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Abstract

Partial words, which are sequences that may have some undefined positions called holes, can be

viewed as sequences over an extended alphabet A⋄ = A ∪ {⋄}, where ⋄ stands for a hole and

matches (or is compatible with) every letter in A. The subword complexity of a partial word w,

denoted by pw(n), is the number of distinct full words (those without holes) over the alphabet

that are compatible with factors of length n of w. A function f : N → N is (k, h)-feasible if for

each integer N ≥ 1, there exists a k-ary partial word w with h holes such that pw(n) = f(n)

for all n, 1 ≤ n ≤ N . We show that when dealing with feasibility in the context of finite binary

partial words, the only linear functions that need investigation are f(n) = n + 1 and f(n) = 2n.

It turns out that both are (2, h)-feasible for all non-negative integers h. We classify all minimal

partial words with h holes of order N with respect to f(n) = n + 1, called Sturmian, computing

their lengths as well as their numbers, except when h = 0 in which case we describe an algorithm

that generates all minimal Sturmian full words. We show that up to reversal and complement,

any minimal Sturmian partial word with one hole is of the form ai⋄ajbal, where i, j, l are integers

satisfying some restrictions, that all minimal Sturmian partial words with two holes are one-

periodic, and that up to complement, ⋄(aN−1⋄)h−1 is the only minimal Sturmian partial word

with h ≥ 3 holes. Finally, we give upper bounds on the lengths of minimal partial words with

respect to f(n) = 2n, which are tight for h = 0, 1 or 2.
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1 Introduction

Let A be a k-letter alphabet and w be a finite or infinite word over A. A subword or factor

of w is a block of consecutive letters of w. The subword complexity of w is the function

which assigns to each integer n, the number, pw(n), of distinct subwords of length n of

w. The subword complexity of finite and infinite words has become an important topic in

combinatorics on words. Application areas include dynamical systems, ergodic theory, and

theoretical computer science. Infinite words achieving various subword complexities have

been widely studied: pw(n) = n + 1 [13, 11], pw(n) = 2n [14], pw(n) = 2n + 1 [4], to name a

few (see Allouche [2] and Ferenczi [9] for some surveys). Chapter 10 of Allouche and Shallit’s
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book [3] provides a good overview for subword complexity of finite and infinite words. Our

focus in this paper is on finite words.

Motivated by molecular biology of nucleic acids, Berstel and Boasson introduced partial

words which are finite sequences that may have some undefined positions called holes (a

(full) word is just a partial word without holes) [5]. Partial words can be viewed as sequences

over an extended alphabet A⋄ = A ∪ {⋄}, where ⋄ 6∈ A stands for a hole. Here ⋄ matches

(or is compatible with) every letter in the alphabet. In this context, pw(n) is the number

of distinct full words over the alphabet that are compatible with factors of length n of the

partial word w (if A = {a, b} and w = a⋄abaa, then pw(3) = 5 since aaa, aab, aba, baa and

bab match factors of length 3 of w). Manea and Tiseanu showed that computing the subword

complexity of partial words is a “hard” problem [12].

In this paper, we investigate minimal partial words with given subword complexity. This

was done for a particular case of full words in [16]. There, it was shown that the minimal

length of a word w such that pw(n) = Fn+2 for all n, 1 ≤ n ≤ N is FN + FN+2, where

(Fn)n≥1 is the Fibonacci sequence and N is a positive integer, and an algorithm was given

for generating such minimal words for each N ≥ 1.

A function f : N → N is called (k, h)-feasible if for each integer N ≥ 1, there exists a

k-ary partial word w with h holes such that pw(n) = f(n) for all n, 1 ≤ n ≤ N . In this case,

w is an f -complex k-ary partial word with h holes of order N . Note that this is equivalent

to saying there exists an integer N0 such that for each N ≥ N0, there exists a k-ary partial

word w with h holes such that pw(n) = f(n) for all n, 1 ≤ n ≤ N . If f is a feasible function,

it is immediate that f is non-decreasing and let us denote the length of a shortest f -complex

k-ary partial word w with h holes of order N (called minimal) by Lk(f, N, h). Similarly,

denote the number of such minimal partial words by Nk(f, N, h).

First, let us consider functions of the form f(n) = kn, where k is the alphabet size. When

we restrict our attention to the case of h = 0, a k-ary de Bruijn sequence of order N is

a full word over a k-letter alphabet A where each of the kn full words of length n over A

appears as a factor exactly once. It is well known that Lk(kn, N, 0) = kn + n − 1. Moreover,

Nk(kn, N, 0) = k!k
n−1

, and these sequences can be efficiently generated by constructing

Eulerian cycles in corresponding de Bruijn directed graphs. The technical report of de Bruijn

provides a history on the existence of these sequences [8]. De Bruijn graphs find applications,

in particular, in genome rearrangements [1], etc.

In [7], the case of h > 0 was initiated. For positive integers N, h and k, Blanchet-Sadri

et al. introduced the concept of a de Bruijn partial word of order N with h holes over

an alphabet A of size k, as being a partial word w with h holes over A of minimal length

with the property that pw(n) = kn. There, the authors gave lower and upper bounds on

Lk(kn, N, h), and showed that their bounds are tight when h = 1 and k ∈ {2, 3}. They

provided an algorithm to construct 2-ary de Bruijn partial words with one hole of order N .

Finally, they showed how to compute N2(2n, N, 1) by adapting the so called BEST theorem

that counts the number of Eulerian cycles in directed graphs [15].

Now, let us look at constant functions over the binary alphabet {a, b}. Note that f ≡ 1

is (2, 0)-feasible, and that aN and bN are the only minimal f -complex full words of order N

(so that L2(1, N, 0) = N and N2(1, N, 0) = 2). Furthermore, f ≡ 1 is not (2, h)-feasible for

any h ≥ 1, as any ⋄ in a partial word w implies that 2 = pw(1) = f(1). Note also that f ≡ 2

is (2, 0)- and (2, 1)-feasible, but not (2, h)-feasible for h ≥ 2. To see this, words of the form

abN and ⋄aN−1 show that f is (2, 0)- and (2, 1)-feasible respectively. Furthermore, these

words are minimal and unique up to reverse and complement. Thus, L2(2, N, 0) = N + 1,

L2(2, N, 1) = N , and N2(2, N, 0) = N2(2, N, 1) = 4. Now suppose that a word w has at least
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two holes. If w has two consecutive holes, note that pw(2) = 4. If the holes are spread out,

e.g. both ⋄c and d⋄ are factors of w for some letters c, d ∈ {a, b}, then pw(2) ≥ 3.

In this paper, let us investigate linear functions for binary partial words. It is obvious

that if f(1) = 1, then f ≡ 1. Thus, when characterizing linear functions f , we only need to

look at the case when f(1) = 2, that is, f(n) = pn + q for integers p, q such that p + q = 2

and p > 0. Note that if p > 2, then f(2) > 4. Thus, the only linear options are f(n) = n + 1

or f(n) = 2n. The contents of our paper is as follows: In Section 2, we review some basics on

partial words. We also give a bound on the subword complexity of any binary partial word

with h holes. In Section 3, we show that the linear function f(n) = n + 1 is (2, h)-feasible

for all non-negative integers h, and we consider (n + 1)-complex partial words referred to as

Sturmian. We classify all minimal Sturmian partial words with h holes of order N , computing

the exact length L2(n + 1, N, h) as well as the exact number N2(n + 1, N, h), except for

N2(n + 1, N, 0). Instead of computing the latter, we describe an algorithm that generates

all Sturmian full words of order N . We show that any minimal Sturmian partial word with

one hole is of the form ai⋄ajbal (up to reversal and complement), where i, j, l are integers

satisfying some restrictions, that all minimal Sturmian partial words with two holes are

one-periodic, and that up to complement, ⋄(aN−1⋄)h−1 is the only minimal Sturmian partial

word with h ≥ 3 holes. Finally in Section 4, we prove that the linear function f(n) = 2n

is also (2, h)-feasible for all non-negative integers h, and we conclude with some results on

2n-complex partial words.

2 Preliminaries

We recall some basic terminology and notation on partial words that are useful throughout

the paper. For more background, we refer the reader to [6].

Let A be a nonempty finite set of symbols called an alphabet. Each element a ∈ A is

called a letter. A partial word over A is a finite sequence of symbols from the alphabet

enlarged with the hole symbol, A⋄ = A ∪ {⋄}, where a (full) word is a partial word which

does not contain any ⋄’s. The length of a partial word u is denoted by |u| and represents the

number of symbols in u. The empty word has length zero and is denoted by ε. If S is a set

of partial words, ‖S‖ denotes its cardinality.

We denote by u(i) the symbol at position i of the partial word u, the labelling of the

positions starting at 0. Position i in u is in the domain of u, denoted by D(u), if u(i) ∈ A.

Otherwise if u(i) = ⋄, position i belongs to the set of holes of u. A positive integer p is called

a period of a partial word u if u(i) = u(j) whenever i, j ∈ D(u) and i ≡ j mod p. In such a

case, we call u p-periodic. The powers of u are defined recursively by u0 = ε and for n ≥ 1,

un = uun−1.

A completion of a partial word w over A is a full word ŵ constructed by filling in the

holes of w with letters from A. If u and v are two partial words of equal length, then u and

v are compatible, denoted by u ↑ v, if u(i) = v(i) whenever i ∈ D(u) ∩ D(v), that is there

exist completions û, v̂ such that û = v̂.

A partial word u is a factor of a partial word v if there exist partial words x, y such that

v = xuy. We adopt the notation v[i..j) to denote the factor v(i) · · · v(j − 1) of v. Here u is a

prefix of v if x = ε and a suffix of v if y = ε. A full word u is a subword of a partial word w

if u ↑ v for some factor v of w. Informally, u is a subword of w if there is some completion ŵ

such that u is a factor of ŵ. Note that subwords in this paper are always full. We let Subw(n)

denote the set of all subwords of w of length n, and we let Sub(w) =
⋃

0≤n≤|w| Subw(n), the

set of all subwords of w. Note that if ŵ is a completion of w, then pŵ(n) ≤ pw(n), since

STACS’11
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Subŵ(n) ⊂ Subw(n).

We end this section by giving a bound on the subword complexity of any binary partial

word w. Let n ≤ |w| be a positive integer. A factor u of length n of w is repeated, if there

exist integers i 6= j such that u = w[i..i + n) = w[j..j + n). Similarly, a subword u of length

n of w is repeated, if there exist integers i 6= j such that u ↑ w[i..i + n) and u ↑ w[j..j + n).

Note that repeated factors imply repeated subwords, but the converse does not hold in

general.

◮ Proposition 1. Let w be a partial word with h holes over a binary alphabet. For index

i = 0, . . . , h and positive integer n ≤ |w|, let Fi(w, n) denote the multiset containing the

factors of w of length n with exactly i holes. Then

h∑

i=0

‖Fi(w, n)‖ = |w| − n + 1 (1)

pw(n) ≤
h∑

i=0

2i‖Fi(w, n)‖ (2)

with equality holding in (2) if and only if w has no repeated subwords of length n. The

following zero-hole and one-hole bounds hold:

1. Let h = 0. For n ≤ |w|, we have pw(n) ≤ |w| − n + 1, with equality holding if and only if

w has no repeated subwords of length n.

2. Let h = 1 and n ≤ |w|. If |w| ≤ 2n−1, then pw(n) ≤ 2(|w|−n+1). Else, pw(n) ≤ |w|+1.

In both cases, equality holds if and only if w has no repeated subwords of length n.

Proof. For Statement (2), Inequality (2) implies that pw(n) ≤ ‖F0(w, n)‖+2‖F1(w, n)‖ with

equality holding if and only if w contains no repeated subwords of length n. First suppose

that |w| ≤ 2n − 1. In this case, it is possible that w satisfies F0(w, n) = ∅. Note that since

Equality (1) holds, this situation maximizes the subword complexity. Therefore, pw(n) ≤

2‖F1(w, n)‖ = 2(|w| − n + 1). Now suppose that |w| > 2n − 1. We have ‖F1(w, n)‖ ≤ n. If

‖F1(w, n)‖ = n, then ‖F0(w, n)‖ = |w| − 2n + 1. Thus, pw(n) ≤ |w| − 2n + 1 + 2n = |w| + 1

as desired. ◭

3 Sturmian partial words

In this section, we investigate Sturmian partial words. Recall that a finite partial word w is

called Sturmian of order N if pw(n) = n + 1 for all n, 1 ≤ n ≤ N . We will fill out Table 1,

whose first three columns show that for h ≥ 0, f(n) = n + 1 is (2, h)-feasible.

◮ Remark. Note that the lengths of the words in the third column of Table 1 give upper

bounds on L2(n + 1, N, h), listed in the fourth column. For N ≥ 1, let w = aN bN . By

Proposition 1(1), a word z must have length l ≥ 2N to satisfy pz(N) ≥ N + 1. Thus, w is a

minimal (n + 1)-complex partial word of order N , and so L2(n + 1, N, 0) = 2N .

Now for N ≥ 6, let w = a⌊N/2⌋⋄a⌊N/2⌋ba⌈(N−4)/2⌉. By Table 1, w is an (n + 1)-complex

partial word of order N with |w| = 3N
2 when N is even, and |w| = 3N

2 − 1
2 when N is

odd. By Proposition 1(2), a word z with one hole must have length l ≥ 3N
2 − 1

2 to satisfy

pz(N) ≥ N + 1, implying that w is minimal, and so L2(n + 1, N, 1) is as shown in the table.

As is proved later, the other upper bounds also turn out to be lower bounds.
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Table 1 Sturmian partial words with h holes of order N

h N partial word L2(n + 1, N, h) N2(n + 1, N, h)

0 ≥ 1 aN bN 2N

1 ≥ 6 a⌊N/2⌋
⋄a⌊N/2⌋ba⌈(N−4)/2⌉ 3N

2
if N is even 12 if N is even

3N
2

−
1
2

if N is odd 4 if N is odd

2 ≥ 12 a⌊(N−6)/2⌋
⋄aN−5

⋄a⌈(N−6)/2⌉ 2N − 9 2N − 22

≥ 3 ≥ h + 1 ⋄(aN−1
⋄)h−1 N(h − 1) + 1 2

3.1 The case of h = 0

The aim of this section is to provide an algorithm that generates all minimal Sturmian full

words. In constructing them, some graph theory is useful (the reader is refereed to [10] for

more information).

Let G = (V, E) be a directed graph. The line digraph of G, denoted by L(G), is the

graph G′ = (V ′, E′) where V ′ = E, and for all v′
1, v′

2 ∈ V ′, (v′
1, v′

2) ∈ E′ if v′
1 = (v1, v2) and

v′
2 = (v2, v3) for some v1, v2, v3 ∈ V . Combining ideas from de Bruijn and Rauzy graphs, we

define a labelled directed graph GS = (V, E) on a set S of words of length n as follows: V

consists of the set of factors of length n − 1 of words in S and E consists of the set of edges

(x, x′) for which there exists y ∈ S such that x is a prefix of y and x′ is a suffix of y (such

edges are labelled by y). This definition provides us with a natural correspondence between

graphs and words.

◮ Lemma 3.1. Given a set S consisting of words of length n, there exists a word w such

that Subw(n) = S if and only if GS = (V, E) has a path that includes all of the edges of GS .

If such a path p exists, then there exists a word w of length |p| + n − 1 with Subw(n) = S.

Furthermore, Subw(n − 1) ⊃ V .

The following properties of a directed graph G = (V, E) are well known and are useful

throughout this section. The notation ideg(v) refers to the in-degree of vertex v, odeg(v)

to its out-degree, and (ideg(v), odeg(v)) to its degree.

1. The size of the line digraph L(G) = (V ′, E′) of G is |V ′| = |E| and |E′| =
∑

v∈V ideg(v)×

odeg(v).

2. The graph G has an Eulerian circuit if and only if G is strongly connected and for every

vertex v ∈ V , ideg(v) = odeg(v).

3. If x, y ∈ V are such that odeg(x) = ideg(x) + 1 and ideg(y) = odeg(y) + 1, then G

has an (x, y)-Eulerian path (or an Eulerian path from x to y) if and only if G is weakly

connected and for every vertex v ∈ V \ {x, y}, ideg(v) = odeg(v).

We call a directed graph G Sturmian of order n if G has n vertices, n + 1 edges, and

contains an Eulerian path. The graph G is Sturmian Type I or II if G has degree sequence

(2, 2), (1, 1), . . . , (1, 1) or (2, 1), (1, 2), (1, 1), . . . , (1, 1) respectively.

◮ Proposition 2. 1. Suppose that G = (V, E) is Sturmian Type II of order n. Then L(G) is

Sturmian of order n + 1.

2. Suppose that G = (V, E) is Sturmian Type I of order n. Then it is possible to remove

one edge from L(G) to get G′, where G′ is Sturmian of order n + 1. Furthermore, it is

impossible to remove an edge from L(G) to get a graph G′ such that G′ contains a path

that contains all of the edges of G′ and G′ is not Sturmian.

STACS’11



230 On Minimal Sturmian Partial Words

Proof. For Statement (2), note that L(G) has n + 1 vertices and n + 3 edges. Since G

contains an Eulerian path, L(G) has a Hamiltonian path, and thus is weakly connected.

Thus, we are left to show that we can remove one edge from L(G) to get a graph G′ that is

still weakly connected and contains an Eulerian path. The graph G being Sturmian Type I,

there is a distinct vertex v that has degree (2, 2). Label the edges in and out of v as i1, i2 and

o1, o2 respectively. Note that all the vertices in L(G) not in S = {i1, i2, o1, o2} have degree

(1, 1). Two cases remain which are illustrated in Figure 1: Case (i) where each member in S

is distinct, and Case (ii) where i2 = o2.

For Case (i), i1, i2 have degree (1, 2) while o1, o2 have degree (2, 1). Note that there are

edges from ij to ol for each j, l ∈ {1, 2}. Remove the edge (i2, o2) to get a graph G′. Note

that G′ is still weakly connected. Furthermore, in G′, i1 has degree (1, 2), o1 has degree (2, 1),

and all other vertices have degree (1, 1). Thus, G′ has an Eulerian path and is Sturmian

Type II. Note that removing any of the edges (ij , ol) can be handled similarly. Further,

note that removing any other edge from L(G) results in a graph that no longer has a path

containing all the edges. ◭

vなiに
iな oな

oに
iな
iに oに

oな iな oな
iに
e

vなiに
iな oな

oに
iな
iに oに

oな iな oな
iに
e

Figure 1 Part of L(G) in Proposition 2(2): Left: Case (i); Right: Case (ii).

We are now ready to present an algorithm (similar to one used by Rote in [14]) to generate

minimal Sturmian full words. Note that Proposition 2 implies that the graph G′ created

in line 2, 6, or 8 is always Sturmian. Since G′
N has N + 1 edges, Algorithm 1 generates a

minimal Sturmian word.

Algorithm 1 Constructing a minimal Sturmian full word of order N ≥ 3.

1: Create G2 = GS , where S = {aa, ab, ba, bb}

2: Create G′
2 by deleting an edge from G2

3: for i = 3 to N do

4: Build Gi = L(G′
i−1)

5: if Gi has i + 2 edges then

6: Create G′
i by deleting an edge from Gi (so that G′

i has i + 1 edges), but ensure that

G′
i still contains an Eulerian path

7: else

8: Set G′
i = Gi

9: Find an Eulerian path p in G′
N

10: return p

◮ Theorem 3.2. Algorithm 1 generates all minimal Sturmian full words.

Proof. Suppose that w is a minimal Sturmian full word of order N . Thus, Lemma 3.1 implies

that there is a sequence of graphs G2, . . . , GN such that Gi has i vertices and i + 1 edges.
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Furthermore, G′
2 is a subgraph of GS , where S = {aa, ab, ba, bb}, for i = 2, . . . , N − 1, Gi+1

is a subgraph of L(Gi), and for each Gi there exists a path containing all its edges. Thus,

w can be generated by Algorithm 1 unless there exists some Gi that does not contain an

Eulerian path. However, since Gi+1 is a subgraph of L(Gi), Proposition 2 ensures that Gi+1

contains an Eulerian path. ◭

3.2 The case of h = 1

Recall the minimal Sturmian partial word a⌊N/2⌋⋄a⌊N/2⌋ba⌈(N−4)/2⌉ of order N ≥ 6 in Table 1,

which has the form ai⋄ajbal for some i, j, l. We show that any minimal Sturmian partial word

with one hole has a similar form. Note that since N ≥ 6, any Sturmian partial word w of

order N with one hole satisfies N < |w| (otherwise, N = |w|, and we get N + 1 = pw(N) = 2,

a contradiction).

◮ Lemma 3.3. 1. For N ≥ 6, any Sturmian partial word w of order N of the form w = ⋄z,

where z is a full word, is not minimal.

2. Any Sturmian partial word w of order N of the form w = ai⋄(ajb)my, where i, j ≥ 1,

m ≥ 2, and y is a prefix of ajb, is not minimal.

Proof. For Statement (2), we first prove that N ≤ min(s, t), where s = i + j + 1 and

t = (j + 1)m + |y| + 1. First suppose that s ≤ t and N ≥ s + 1. Note that Subw(s + 1) =

{asb, . . . , ai+1baj , aibajb, . . . , b(ajb)s/(j+1)}. This implies that pw(s + 1) = s − (i + 1) + 1 +

i + 1 = s + 1 < s + 2, a contradiction.

Next suppose that t < s (so that t + 1 ≤ i + j + 1). If N ≥ t + 1, then Subw(t +

1) = {at+1, atb, . . . , ab(ajb)(t−1)/(j+1)}, so pw(t + 1) = 1 + t − 1 + 1 = t + 1 < t + 2, a

contradiction. Hence, N ≤ min(s, t) as claimed. Therefore, if w has order N , then s, t ≥ N

or i + j + 1, (j + 1)m + |y| + 1 ≥ N . Thus, |w| = i + 1 + (j + 1)m + |y| = s − j − 1 + t. For a

fixed t, j takes on a maximum value when m = 2 and |y| = 0. Hence, 2(j + 1) + 1 ≤ t so

that j ≤ t−3
2 and |w| = s − j − 1 + t ≥ s − t−3

2 − 1 + t = s + t
2 + 1

2 ≥ 3N
2 + 1

2 . However,

L2(n + 1, N, 1) ≤ 3N
2 from Remark 3, so w is not minimal. ◭

◮ Theorem 3.4. Suppose w is a Sturmian partial word with one hole of order N ≥ 6 with a

factor z = ⋄aib, where i ≥ 1. Then w contains no other b’s or w is not minimal.

Proof. Similarly to the above lemma, we use the fact (from Remark 3) that if |w| > 3N
2 then

w is not minimal. If w contains no other b’s we are done. Otherwise, w contains a factor

of the form bajz or zajb, for some j ≥ 1. Note that if j = 0, w would contain all the four

subwords of length 2, contrary to our assumption that w is Sturmian. First assume that

u = baj⋄aib is a factor of w. Let t = min(i, j). Note that

Subu(t + 2) = {at+2, bat+1, atba, . . . , abat, at+1b, batb}

has size t + 4, implying that N ≤ t + 1. Thus, |w| ≥ |u| = i + j + 3 ≥ 2t + 3 > 2t + 2 ≥ 2N ,

so w is not minimal. Next assume that u = ⋄aibajb is a factor of w.

First, suppose that i > j. Thus,

Subu(j + 2) = {aj+2, baj+1, aj+1b, abaj , . . . , ajba, bajb}

has size j + 4 implying that N ≥ j + 1 Similarly to the above, this implies that |w| ≥ 2N

and w is not minimal. The case where j > i + 1 is handled similarly since Subu(i + 2)

is too large. Now, suppose that i = j. So w = xuy = x⋄aibaiby for some full words x, y.

Note that if x contains a b, it has already been shown that w is not minimal. Furthermore,

if x = ε, then w is not minimal by Lemma 3.3(1). Therefore, w = al⋄(aib)2y for some
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l ≥ 1. Note that if N < i + 2, then |w| ≥ 2N and w is not minimal. So suppose

N ≥ i + 2. We have that Subw(i + 2) ⊃ {ai+2, ai+1b, aiba, . . . , abai, baib} = S. Since the

latter set is of size i + 3, w must avoid {a, b}i+2 \ S. Thus, w = al⋄(aib)my for some

m ≥ 2 and some prefix y of aib, and by Lemma 3.3(2), w is not minimal. Finally, suppose

that j = i + 1. So w = xuy = x⋄aibai+1by for some full words x, y. Similarly to the

above, we only need to consider the case when w = al⋄aibai+1by for some l ≥ 1. Note

that Subw(i + 2) ⊃ {ai+2, bai+1, aiba, . . . , abai, ai+1b, baib}, so ‖Subw(i + 2)‖ ≥ i + 4 and

N ≤ i + 1. However, this implies that |w| ≥ 2N , and w is not minimal. ◭

◮ Corollary 3.5. For N ≥ 6, any minimal Sturmian partial word with one hole is of the

form ai⋄ajbal for some i, j, l (up to reversal and complement).

The next lemma gives some restrictions on the integers i, j, l.

◮ Lemma 3.6. Let w = ai⋄ajbal be a minimal Sturmian partial word with one hole of order

N ≥ 6. If N is odd, w has no repeated subwords of length N , and i, j + l + 1 < N (e.g. all

factors of w of length N contain a hole). If N is even, exactly one of the following holds:

w has exactly one subword of length N repeated exactly once, and i, j + l + 1 < N .

w has no repeated subwords of length N , and i < N , j + l + 1 = N .

Proof. Assume that N is odd. Thus, |w| = 3N
2 − 1

2 ≤ 2N − 1. From Proposition 1(2),

pw(N) ≤ 2(|w| − N + 1) = N + 1, and we have equality if and only if w has no repeated

subwords of length N . Furthermore, the proof of Proposition 1(2) shows that each factor of

w of length N contains a hole, and so i, j + l + 1 < N .

Assume that N is even. Thus, |w| = 3N
2 ≤ 2N − 1 and pw(N) ≤ 2(|w| − N + 1) = N + 2

from Proposition 1(2). More details follow. If ‖F0(w, N)‖ ≥ 2, then ‖F1(w, N)‖ ≤ |w|−N −1

and pw(N) ≤ ‖F0(w, N)‖ + 2‖F1(w, N)‖ ≤ N , and so w is not Sturmian. If ‖F0(w, N)‖ = 1,

then ‖F1(w, N)‖ = |w| − N and pw(N) ≤ ‖F0(w, N)‖ + 2‖F1(w, N)‖ = N + 1, and

equality holds if and only if no subword of length N repeats. This can only be the case

when i < N, j + l + 1 = N (note that w has aN as a repeated subword of length N

when i = N , j + l + 1 < N). If ‖F0(w, N)‖ = 0, then ‖F1(w, N)‖ = |w| − N + 1 and

pw(N) ≤ ‖F0(w, N)‖ + 2‖F1(w, N)‖ ≤ N + 2, and so pw(N) = N + 1 implies that exactly

one subword must repeat exactly once. This can only be the case when i, j + l + 1 < N .

Again, the proof of Proposition 1(2) makes it evident that the two cases listed above are the

only ones that lead to pw(N) = N + 1. ◭

The next lemma gives upper and lower bounds on j.

◮ Lemma 3.7. Let w = ai⋄ajbal be a minimal Sturmian partial word with one hole of order

N ≥ 6. Then ⌊ N−1
2 ⌋ ≤ j ≤ ⌊ N

2 ⌋.

Proof. To show the lower bound j ≥ ⌊ N−1
2 ⌋, suppose that j < ⌊ N−1

2 ⌋. First suppose that

l ≥ j + 1. Here i, j ≥ 1. Since N ≥ 6, we have that N ≥ j + 2. However, Subw(j + 2) ⊃

{aj+2, aj+1b, ajba, . . . , abaj , baj+1, bajb} so that pw(j + 2) ≥ j + 4. Thus, l ≤ j.

Assume that N is even. Thus, j = N
2 − m for some m ≥ 2. Noting that |w| = 3N

2 =

i + j + l + 2 we have that i ≥ N
2 − 2 + 2m. Thus, i + j + 1 ≥ N

2 − 2 + 2m + N
2 − m + 1 ≥

N + m − 1 ≥ N + 1, with equality holding if and only if l = j. If l = j, both aN and

aN−l−1bal are repeated subwords of length N of w, contradicting Lemma 3.6. Similarly,

l < j implies that i + j + 1 ≥ N + 2, meaning that aN appears as a subword at least three

times, again contradicting Lemma 3.6. ◭

The next theorem gives the classification of the one-hole minimal Sturmian words.
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◮ Theorem 3.8. Let N ≥ 6.

1. If N is odd, then the only minimal Sturmian partial word with one hole of order N (up

to reversal and complement) is aN/2−1/2⋄aN/2−1/2baN/2−3/2, or equivalently

a⌊N/2⌋⋄a⌊N/2⌋ba⌈(N−4)/2⌉, and so N2(n + 1, N, 1) = 4.

2. If N is even, then the only minimal Sturmian partial words with one hole of order N

(up to reversal and complement) are aN/2⋄aN/2−1baN/2−1, aN/2−1⋄aN/2baN/2−1, and

aN/2⋄aN/2baN/2−2 = a⌊N/2⌋⋄a⌊N/2⌋ba⌈(N−4)/2⌉, and so N2(n + 1, N, 1) = 12.

Proof. Let w be a minimal Sturmian partial word with one hole. By Corollary 3.5, w =

ai⋄ajbal for some i, j, l. For Statement (2), when N is even, j = N
2 − 1 or j = N

2 . Assume

that j = N
2 − 1. From Lemma 3.6 we have two cases to consider. Suppose j + l + 1 = N ,

so that l = N
2 and i = N

2 − 1. Setting t = N
2 + 1, we have that t ≤ N and that

Subw(t) = {at, at−1b, at−2ba, . . . , abat−2, bat−1, bat−2b} is of size t+2, a contradiction. Thus,

i, j + l+1 < N , and w can have at most one repeated subword of length N . Set l = N
2 −m for

some m ≥ 1, so that i = N
2 − 1 + m. Further note that aibal is a repeated subword of length

N of w. We also have that i + j + 1 = N − 1 + m, so that if m > 1, aN is also a repeated

subword of length N , a contradiction. Therefore, m = 1 and w = aN/2⋄aN/2−1baN/2−1. ◭

3.3 The case of h = 2

Recall from Table 1 that a⌊(N−6)/2⌋⋄aN−5⋄a⌈(N−6)/2⌉ is a Sturmian partial word of order

N ≥ 12 of length 2N − 9. We show that this form is minimal, and in fact all minimal

Sturmian partial words with two holes are similar. The next proposition describes behavior

between the holes.

◮ Proposition 3. Suppose that w is a Sturmian partial word of order N . Let z be a

factor of w of the form z = ⋄a0 · · · al−1⋄, where a0, . . . , al−1 ∈ {a, b}. Then, N < l
2 + 3

2 ,

or z is one-periodic, or z = w = ⋄ajban1ban2b · · · banibaj⋄ for some i, j ≥ 0 and some

n1, n2, . . . , ni ∈ {j, j + 1}.

Proof. If N < l
2 + 3

2 we are done. Thus, assume N ≥ l
2 + 3

2 throughout the rest of

the proof. If l < 2 the statement is immediate. So assume that l ≥ 2. Without loss of

generality assume that a0 = a. For j, 0 ≤ j < l
2 , we show that either z avoids bajb or

z = w = ⋄ajban1ban2b · · · banibaj⋄ for some i ≥ 0 and some n1, n2, . . . , ni ∈ {j, j + 1}.

Assume first that j = 0. Suppose that al−1 = b. Thus, ⋄a and b⋄ are factors of z,

and aa, ba, bb ∈ Subz(2). Since pz(2) = 3, z must avoid ab. However, since a0 = a we

have that al−1 = a, a contradiction. Thus, al−1 = a, and aa, ab, ba ∈ Subz(2) implying

that z avoids bb. Inductively, suppose that z avoids bb, bab, . . . , baj−1b. This implies that

a0 = · · · = aj−1 = al−1−j+1 = · · · = al−1 = a. If z is one-periodic we are done, so suppose

otherwise. Note that this also implies that j < l
2 , else z would be one-periodic. Thus,

j + 2 ≤ l
2 + 3

2 ≤ N . Since z avoids bb, . . . , baj−1b, we have that

Subz(j + 2) ⊂ {aj+2, aj+1b, ajba, . . . , baj+1, bajb} = S

Note that ‖S‖ = j + 4, so exactly one element of S must be avoided. Further, note that

since z is not one-periodic, {aj+1b, ajba, . . . , baj+1} ⊂ Subw(j + 2). If z avoids bajb we are

done. Thus suppose that z avoids aj+2. Thus, z = ⋄ajban1ban2b · · · banibaj⋄ for some i ≥ 0

and n1, n2, . . . , ni ∈ {j, j + 1}. Suppose that z 6= w, so we can write w = xzy for some

partial words x, y where at least one of x, y 6= ε. Without loss of generality assume that

y 6= ε. Note that since pz(2) = pw(2) = 3, we have that w avoids bb. Therefore, ⋄ 6= y0 6= b

so y0 = a. However, this implies that aj+2 is a subword of w that is avoided by z, so that

pw(j + 2) > pz(j + 2) = j + 3, a contradiction. Thus, both x, y = ε and w = z. ◭
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◮ Corollary 3.9. Minimal Sturmian partial words of order N ≥ 12 with two holes are

one-periodic.

It remains to restrict the placement of the holes.

◮ Proposition 4. Let N ≥ 12. Any minimal Sturmian partial word w of order N with two

holes having a factor of the form z = ⋄aj⋄, where j ≥ 1, satisfies |w| = 2j + 1 = 2N − 9.

Proof. We first show that any minimal one-periodic Sturmian partial word w with two holes

of order N having a factor of the form z = ⋄aj⋄, where j ≥ 1, satisfies N ≥ j + 2. Suppose

not, that is N < j +2, so that N −2 < j. Set j = N −2+m for some m ≥ 1. It is easy to note

that w avoids bb, bab, . . . , baN−2b. Setting S = {aN , aN−1b, aN−2ba, . . . , abaN−2, baN−1}, we

have that Subz(N) ⊂ S. If w is Sturmian of order N , then Subw(N) = S. Since w is

one-periodic, w = ai⋄aj⋄al for some i, l ≥ 0. If i + l < N − 2, then Subw(N) 6= S, so

i + l ≥ N − 2. However, this implies that |w| ≥ N − 2 + N − 2 + m + 2 ≥ 2N − 1. Thus, by

Remark 3, w is not minimal, a contradiction.

Now, note that Subz(j + 2) = {aj+2, aj+1b, baj+1, bajb} so pz(j + 2) = 4. Suppose

|w| ≥ 2j + 2. Then w has a factor v = ai⋄aj⋄aj−i, for some i, j, 0 ≤ i ≤ j. However, we have

Subv(j + 2) = Subz(j + 2) ∪ {aibaj−i+1, . . . , abaj , ajba, . . . , ai+1baj−i}

Thus, pw(j+2) ≥ pv(j+2) = j+4, a contradiction. Suppose |w| ≤ 2j. Then w = ai⋄aj⋄am−i

for some i, j, m, 0 ≤ i ≤ m < j − 1. Thus,

Subw(j + 2) = {aj+2, aj+1b, baj+1, bajb, aibaj−i+1, . . . , abaj , ajba, . . . , aj+i−m+1bam−i}

so pw(j + 2) < 4 + j − 1 = j + 3, a contradiction. Therefore, |w| = 2j + 1.

Note also that pw(j+6) ≤ 1+‖F1(w, j+6)‖+3‖F2(w, j+6)‖ ≤ 1+(|w|−(j+6)−5)+3×5 =

j + 6 < j + 7 (there is 1 subword with no b, at most ‖F1(w, j + 6)‖ subwords with one b (fill

the hole with b), and at most 3‖F2(w, j + 6)‖ other subwords (fill the holes with ab, ba, bb)).

Thus, j + 2 ≤ N < j + 6. So N − 5 ≤ j ≤ N − 2. The only option is j = N − 5 in order to

achieve |w| = 2j + 1 ≤ 2N − 9. Finally, w = a⌊(j−1)/2⌋⋄aj⋄a⌈(j−1)/2⌉ is of length 2j + 1 and

is Sturmian of order N = j + 5 when j ≥ 7. ◭

Our two-hole description of minimal Sturmian partial words follows.

◮ Theorem 3.10. The only minimal Sturmian partial words with two holes of order N ≥ 12

are those of the form ai⋄aj⋄al, where j = N − 5, i, l ≥ 3, and i + l = N − 6, and so

N2(n + 1, N, 2) = 2N − 22.

Proof. Let w be a minimal Sturmian partial word of order N with two holes. The fact that j =

N−5 and i+l = N−6 is evident from Proposition 4. We are left to show that i, l ≥ 3. Since aN

is trivially a subword of length N of w, we have that pw(N) ≤ 1+‖F1(w, N)‖+3‖F2(w, N)‖.

Note that since |w| = 2N − 9, we have that ‖F1(w, N)‖ + ‖F2(w, N)‖ ≤ |w| − N + 1 = N − 8.

Thus, ‖F1(w, N)‖ ≤ N−8−‖F2(w, N)‖. Therefore, pz(N) = N+1 ≤ 1+N−8+2‖F2(w, N)‖,

implying that ‖F2(w, N)‖ ≥ 4. Note that if i < 3 (the case where l < 3 is similar), there

are i + 1 < 4 factors containing two holes, a contradiction. Thus, there are N − 11 hole

placements that are valid for a minimal Sturmian partial word of order N with two holes.

Since the partial word is one-periodic, we have N2(n + 1, N, 2) = 2(N − 11) = 2N − 22 as

desired. ◭
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3.4 The case of h ≥ 3

Recall from Table 1 that w = ⋄(aN−1⋄)h−1 is a Sturmian partial word with h holes of order N

of length N(h+1)+1, when h ≥ 3 and N ≥ h+1. By Remark 3, L2(n+1, N, h) ≤ N(h−1)+1

in that case. We show that w is in fact minimal, and that (up to complement) it is the

unique such word.

◮ Lemma 3.11. Any Sturmian partial word w having a factor z = ⋄ai⋄aj⋄, bai⋄aj⋄, or

⋄ai⋄ajb is of order N < min(i, j) + 2. Furthermore, if w has another factor u compatible

with balb where l < min(i, j) then N < l + 2.

Proof. Set t = min(i, j). Assume that N ≥ t + 2. We immediately note that Subw(t + 2) ⊃

Subz(t + 2) = {at+2, batb, at+1b, . . . , bat+1}, so ‖Subw(t + 2)‖ is at least t + 4, contradicting

the fact that w is Sturmian. Now assume such a factor u exists. Assume that N ≥ l + 2.

Trivially, balb ∈ Subw(l + 2). Furthermore, {al+2, al+1b, . . . , bal+1} ⊂ Subz(l + 2). Thus,

pw(l + 2) is at least l + 4, a contradiction. ◭

◮ Theorem 3.12. For h ≥ 3 and N ≥ h + 1, L2(n + 1, N, h) = N(h − 1) + 1. Furthermore,

any minimal Sturmian partial word with h holes of order N is of the form ⋄(aN−1⋄)h−1, and

so N2(n + 1, N, h) = 2.

Proof. Any minimal Sturmian partial word w with h ≥ 3 holes of order N must have a factor

of the form ⋄ai⋄, where i ≥ 1. By Lemma 3.11, w must be of form an0c0an1c1 · · · anj cjanj+1 ,

where each ci ∈ {⋄, b} and each ni ≥ N − 1. It is thus evident that w = ⋄(aN−1⋄)h−1, which

was shown in Table 1 to be Sturmian of order N for N ≥ h + 1, is the only form possible for

a minimal Sturmian partial word with h holes. ◭

4 Conclusion

We have thus classified all the (n + 1)-complex partial words with any number of holes.

The number of minimal Sturmian full words of order N , N2(n + 1, N, 0), remains to be

computed, but an algorithm has been presented that can generate all such words. It would

be interesting to complete the classification of the minimal 2n-complex partial words as well.

In this section, we give some preliminary results by filling out Table 2.

Table 2 2n-complex partial words with h holes of order N

h N partial word L2(2n, N, h)

0 ≥ 3 aN baN−2bbaN−2 3N − 1

1 ≥ 3 aN−2b⋄aN−2b 2N − 1

2 ≥ 5 a⌊(N−4)/2⌋b(⋄a⌈(N−4)/2⌉b)2 3N
2

− 1 if N is even
3N
2

−
1
2

if N is odd

≥ 3 ≥ 5 a⌊(N−4)/2⌋b(⋄a⌈(N−4)/2⌉b)h

◮ Proposition 5. For h ≥ 0, f(n) = 2n is (2, h)-feasible. For N ≥ 3, L2(2n, N, 0) = 3N − 1

and L2(2n, N, 1) = 2N − 1.

Follows is our h-hole bound.

◮ Proposition 6. Let w be a word with h ≥ 2 holes, and n ≤ |w| be a positive integer.

If |w| ≥ 2n − 2 + h, then pw(n) ≤ 2h+1 + (n − h + 1)2h + |w| − 2n − h − 2.
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If |w| ≤ 2n − h, then pw(n) ≤ 2h(|w| − n + 1).

Else 2n − h < |w| < 2n − 2 + h, and set d = 2n − 2 + h − |w| > 0. If d is even, then

pw(n) ≤ 2h+1 + (n − h + 1)2h − 4 − 2
∑d/2

i=1 2i = 2h+1 + (n − h + 1)2h − 4 × 2d/2

If d is odd, then

pw(n) ≤ 2h+1+(n−h+1)2h−4−2
∑(d−1)/2

i=1 2i−2(d+1)/2 = 2h+1+(n−h+1)2h−3×2(d+1)/2

◮ Corollary 4.1. For N ≥ 5, L2(2n, N, 2) = 3N
2 − 1 if N is even, and 3N

2 − 1
2 if N is odd.
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