=1 OPT i rectangles and thus get a 2 approximation.

For each horizontal grid line i, the algorithm solves the 1-dimensional problem (with ∆j =

∆ij) and finds a set of intervals [j1, j2] with weights wj1j2
. These intervals are the top sides

of the rectangles generated by the algorithm. All bottom sides of the rectangles lie on the

bottom grid line of the table. That is, for every interval [j1, j2] the algorithm adds the

rectangle Rect(i, m, j1, j2) to the solution and sets its weight w(i, m, j1, j2) to be wj1j2
.

The total number of rectangles in the solution output by the algorithm is
∑m

i=1 ALGi,

where ALGi is the cost of the solution of the 1-dimensional problem. Thus the cost of the

solution is at most 2 · (23/18 + O(ε)) times the cost of the optimum solution. We now need

to verify that the set of rectangles output by the algorithm is indeed is a solution.

Subtract the weight of each rectangle from all aij ’s covered by the rectangle. We need

to prove that the residual matrix

a′
ij = aij −

∑

i1,j1,j2:(i,j)∈Rect(i1,m,j1,j2)

w(i1, m, j1, j2)

equals zero. Observe that ∆′
ij = a′

i+1,j+1 + a′
ij − a′

i+1,j − a′
i,j+1 = 0 for all 0 ≤ i ≤ m − 1

(i.e., all rows i, possibly, except for the bottom line) and 0 ≤ j ≤ n. Assume that not all

a′
ij equal to 0. Let a′

i0j0
be the first nonzero a′

ij with respect to the lexicographical order

on (i, j). Then a′
i0−1,j0−1 = a′

i0−1,j0
= a′

i0,j0−1 = 0. Thus a′
i0j0

= 0. We have proven the

following theorem.

◮ Theorem 6. For every positive ε, there exists a polynomial-time approximation algorithm

for AllRects with approximation guarantee at most 23/9 + O(ε), with 23/9 = 2.5555.....

5.3 A Simplified Algorithm

Because of the dependence on ε, the running time of the previous algorithm can be large

when ε is small. A simpler algorithm for the 1-dimensional case—namely, just use pairs

and triples—can be shown to give ratio 4/3 for the 1-d case, and hence 8/3 = 2.6666... in

2-d, only slightly worse than 23/9. For the simplified 1-d algorithm, the running time is

O(n + k2 log k), if there are k ∆’s. To run the 2-d algorithm, the running time becomes
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O(n2+
∑n

i=1 k2
i log ki), where there are ki corners on the ith row. Since the number of corners

is Θ(OPT ), the running time is at most O(n2) plus O(maxk1+k2+···+kn=OP T

∑

i k2
i log ki).

Since f(x) = x2 log x is convex, this quantity is maximized by making as many ki’s equal to

n as possible. A simple proof then shows that the time is O(n2 + OPT · (n log n)).
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