Symmetric Determinantal Representation of Weakly-Skew Circuits - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Symmetric Determinantal Representation of Weakly-Skew Circuits

Résumé

We deploy algebraic complexity theoretic techniques for constructing symmetric determinantal representations of weakly-skew circuits, which include formulas. Our representations produce matrices of much smaller dimensions than those given in the convex geometry literature when applied to polynomials having a concise representation (as a sum of monomials, or more generally as an arithmetic formula or a weakly-skew circuit). These representations are valid in any field of characteristic different from 2. In characteristic 2 we are led to an almost complete solution to a question of Bürgisser on the VNP-completeness of the partial permanent. In particular, we show that the partial permanent cannot be VNP-complete in a finite field of characteristic 2 unless the polynomial hierarchy collapses.
Fichier principal
Vignette du fichier
50.pdf (258.55 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-00573631 , version 1 (05-03-2011)

Identifiants

Citer

Bruno Grenet, Erich Kaltofen, Pascal Koiran, Natacha Portier. Symmetric Determinantal Representation of Weakly-Skew Circuits. Symposium on Theoretical Aspects of Computer Science (STACS2011), Mar 2011, Dortmund, Germany. pp.543-554, ⟨10.4230/LIPIcs.STACS.2011.543⟩. ⟨hal-00573631⟩
180 Consultations
165 Téléchargements

Altmetric

Partager

More