N

N
N

HAL

open science

Linear temporal logic for regular cost functions

Denis Kuperberg

» To cite this version:

Denis Kuperberg. Linear temporal logic for regular cost functions. Symposium on Theoretical Aspects

of Computer Science (STACS2011), Mar 2011, Dortmund, Germany. pp.627-636. hal-00573635

HAL Id: hal-00573635
https://hal.science/hal-00573635

Submitted on 4 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00573635
https://hal.archives-ouvertes.fr

Linear temporal logic for regular cost functions

Denis Kuperberg

L1AFA/CNRS/Université Paris 7, Denis Diderot, France

—— Abstract

Regular cost functions have been introduced recently agtangon to the notion of regular languages
with counting capabilities, which retains strong closwrquivalence, and decidability properties. The
specificity of cost functions is that exact values are nos@®ered, but only estimated.

In this paper, we define an extension of Linear Temporal L@gid.) over finite words to describe
cost functions. We give an explicit translation from thiswiegic to automata. We then algebraically
characterize the expressive power of this logic, using asyactic congruence for cost functions intro-
duced in this paper.

Digital Object Identifier ~ 10.4230/LIPlcs.STACS.2011.627

1 Introduction

Since the seminal works of Kleene and Rabin and Scott, therytef regular languages is one of
the cornerstones in computer science. Regular languagesieny good properties, of closure, of
equivalent characterizations, and of decidability, whitdkes them central in many situations.

Recently, the notion of regular cost function for words hesrbpresented as a candidate for being
a quantitative extension to the notion of regular languagibdle retaining most of the fundamental
properties of the original theory such as the closure pta@seithe various equivalent characteriz-
ations, and the decidability [2]. A cost function is an e@l@nce class of the functions from the
domain (words in our case) t§U {«}, modulo an equivalence relatieawhich allows some dis-
tortion, but preserves the boundedness property over edisesof the domain. The model is an
extension to the notion of languages in the following serse can identify a language with the
function mapping each word inside the language to 0, andwacthoutside the language ¢a It is
a strict extension since regular cost functions have cogrdapabilities, e.g., counting the number
of occurrences of letters, measuring the length of intspett...

Linear Temporal Logic (LTL), which is a natural way to deserlogical constraints over a linear
structure, have also been a fertile subject of study, pdatity in the context of regular languages and
automata [10]. Moreover quantitative extensions of LTLéeecently been successfully introduced.
For instance the model Prompt-LTL introduced in [8] is iet®ed in bounding the waiting time of
all requests of a formula, and in this sense is quite closea@im of cost functions.

In this paper, we extend LTL (over finite words) into a new togiith quantitative features
(LTL=), in order to describe cost functions over finite words witgital formulae. We do this by
adding a new operatd# =N : a formulagU <Ny means thatp holds somewhere in the future, and
¢ has to hold until that point, except at mdsttimes (we allow at mosN "mistakes" of the until
formula).

Related works and motivating examples

Regular cost functions are the continuation of a sequenaeodfs that intend to solve difficult
guestions in language theory. Among several other decgsiololems, the most prominent example
is the star-height problem: given a regular languagend an integek, decide whethet can be
expressed using a regular expression using at kosisting of Kleene stars. The problem was

@@@@ © Denis Kuperberg;]) K SYMPOSIUM
AT licensed under Creative Commons License NC-ND V \n ON THEORETICAL
28th Symposium on Theoretical Aspects of Computer ScieBTACS'11). N I'— ASPECTS

Editors: Thomas Schwentick, Christoph Durr; pp. 627-636 4 S T S%FEE(EEPUTER

Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fur Informatik, DagstBublishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.627
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

628

Linear temporal logic for regular cost functions

resolved by Hashigushi [5] using a very intricate proof, &dr by Kirsten [7] using an automaton
that has counting features.

Finally, also using ideas inspired from [1], the theory afsh automata over words has been
unified in [2], in which cost functions are introduced, andahle models of automata, algebra, and
logic for defining them are presented and shown equivaleotreSponding decidability results are
provided. The resulting theory is a neat extension of thedsted theory of regular languages to a
guantitative setting.

On the logic side, Prompt-LTL, introduced in [8], is an irdsting way to extend LTL in order
to look at boundedness issues, and already gave interaiticigability and complexity results.
Prompt-LTL would correspond in the framework of regulartdosctions to a subclass of temporal
cost functions introduced in [3]; in particular it is weakkan LTLS introduced here.

Contributions

Itis known from [2] that regular cost functions are the orexsognizable by stabilization semigroups
(or in an equivalent way, stabilization monoids), and fr@&than there is an effective quotient-wise
minimal stabilization semigroup for each regular cost tiore This model of semigroups extends
the standard approach for languages.

We introduce a quantitative version of LTL in order to delsercost functions by means of lo-
gical formulas. The idea of this new logic is to bound the nendf "mistakes" of Until operators,
by adding a new operatbr=N. The first contribution of this paper is to give a direct tiatien from
LTL=-formulas toB-automata, which is an extension of the classic transldtiom LTL to Buchi
automaton for languages. This translation preserves @gaats (i.e. not only cost functions equi-
valence), which could be interesting in terms of future aggpions. We then show that regular cost
functions described by LTL formulae are the same as the coraputed by aperiodic stabilization
semigroups, and this characterization is effective. Thofpuses a syntactic congruence for cost
functions, introduced in this paper.

This work validates the algebraic approach for studying ftogctions, since the analogy extends
to syntactic congruence. It also allows a more user-frignaly to describe cost functions, since LTL
can be more intuitive than automata or stabilization seouigs to describe a given cost function.

As it was done in [3] for temporal cost functions, the chagdeation result obtained here for
LTL =-definable cost functions follows the spirit of Schiitzemjeeis theorem which links star-free
languages with aperiodic monoids [9].

Organisation of the paper

After some notations, and reminder on cost functions, wedhice in Section 3 LTE as a quantit-
ative extension of LTL, and give an explicit translationrfraTL <-formulae toB-automata. We then
present in Section 4 a syntactic congruence for cost fungti@nd show that it indeed computes the
minimal stabilization semigroup of any regular cost fuanti We finally use this new tool to show
that LTLS has the same expressive power as aperiodic stabilizatiigszups.

Notations

We will noteN the set of non-negative integers aid the selNU {e}, ordered by 0< 1 < --- < oo,
If E is a setEN is the set of infinite sequences of elementEdfve will not use here the notion
of infinite words). Such sequences will be denoted by boleisté, b,...). We will work with a
fixed finite alphabef\. The set of words oveh is A* and the empty word will be noted The
concatenation of words andv is uv. The length ofu is |u|. The number of occurrences of let&er

Denis Kuperberg 629

in uis |ula. FunctionsN — N will be denoted by lettera, 3,. .., and will be extended t8 U {c}
by a(e0) = co.

2 Regular Cost functions

2.1 Cost functions and equivalence

If L C A*, we will notey the function defined by (u)=0ifuelL, oif u¢ L. Let ¥ be the set of
functions :A* — No. For f,g € # anda a function (see Notations), we say thaty gif f <aog,
andf ~q gif f <qgandg<q f. Finally f = gif f =~y g for somea. This equivalence relation
doesn’t pay attention to exact values, but preserves tistemde of bounds.

A cost functionis an equivalence class @f/~. Cost functions are notefdg, ..., and in practice
they will be always be represented by one of their elememnis.in

2.2 B-automata

A B-automaton is a tupléQ, A, In,Fin, ", A) whereQ is the set of states\ the alphabet,n andFin
the sets of initial and final stateis the set of counters, amblC Q x A x ({i,r,c}")' x Qis the set of
transitions.

Counters have integers values starting at 0, and an aztof{i,r,c}*)" performs a sequence of
atomic actions on each counter, where atomic actions drereifincrement by 1)r (reset to 0) or
c (check the value). In particular we will not¢ghe action corresponding to the empty word : doing
nothing on every counter. His a run, leiC(e) be the set of values checked duriagn all counters
of I.

A B-automatom computes a regular cost functifa]| via the following semantic 2] (u) =
inf {supC(e),erun of 2 overu}.

With the usual conventions that ship= 0 and infd = . There exists also a dual model Bf
automata, namelg-automata, that has the same expressive power, but we wewgtap this further
in this paper. See [2] for more details.

» Example 1. Let A = {a,b}. The cost function - |, is the same as|2|5+ 5, it is computed by
the following one-counteB-automaton on the left-hand side. The cost functiea min{n e N, a"
factor ofu} is computed by the nondeterministic one-couB@utomaton on the right-hand side.

a:ic ab:e a:ic a,b:e
. ‘8 b:e Q b:r 8_
b:e \1/

Moreover, as in the case of languages, cost functions cagclgnized by an algebraic structure
that extends the classic notion of semigroups, calledlstation semigroups. A stabilization semig-
roupS= (S, <,t) is a partially ordered se® together with an internal binary operatioand an
internal unary operatioa— a* defined only on idempotent elements (elemergsch that-a= a).
The formalism is quite heavy, see appendix for all detailsxanms of stabilization semigroups and
recognition of regular cost functions.

STACS'11

630

Linear temporal logic for regular cost functions

3 Quantitative LTL

We will now use an extension of LTL to describe some regulat éunctions. This has been done
successfully with regular languages, so we aim to obtairs#tme kind of results. Can we still go
efficiently from an LTL-formula to an automaton?

3.1 Definition

The first thing to do is to extend LTL so that it can decribe dosttions instead of languages. We
must add quantitative features, and this will be done by aowsvatoty <N. Unlike in most uses of
LTL, we work here over finite words.

Formulas of LTL= (on finite words on an alphabg are defined by the following grammar :

e:=alere|ove|Xe| g @Np| Q

Note the absence of negation in the definition of ETIThe negations have been pushed to the
leaves.

ameans that the current letterdsA andV are the classic conjunction and disjunction;
X@means thagpis true at the next letter;

QU means that) is true somewhere in the future, agtholds until that point;

@U =Ny means thatp is true somewhere in the future, apdan be false at most times before
. The variableN is unique, and is shared by all occurrencesl&¥ operator;

Q means that we are at the end of the word.

We can definel = (\/aep@) VQ and L = =T, meaning respectively true and false, aral=
(Vbab) v Q to signify that the current letter is nat
We also define connectors "eventualyF$¢ = TU ¢ and "globally" : G = ¢U Q.

3.2 Semantics

We want to associate a cost functifx] on words to any LTE-formula.
We will say thatu,n = @ (u,n is a model ofy) if @is true onu with n as valuation folN, i.e. as
number of errors for all the =N's in the formulagp. We finally define

[@ll(u) =inf{ne N/u,n|= @}

We can remark that ii, n |= @, then for allk > n, u,k = @, since the =N operators appear always
positively in the formula (that is why we don’t allow the ndiga of an LTL=-formula in general).
In particular,[@] (u) = 0 means thatn € N,u,n |= @, and[@]](u) = c means that'n € N,u,n = ¢
(since infd =).

» Proposition 2.

[a](u) = 0if ue aA*, andew otherwise

[Q](u) = 0if u= ¢, ande otherwise

oA W] = max([al, [Wl), and[@V @[] = min([¢], [W])

(X[(au) = [@](u), [Xqi(e) = e

[T]=0,and[L] = e

» Example 3. Let@= (-a)U=NQ, then[[¢] = |- |a

We use LTI=-formulae in order to describe cost functions, so we willaswork modulo cost
function equivalence-.

» Remark 4. If @ does not contain any operator=N, ¢ is a classic LTL-formula computing a
languagd., and[[@] = XL

Denis Kuperberg 631

3.3 FromLTL < to B-Automata

We will now give a direct translation from LTt-formula toB-automata, i.e. given an LTi-formula
¢ on a finite alphabef\, we want to build aB-automaton recognizinfig]. This construction is
adapted from the classic translation from LTL-formula taccBilautomata [4].

Let @ be an LTL=-formula. We define sulp) to be the set of subformulae @f andQ = 25Ud®
to be the set of subsets of Syb.

We want to define 8-automatomy = (Q, A, In,Fin,I",A) such thafla ||g ~ [¢].

We set the initial states to Ha = {{¢}} and the final ones to blein = {0,{Q}} We choose
as set of counter§ = {yi,...,yk} wherek is the number of occurences of t&N operators inp,
labeled fromU=N to USN.

A state is basically the set of constraints we have to verdfipte the end of the word, so the
only two accepting states are the one with no constraint,ithr @nly constraint to be at the end of
the word.

The following definitions are the same as for the classice¢ ¢aTL to Buchi automata) :

» Definition 5. An atomic formula is either a letterc A or Q
A setZ of formulae is consistent if there is at most one atomic fdenit.
A reduced formula is either an atomic formula or a Next foran(af the formX¢).
A setZ is reduced if all its elements are reduced formulae.
If Z is consistent and reduced, we define (Bxt= {$/Xd € Z}.

» Lemma 6 (Next Step). If Zis consistent and reduced, for ale A*,ac A andne N,

au,n= A Ziff un= A\ nex(z) andzu{a} consistent

We would like to definez, with Z — next(Z) as transitions.

The problem is that ne§@) is not consistent and reduced in general. If (Bxis inconsistent
we remove it from the automaton. If it is consistent, we needgdply some reduction rules to get
a reduced set of formulae. This consists in addifigansitions (but with possible actions on the
counter) towards intermediate sets which are not actuedsstd the automaton (we will call them
"pseudo-states"), until we reach a reduced set.

Let ¢ be maximal (in size) not reducedYh we add the following transitions

If Y=01Ad2:Y =5 Y\ {WU{d1.02}

€€
|fl.|J:(|)1\/¢2: Y?Y\{UJ}U{(IM}
Y = Y\ {u}U{2}
Y S5 Y\ {Whu{os, Xu}
Y =5 Y\ {yhu{ez)
Y E5 YA (P} U {01, XY}
If g =01UNp2: ¢ ¥ Sy WU {Xy} (we count one mistake)
Y =5 Y\ (W)U {2}

where actiorr; (resp.icj) performr (resp.ic) on countery; ande on the other counters.

The pseudo-states don’t (a priori) belongle- 25U9% because we add formulXap for | € sub(@),
so ifZ is areduced pseudo-state, @&itwill be in Q again since we remove the new next operators.

IfY=0¢1Ud2: {

The transitions of automatom, will be defined as follows:

A= {Y 2% next(Z) | Y € Q,zu{a} consistent and reduced =%, z}

STACS'11

632

Linear temporal logic for regular cost functions

whereY =%, Z means that there is a sequenceedfansitions fromY to Z with o as combined
action on counters.

» Definition 7. If o is a sequence of actions on counters, we will call@athe maximal value
checked on a counter durimmgwith O as starting value of the counters, and @al= 0 if there is no
check ino. It corresponds to the value of a run oBeautomaton witho as combined action of the

counter.

» Lemma 8. Letu=a;...am be a word onA andYp “E5* v, 292

A

0 .
.. @m8m y;, an accepting run of

Then for ally e subg), foralln € {0,...,m}, for all Yo %5, Y ©%, Z with ZU {an,1} consistent
and reduced, ant,;1 = nex{Z)

PeY = app1an2...an,NE=y

whereN = val(o’Oni1...0m).

Lemma 8 implies the correctness of the automatgn
Let Yo a1 Yy 8292 amgm Ym be a valid run ofay on u of valueN = [42¢] s, applying Lemma 8
with n=0 andY =Yy = {@} gives usu,N = ¢. Hence[@]] < [4¢]B.

Conversely, leN = [@](u), thenu,N = ¢ so by definition ofay, it is straightforward to verify
that there exists an accepting runsfoveru of value< N (each countey; doing at mosN mistakes
relative to operathFN). Hence[a¢]s < [[¢@].

We finally get[2¢]s = [¢], the automatorr, computes indeed the exact value of functja

(and so we have obvious|yzg]s ~ [¢]).

4 Algebraic characterization

We remind that as in the case of languages, stabilizatiogsenps recognize exactly regular cost
functions, and there exists a quotient-wise minimal sizdtibn semigroup for each regular cost
function [3].

In standard theory, it is equivalent for a regular languagbd described by an LTL-formula,
or to be recognized by an aperiodic semigroup. Is it stilldhse in the framework of regular cost
functions? To answer this question we first need to develagle further the algebraic theory of
regular cost functions.

4.1 Syntactic congruence

In standard theory of languages, we can go from a descripfiamegular languageto a description
of its syntactic monoid via the syntactic congruence. Maezpwhen the language is not regular,
we get an infinite monoid, so this equivalence can be usecst™tegularity of a language.

The main idea behind this equivalence is to identify wandmndyv if they “behave the same”
relatively to the languagi, i.e. L cannot separatefrom v in any context ¥(x,y),xuy € L < xvy €
L.

The aim here is to define an analog to the syntactic congrubnitdor regular cost functions
instead of regular languages. Since cost functions lookiabtifative aspects of words, the notions
of "element" and "context" have to contain quantitativeomfiation : we want to be able to say
things like “words with a lot o&’'s behave the same as words with a f@e’.

That is why we won't define our equivalence over words, butr gvexpressions, which are a
way to describe words with quantitative information.

Denis Kuperberg 633

4.2 f-expressions

We first define generglexpressions as in [6] and [3] by just adding an operatorwords in order
to repeat a subexpression “a lot of times”. This differs fritra stabilization monoid definition, in
which theg-operator can only be applied to specific elements (idenmpgie

The set Expr ofi-expressions on an alphabkis defined as follows:
e:=acA|ee|¢&

If we choose a stabilization semigro®p= (S, -, <,) together with a functiomn : A — S, the
eval function (from Expr t@®) is defined inductively by evéh) = h(a),evalee’) = evale) - eval€),
and evale’) = evale)! (evale) has to be idempotent). We say tleis well-formed for Sif eval(e)
exists. Intuitively, it means that was applied to subexpressions that corresponds to identpote
elements irS.

If fis aregular cost functiorgis well-formed for f iff eis well-formed for the minimal stabil-
ization semigroup of.

» Example 9. Let f be the cost function defined ovéa} ™ by

n_J n ifneven
f(&) _{ « otherwise

The minimal stabilization semigroup éfis : {a,aa, (aa)*, (aa)*a}, with aa-a= aand(aa)*a-
a= (aa)’. Hence the-expressionaaa(aa)® is well-formed forf but theg-expressiora* is not.

Theg-expressions that are not well-formed have to be removed fhe set we want to quotient,
in order to get only real elements of the syntactic semigroup

4.3 wf-expressions

We have defined the set {fexpressions that we want to quotient to get the syntactiivatpnce
of cost functions. However, we saw that some of theegpressions may not be well-typed for the
cost functionf we want to study, and therefore does not correspond to areeleimthe syntactic
stabilization semigroup of.

Thus we need to be careful about the stabilization operatat,apply it only to “idempotent
f-expressions”. To reach this goal, we will add an “idempbtgrerator’w on f-expressions, which
will always associate an idempotent element (relativé)tto a g-expression, so that we can later
applyt and be sure of creating well-formed expressionsffor

We define the set Oexpr ofi-expressions on an alphaliet

E:=acA|EE|E®|E%

The intuition behind operataois thatx® is the idempotent obtained by iteratirgwhich always
exists in finite semigroups).

A context C[X| is a wi-expression with possible occurrences of a free variableet E be a
wi-expressionC[E] is thewf-expression obtained by replacing all occurrences®fE in C[x], i.e.
C[E] = C[¥|[x « E]. Let Cok be the set of contexts anf-expressions.

We will now formally define the semantic of operatarand useof-expressions to get a syntactic
equivalence on cost functions, without mistygeekpressions.

» Definition 10. If E € Oexpr andk,n € N, we defineE(k, n) to be the wordE[w « k, < n], where
the exponential is relative to concatenation of words.

STACS'11

634 Linear temporal logic for regular cost functions

» Lemma 11. Let f be a regular cost function, there exikise N such that for an§ € Oexpr, the
g-expressiork [w < Ks!] is well-formed forf, and we are in one of these two cases

1. Vk>Ks,{f(E(K',n)),nc N} is bounded : we say th& c fB.

2. Vk>Ks,limpe f(E(K!,N)) =0 : we say thaE € f*.

Proof. The proof is a little technical, since we have to reuse thendifin of recognization by
stabilization semigrou; can simply be taken to be the size of the minimal stabilizesiemigroup
of f. |

Here, fB and f* are the analogs for regular cost functions of “beind.trand “not being in
L” in language theory. But this notion is now asymptotic, sinee look at boundedness properties
of quantitative information on words. Moreovdf® and fB are only defined here for regular cost
functions, since&; might not exist iff is not regular.

» Definition 12. Let f be a regular cost function, we wrile=¢ E' if (E € fB < E’ ¢ fB). Finally
we define
E =¢ E' iff VC[X] € Cog,C[E] =+ C[E]

» Remark 13. If u,v € A%, andL is a regular language, then~_ v iff u=y, v (~_ being the
syntactic congruence af). In this sense= is an extension of the classic syntactic congruence on
languages.

Now that we have properly defined the equivaleageover Oexpr, it remains to verify that it is
indeed a good syntactic congruence, i.e. O¢xqris the syntactic stabilization semigroup fof

Indeed iff is a regular cost function, I&; = Oexpr/=¢. We can provideé; with a structure of
stabilization semigroupSs, -, <,f).

» Theorem 14. St isthe minimal stabilization semigroup recognizing f.

The proof consists basically in a bijection between clas$€expr for=¢, and elements of the
minimal stabilization semigroup as defined in appendix A.[Bp

4.4 Expressive power of LTL =

If fisaregular cost function, we will call; the syntactic stabilization semigroup bf
A finite semigrougs = (S,-) is calledaperiodicif 3k € N,Vs e S,s¢'1 = &, The definition is the
same ifSis a finite stabilization semigroup.

» Remark 15. For a regular cost functiof, the statementsf“is recognized by an aperiodic sta-
bilization semigroup” andS; is aperiodic” are equivalent, sin& is a quotient of all stabilization
semigroups recognizinfy

» Theorem 16. Let f be a cost function described by a LTL=-formula, then f is regular and the
syntactic stabilization semigroup of f isaperiodic.

The proof of this theorem will be the first framework to use $lgatactic congruence on cost func-
tions.

If @is a LTL=-formula, we will say thatp verifies propertyAP if there existk € N such that for
any wt-expressiore, EX =[q] E**1, which is equivalent to[fg] has an aperiodic syntactic stabiliz-
ation semigroup”.

With this in mind, we can do an induction on LFEformulaes : we first show th& and allS,
fora e A are aperiodic.

We then proceed to the induction gn assuming thap andy verify propertyAP, we show that
Xy, &V, o AP, U andoU =Ny verify propertyAP.

Denis Kuperberg 635

» Theorem 17. Let f bea cost function recognized by an aperiodic stabilization semigroup, then f
can be described by an LTL=-formula.

The proof of this theorem is a generalization of the proof dalk@/for aperiodic languages in
[11]. However difficulties inherent to quantitative notappear here.

The main issue comes from the fact that in the classicahggitomputing the value of a word in
a monoid returns a single element. This fact is used to dodurciion on the size of the monoid, by
considering the set of possible results as a smaller moibie problem is that with cost functions,
there is some additional quantitative information, and wechto associate a sequence of elements
of a stabilization monoid to a single word. Therefore, ituiegs some technical work to come back
to a smaller stabilization monoid from these sequences.

» Corollary 18. The class of LT=-definable cost functions is decidable.

Proof. Theorems 16 and 17 imply that it is equivalent for a regulast danction to be LTE-
definable or to have an aperiodic syntactic stabilizatianigeoup. If f is given by an automaton
or a stabilization semigroup, we can compute its syntataisikzation semigrou®: (see [3]) and
decide if f is LTL=-definable by testing aperiodicity &. This can be done simply by iterating
at most|S¢| times all elements 08¢ and see if each elemeatreaches an elemeat such that
aktl = ak, <

5 Conclusion

We first defined LTE as a quantitative extension of LTL. We started the study aff By giving an
explicit translation from LTEE -formulae toB-automata, which preserves exact values (and not only
boundedness properties as it is usually the case in thefarkef cost functions). We then showed
that the expressive power of LFLin terms of cost functions is the same as aperiodic statidiza
semigroups. The proof uses a new syntactic congruencehwiais a general interest in the study
of regular cost functions. This result implies the decitigbof the LTL=-definable class of cost
functions.

As a further work, we can try to pubt-expressions in a larger framework, by doing an axio-
matization ofwg-semigroups. We can also extend this work to infinite wordsl, @efine an analog
to Bluchi automata for cost functions. To continue the analeith classic languages results, we
can define a quantitative extension of FO describing the sdass as LTE, and search for ana-
log definitions of counter-freB-automata and star-fré®ular expressions. The translation from
LTL =-formulae toB-automata can be further studied in terms of optimality ahber of counters
of the resulting3-automaton.

Acknowledgments

| am very grateful to my advisor Thomas Colcombet for our helgiscussions, and for the guidelines
he gave me on this work, and to Michael Vanden Boom for helpiegvith language and presenta-
tion issues.

—— References

1 Mikolaj Bojahczyk and Thomas Colcombet. Boundsusregularity. InLICS 06, pages 285-296,
August 2006.

2 Thomas Colcombet. The theory of stabilization monoids agdlar cost functiond CALP, Lecture
Notes in Computer Science, 2009.

STACS'11

636

Linear temporal logic for regular cost functions

10

11

Thomas Colcombet, Denis Kuperberg, and Sylvain LombaregufRar temporal cost functions. In
ICALP (2), pages 563-574, 2010.

Stéphane Demri and Paul Gastin. Specification and verificatsing temporal logics. IModern
applications of automata theory, volume 2 ofl1Sc Research Monographs. World Scientific, 2010.
To appear.

Kosaburo Hashiguchi. Relative star height, star heightfenitg automata with distance functions.
In Formal Properties of Finite Automata and Applications, pages 74—88, 1988.

Kosaburo Hashiguchi. Improved limitedness theorems otefautomata with distance functions.
Theor. Comput. Sci., 72(1):27-38, 1990.

Daniel Kirsten. Distance desert automata and the star heigiblem. RAIRO, 3(39):455-509,
2005.

Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From leesito promptnesformal Methods

in System Design, 34(2):83-103, 2009.

M.-P. Schitzenberger. On finite monoids having only trigiabgroups.Information and Control

8, pages 190-194, 1965.

Moshe Y. Vardi and Pierre Wolper. Automata-theoretic téghes for modal logics of programs.
J. Comput. Syst. ci., 32(2):183-221, 1986.

Thomas Wilke. Classifying discrete temporal propertias Christoph Meinel and Sophie Tison,
editors,STACS, volume 1563 of_ecture Notes in Computer Science, pages 32—46. Springer, 1999.

	Introduction
	Regular Cost functions
	Cost functions and equivalence
	B-automata

	Quantitative LTL
	Definition
	Semantics
	From LTL to B-Automata

	Algebraic characterization
	Syntactic congruence
	-expressions
	-expressions
	Expressive power of LTL

	Conclusion

