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Data Monoids∗

Mikolai Bojańczyk1
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Abstract

We develop an algebraic theory for languages of data words. We prove that, under certain

conditions, a language of data words is definable in first-order logic if and only if its syntactic

monoid is aperiodic.
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1 Introduction

This paper is an attempt to combine two fields.

The first field is the algebraic theory of regular languages. In this theory, a regular lan-

guage is represented by its syntactic monoid, which is a finite monoid. It turns out that many

important properties of the language are reflected in the structure of its syntactic monoid.

One particularly beautiful result is the Schützenberger-McNaughton-Papert theorem, which

describes the expressive power of first-order logic.

Let L ⊆ A∗ be a regular language. Then L is definable in first-order logic if and

only if its syntactic monoid ML is aperiodic.

For instance, the language “words where there exists a position with label a” is defined by

the first-order logic formula (this example does not even use the order on positions <, which

is also allowed in general)

∃x. a(x).

The syntactic monoid of this language is isomorphic to {0, 1} with multiplication, where 0

corresponds to the words that satisfy the formula, and 1 to the words that do not. Clearly,

this monoid does not contain any non-trivial group. There are many results similar to

theorem above, each one providing a connection between seemingly unrelated concepts of

logic and algebra, see e.g. the book [8].

The second field is the study of languages over infinite alphabets, commonly called lan-

guages of data words. Regular languages are usually considered for finite alphabets. Many

current motivations, including XML and verification, require the use of infinite alphabets.

In this paper, we use the following definition of data words. We fix for the rest of the paper

a single infinite alphabet D, and study words and languages over D. A typical language,

which we use as our running example, is “some two consecutive positions have the same

letter”, i.e.

Ldd =
⋃

d∈D

D∗ddD∗ = {d1 · · · dn ∈ D∗ : di = di+1 for some i ∈ {1, . . . , n − 1}}.
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106 Data Monoids

A number of automata models have been developed for such languages. The general theme

is that there is a tradeoff between the following three properties: expressivity, good closure

properties, and decidable (or even efficiently decidable) emptiness. The existing models

strike different balances in this tradeoff, and it is not clear which balance, if any, should

deserve the name of “regular language”. Also, logics have been developed to express prop-

erties of data words. For more information on automata and logics for data words, see the

survey [7].

The motivation of this paper is to combine the two fields, and prove a theorem that is

analogous to the Schützenberger-McNaughton-Papert characterization theorem, but talks

about languages of data words. If we want an analogue, we need to choose the notion of

regular language for data words, the definition of first-order logic for data words, and then

find the property corresponding to aperiodicity.

For first-order logic over data words we use a notion that has been established in the

literature. Formulas are evaluated in data words. The quantifiers quantify over positions

of the data word, we allow two binary predicates: x < y for order on positions, and x ∼ y

for having the same data value. An example formula of a formula of first-order logic is the

formula

∃x∃y x < y ∧ x ∼ y ∧ ¬(∃z x < z ∧ z < y),

which defines the language Ldd in the running example.

As for the notion of regular language, we use the monoid approach. For languages of

data words, we use the syntactic monoid, defined in the same way as it is for words over

finite alphabets. That is, elements of the syntactic monoid are equivalence classes of the

two-sided Myhill-Nerode congruence. When the alphabet is infinite, the syntactic monoid is

infinite for every language of data words, except those that depend only on the length of the

word. For instance, in the case of the running example language Ldd, two words w, w′ ∈ D∗

are equivalent if and only if: either both belong to Ldd, or both have the same first and last

letters. Since there are infinitely many letters, there are infinitely many equivalence classes.

Instead of studying finite monoids, we study something called orbit finite monoids. Intu-

itively speaking, two elements of a syntactic monoid are considered to be in the same orbit

if there is a renaming of data values that maps one element to the other1. For instance,

in the running example Ldd, the elements of the syntactic monoid that correspond to the

words 1 · 7 and 2 · 3 · 4 · 8 are not equal, but they are in the same orbit, because the renaming

i 7→ i + 1 maps 1 · 7 to 2 · 8, which corresponds to the same element of the syntactic monoid

as 2 ·3 ·4 ·8. It is not difficult to see that the syntactic monoid of Ldd has four orbits: one for

the empty word, one for words inside Ldd, one for words outside Ldd where the first and last

letters are equal, and one for words outside Ldd where the first and last letters are different.

The contribution of this paper is a study of orbit finite data monoids. We develop the

algebraic theory of orbit finite data monoids, and show that it resembles the theory of finite

monoids. The main result of the paper is Theorem 11, which shows that the Schützenberger-

McNaughton-Papert characterization also holds for languages of data words with orbit finite

syntactic data monoids:

Let L ⊆ D∗ be a language whose syntactic data monoid ML is orbit finite. Then

L is definable in first-order logic if and only if ML is aperiodic.

1 This is related to Proposition 3 in [6]



Mikolai Bojańczyk 107

Related work. The idea to present effective characterizations of logics on data words was

proposed by Benedikt, Ley and Puppis. In [1], they show that definability in first-order logic

is undecidable if the input is a nondeterministic register automaton. Also, they provide some

decidable characterizations, including a characterization of first-order logic with local data

comparisons within the class of languages recognized by deterministic register automata.

(This result is incomparable the one in this paper.)

The key property of data monoids, namely that elements of the monoid are acted on

by permutations of data values, appears in the nominal sets of Gabbay and Pitts [5]. The

connections with the literature on nominal sets are still relatively unexplored.

There are two papers on algebra for languages over infinite alphabets. One approach

is described by Bouyer, Petit and Thérien [3]. Their monoids are different from ours in

the following ways: the definition of a monoid explicitly talks about registers, there is

no syntactic monoid, monoids have undecidable emptiness (not mention questions such as

aperiodicity or first-order definability). Our setting is closer to the approach of Francez

and Kaminski from [4], but the latter talks about automata and not monoids, and does not

study the connection with logics.

Acknowledgments. I would like to thank Clemens Ley for introducing me to the subject,

Sławomir Lasota for suggesting the key idea of orbits, and Bartek Klin for pointing out the

connection to nominal sets. I would also like to thank Michael Kaminski and the anonymous

referees for their many helpful comments.

2 Myhill-Nerode equivalence

We start out with an investigation of the Myhill-Nerode syntactic congruence, in the case

of data words.

We fix for the rest of this paper an infinite set of data values D. One can think of D

as being the natural numbers, but all the structure of natural numbers (such as order) is

not going to play a role. Data words are words in D∗. Inside D, we will distinguish a finite

subset C ⊆ D of constants. Although D is fixed, the constants will vary. The constants are

introduced for two purposes. First, interpreting a finite alphabet as a set of constants, one

recovers the traditional theory of regular languages in this setting. Second, constants are

useful in the proofs. All definitions will use the set of constant as a parameter.

We use the term data renaming (with constants C) for a bijection on the alphabet that

is the identity function on C.2 To simplify proofs, we require a data renaming to be the

identity on all but finitely many data values3. We write ΓC for the set of all data renamings

with constants C. This set has a group structure. We write π, τ, σ for data renamings.

When we apply a data renaming π to a data value d, we skip the brackets and write πd

instead of π(d).

A data renaming π is naturally extended to a homomorphism [π] : D∗ → D∗ of data

words. For a fixed set of constants C, we study only languages that are invariant under data

renaming, i.e. languages such that [π]L = L for any data renaming π ∈ ΓC .4

Suppose that L ⊆ D∗ is a language that is invariant under data renamings. We define

two equivalence relations on D∗.

2 This is called C-preservation in Definition 3 of [4].
3 The same results hold when all bijections are allowed, including the Memory Theorem.
4 These languages are called co-C-invariant languages in Definition 8 of [4].

STACS’11



108 Data Monoids

The first equivalence relation is the two-sided Myhill-Nerode equivalence relation:

w ≡L v if for all u1, u2 ∈ D∗, u1wu2 ∈ L ⇔ u1vu2 ∈ L.

We also use the name syntactic congruence for this relation. If L uses only constants,

i.e. L ⊆ C∗, then this equivalence relation has finitely many equivalence classes. However,

for any language that uses non-constants in a nontrivial way, this equivalence relation will

have infinitely many equivalence classes. The problem is that the relation really cares about

specific data values.

This problem is fixed by the second equivalence relation:

w ≃L v if for some data renaming τ ∈ ΓC , [τ ]w ≡L v.

As discussed in the introduction, in the running example Ldd this equivalence relation has

four equivalence classes. On the other hand, some reasonable languages have infinitely many

equivalence classes in ≃L. An example of such an L is “the first letter also appears one some

other position”. This language is recognized by a left-to-right register automaton with three

states. Nevertheless, an equivalence class of a word w under ≡L is determined by the first

letter of w and the set of distinct letters in w. Consequently, any two words with a different

number of distinct letters are not equivalent under ≃L. (This problem disappears when one

uses the one-sided Myhill-Nerode equivalence.)

Despite the limitations, we will be studying languages that have finitely many equivalence

classes for ≃L, because they yield a monoid structure.

3 Data monoids

Fix a finite set of constants C ⊆ D. We want to define something like a monoid for data

languages. We want there to be a “free object”, which should describe D∗. We want each

language to have its syntactic object, which should be finite in many interesting cases, and

be somehow optimal for all other objects capturing the language. These goals are achieved

by the notion of a data monoid, as defined below.

Definition of a data monoid. A data monoid (with constants C) is a monoid M , which is

acted upon by data renamings (with constants C). That is, for every data renaming τ ∈ ΓC ,

there is an associated monoid automorphism [τ ] : M → M . The mapping τ 7→ [τ ] should

be a group action, namely [τ ◦ σ] = [τ ] ◦ [σ], and the identity renaming should be associated

to the identity automorphism. There are two key examples:

The free data monoid. The monoid is D∗, while the action is defined by

[τ ](d1 · · · fn) = τ(d1) · · · τ(dn) for d1, . . . , dn ∈ D.

The syntactic data monoid of a language L ⊆ D∗, which we denote ML. The monoid

is the quotient of D∗ under the Myhill-Nerode equivalence ≡L. This is a well defined

monoid, since ≡L is a monoid congruence (unlike ≃L). The action is defined by

[τ ]([w]/≡L
) = [[τ ](w)]/≡L

.

In Lemma 1, we show that this action is well defined and does not depend on w.

In the sequel, we will drop the brackets [τ ] and simply write τ , when the context indicates

if τ is treated as function on data values, or on elements of the monoid. Note that for two

renamings τ, σ and an element m of the monoid, the notation τσm is unambiguous, since

we are dealing with an action.
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Finite support axiom. We say that a set X ⊆ D of data values supports an element m

of a data monoid, if τm = m holds for every data renaming in τ ∈ ΓX . We require an

additional property from a data monoid, called the finite support axiom: for any element m

of the data monoid, there is a finite support.

Both examples above satisfy the finite support axiom. The axiom is violated by some

data monoids, even finite ones, as shown in the following example, due to Szymon Toruńczyk.

Let Z2 be the two element group, with additive notation. Let h : Γ∅ → Z2 assign 0 to even

permutations and 1 to odd permutations. The monoid M is also Z2; the action is defined

by τm = m + h(τ). The finite support axiom fails, since odd permutations can involve any

pair of data values.

Nevertheless, all data monoids in this paper are homomorphic images (see below) of the

free data monoid, which guarantees the finite support axiom.

Congruences of data monoids. A congruence of a data monoid is an equivalence relation

≃ on the underlying monoid that is compatible with concatenation:

m1 ≃ n1 and m2 ≃ n2 implies m1n1 ≃ m2n2 (1)

and which is also compatible with every data renaming τ ∈ ΓC :

m ≃ n implies τm ≃ τn (2)

Note that the notion of congruence depends implicitly on the set C of constants, since the

set of constants indicates which functions τ are data renamings. It might be the case that

a relation is a congruence for a set of constants C, but it is no longer a congruence for a

smaller set of constants E ( C.

◮ Lemma 1. For a data language L ⊆ D∗ that is closed under data renamings, the syntactic

equivalence ≡L is a congruence of the free data monoid D∗.

Proof. The syntactic equivalence satisfies (1), as it does for any language L ⊆ D∗, not only

those closed under data renamings. We use the closure under data renamings to prove (2).

Let w and w′ be ≡L-equivalent data words. We need to show that for any data renaming

τ , also τw and τw′ are ≡L-equivalent. In other words, we need to show that

u(τw)v ∈ L ⇔ u(τw′)v ∈ L for any u, v ∈ D∗. (3)

Since τ−1 induces an bijection on data words, we have

u(τw)v ∈ L ⇔ τ−1(u(τw)v) ∈ τ−1L.

Because concatenating words commutes with data renamings,

τ−1(u(τw)v) = (τ−1u)w(τ−1v).

By the assumption on L being closed under data renamings, L = τ−1L. It follows that the

left side of the equivalence (3) is equivalent to

(τ−1u)w(τ−1v) ∈ L.

Likewise, the right side of the equivalence (3) becomes

(τ−1u)w′(τ−1v) ∈ L.

Both sides are equivalent, because w ≡L w′. ◭

STACS’11



110 Data Monoids

Homomorphisms of data monoids. Suppose that M and N are data monoids, with

constants C. A data monoid homomorphism h : M → N is defined to be a monoid homo-

morphism of the underlying monoids that commutes with the action of data renamings

h(τs) = τ(h(s)) for all τ ∈ ΓC .

In the literature on nominal sets, a monoid homomorphism that satisfies the commuting

condition above is called equivariant.

A congruence gives rise to a homomorphism, in the usual way. It follows that the function

that maps a word w to its equivalence class under ≡L, is a data monoid homomorphism.

This function is called the syntactic morphism. The target of the syntactic morphism is

called the syntactic data monoid of L, and denoted ML.

Note that data monoid homomorphisms preserve the finite support axiom. Therefore,

all the syntactic monoids we will study, as images of the free data monoid, will satisfy the

finite support axiom.

We say that a data monoid homomorphism h : D∗ → M recognizes a data language

L if membership w ∈ L is uniquely determined by the image h(w) ∈ M . In other words,

L = h−1(h(L)). Clearly, the syntactic morphism of L recognizes L. The following lemma

shows that the syntactic morphism is the “best” morphism recognizing L.

◮ Lemma 2. Consider a data language L ⊆ D∗. Any surjective data monoid homomorphism

that recognizes L can be uniquely extended to the syntactic data monoid homomorphism.

Proof. Let α : D∗ → M be a surjective data monoid homomorphism that recognizes L.

We claim that α(w) = α(w′) implies w ≡L w′. If the contrary were true, we would have

two words w, w′ with the same image under α, and some words v, u such that exactly one

of the two words vwu, vw′u would belong to L. This would contradict the assumption on α

recognizing L, since vwu, vw′u would have the same image under α.

From the claim, it follows that for every element m ∈ M , all words in α−1(m) are mapped

by the syntactic monoid homomorphism to the same equivalence class, call it Wm. Therefore,

the function m 7→ Wm extends α to the syntactic data monoid homomorphism. ◭

The following lemma justifies the use of the name “free data monoid”.

◮ Lemma 3. Let M be a data monoid, and let h : D → M be a function that commutes

with data renamings (i.e. an equivariant function). This function can be uniquely extended

to a data monoid homomorphism [h] : D∗ → M .

Orbits. A syntactic data monoid usually has an infinite carrier. This is not a problem,

because what really interests us in a data monoid is not the elements, but their orbits.

Formally, the orbit of an element m of a data monoid M is the set

ΓC · m = {τm : τ ∈ ΓC}.

Note how the set of constants influences the notion of orbit.

Consider the syntactic data monoid and the syntactic data monoid homomorphism of a

data language L ⊆ D∗. As elements of the monoid are to equivalence classes of ≡L, orbits

are to equivalence classes of ≃L. More formally, for two words w, v ∈ D∗, the orbits of

hL(w) and hL(v) are equal if and only if w ≃L v. Suppose that a language L ⊆ D∗ is closed

under data renamings. If this language is recognized by a data monoid homomorphism h,

then the image h(L) is necessarily a union of orbits.



Mikolai Bojańczyk 111

A data monoid is called orbit finite if it has finitely many distinct orbits. We are interested

in languages whose syntactic data monoids are orbit finite. As far as this paper is concerned,

these are the “regular” languages of data words.

This completes the definition of data monoids and their basic properties.

4 Memory

As usual, the definition of data monoids attempts to use the least amount of primitive

concepts. We now show how other natural concepts can be derived from these primitives.

Consider the running example language Ldd. Let Mdd be the syntactic monoid of this

language. Formally speaking, elements of Mdd are equivalence classes of data words. The

equivalence class of a data word d1 · · · dn 6∈ Ldd can be identified with the ordered first/last

letter pair (d1, dn). Intuitively speaking, the data values d1 and dn are “important” for

this equivalence class (monoid element), while the other data values d2, . . . , dn−1 are not

“important”. Below we present a definition, called memory, which automatically extracts

the “important” data values from an element of a data monoid, and uses only the primitive

concepts of a data monoid. This definition is inspired by the notion of memory from [2].

Let m be an element of a data monoid. We write stabm for the subgroup of data

renamings τ that satisfy τm = m. In other words, stabm = ΓC∪{m}. In the running

example, when m is the equivalence class of a word d1 . . . dn 6∈ Ldd, then stabm is the set of

data renamings that have both d1 and dn as fixpoints. (When m is the equivalence class of a

word w ∈ Ldd, or m is the identity, then stabm contains all data renamings.) For each data

value d ∈ D, we define its data orbit with respect to m as the following set of data values

{τd : τ ∈ stabm} = stabm(d).

In the running example, when m is the equivalence class of d1 . . . dn 6∈ Ldd, the data orbit

of d1 with respect to m is {d1}, for dn the data orbit is {dn}, and for any other data value

it is D − {d1, dn}.

The following theorem gives a more precise interpretation of the finite support axiom.

It says that an element does not care about what happens when data values in its unique

infinite data orbit are swapped around.

◮ Theorem 4 (Memory Theorem). Every element m of an orbit finite data monoid has finitely

many data orbits, of which exactly one is infinite. Furthermore, if mem(m) is defined as the

union of the finite data orbits, then stabm contains all data renamings that are the identity

on mem(m), i.e. Γmem(m) ⊆ stabm.

Note that mem(m) includes all constants, since they have one element data orbits.

The result above only refers to the set structure of a data monoid, i.e. the group action

on its elements. It does not refer to the monoid structure, i.e. the multiplication operation

and the neutral element. Therefore, it is a result about nominal sets, as in [5]. The Memory

Theorem is a corollary of Proposition 3.4 from [5], which says that an element m of a nominal

set M is supported by the intersection of all sets of data values that support it.

◮ Corollary 5. For m, n in a data monoid, mem(mn) ⊆ mem(m) ∪ mem(n).

Proof. Let d, e be elements outside mem(m) ∪ mem(n). Let τ be the data renaming that

swaps d, e. By the Memory Theorem, τ ∈ stabm ∩ stabn. It follows that τ(mn) = τm ·

τn = mn, and therefore τ ∈ stabmn. We have shown that any two elements outside

mem(m) ∪ mem(n) are in the same data orbit for mn. Since there is only one infinite data

orbit, it follows that they are not in mem(mn). ◭

STACS’11
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5 Algebraic properties of data monoids

In this section we develop the algebraic theory of data monoids.

Local finiteness. Recall that a monoid is called locally finite if all of its finitely generated

submonoids are finite. Much of Green theory works for locally finite monoids, which makes

the following theorem important.

◮ Theorem 6. Every orbit finite data monoid is locally finite.

Preliminary work indicates that local finiteness holds under much weaker conditions than

being orbit finite. Namely, for every language of data words that is defined in monadic

second-order logic with order and data equality, the syntactic monoid is locally finite. This

covers, for instance, languages recognized by nondeterministic register automata.

Green’s relations. Suppose that M is a data monoid. Using the underlying monoid, one

can define Green’s relations on elements m, n ∈ M .

m ≤L n if Mm ⊆ Mn

m ≤R n if mM ⊆ nM

m ≤J n if MmM ⊆ MnM

We sometimes say that n is a suffix of m instead of writing m ≤L n. Likewise for prefix and

infix, and the relations ≤R and ≤J . Finally, we use the name extension for the converse of

infix. Like in any monoid, these relations are transitive and reflexive, so one can talk about

their induced equivalence relations ∼L, ∼R and ∼J . Equivalence classes of these relations

are called L-classes, R-classes and J -classes. An H-class is defined to be the intersection of

an L-class and an R-class.

In data monoids, we add a new relation, by lifting the order ≤J to orbits. One could do

the same for R and L, but in our application of data monoids to characterize of first-order

logic, we only use the case for J . We write m ≤O n if there is some data renaming τ such

that τm ≤J n. The letter O stands for orbit. In terms of ideals, τ(MmM) ⊆ MnM , or

equivalently M · τm · M ⊆ MnM , or also equivalently m ∈ M · τn · M .

◮ Lemma 7. In any data monoid, the relation ≤O is transitive.

Proof. Suppose that x ≥O y ≥O z holds. This means that z can be written as τ(pyq)

and y can be written as σ(mxn), for some data renamings τ, σ and data monoid elements

p, q, m, n. Combining the two, we get

z = τ(p · σ(mxn) · q) = τ(p · σm · x · σn · q) ∈ M · τx · M.

◭

Of course, in an orbit finite data monoid there are finitely many O-classes, since each is

a union of orbits.

J -classes. We present a version of the Memory Theorem for J -classes. For a J -class J ,

we define its memory as

mem(J) =
⋂

m∈J

mem(m).

Clearly this set is finite, as an intersection of finite sets.

◮ Theorem 8 (Memory Theorem for J -classes.). Let J be a J -class. Any data renaming τ

that is the identity on mem(J) satisfies τJ = J .
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Quotient under a J -class. Suppose that J is a J -class in a data monoid. Let ≃J be the

equivalence relation on the data monoid defined by:

m ≃/J n if m = n or neither of m, n is an infix of some element of J.

◮ Lemma 9. The relation ≃/J is a congruence of data monoids, assuming the constants are

mem(J). Consequently, the quotient function denoted h/J , is a data monoid homomorphism,

with constants mem(J).

Orbit-equivalent J -classes. We say that two J -classes J, K ⊆ M of a data monoid are

orbit-equivalent if there is some data renaming τ such that τJ = K.

◮ Lemma 10. Orbit-equivalent J -classes form antichains in the order ≤J .

6 First-order logic

We test the algebra on first-order logic, yielding the main result of the paper, Theorem 11.

We extend first-order logic, as described in the introduction, by a unary predicate d(x) for

every data value d, which selects positions with data value d. A predicate d(x) is called

a data predicate. Any formula uses a finite number of data predicates, and its language is

invariant under data renamings that preserve the data values of the data predicates it uses.

The formulas produced below will use data predicates only for the constants.

◮ Theorem 11. Let L be a data language whose syntactic data monoid ML is orbit finite.

Then L is definable in first-order logic if and only if ML is aperiodic.

The implication from first-order definable to aperiodic is proved in the same way as

usual, e.g. using an Ehrenfeucht-Fraïssé game. We focus on the more difficult implication.

The proof is an induction, which needs a more detailed statement, as presented below.

◮ Proposition 12. Let L be a data language recognized by a data monoid homomorphism

h : D∗ → M into a data monoid that is orbit finite and aperiodic. For every m ∈ M , the

language h−1(m) can be defined by a sentence ϕm of FO that uses data predicates for data

values in mem(m).

Note that in Theorem 11 and Proposition 12, there is an implicit set of constants C ⊆ D,

which influences the definitions of data language, data monoid, and homomorphism.

Before we prove Proposition 12, we show how it implies Theorem 11. The language L is

a union of orbits. Let m1, . . . , mn be chosen representatives of these orbits. We know that

L is the same as the union

ΓC · m1 ∪ · · · ∪ ΓC · mn.

Each of the languages in the finite union above can be defined in first-order logic, thanks to

Proposition 12 and the following lemma.

◮ Lemma 13. Suppose that L is a language defined by a formula of first-order logic with

data predicates A. For any B ⊆ A, the language

ΓBL = {τw : τ ∈ ΓB , w ∈ L}

is defined by a formula of first-order logic with data predicates B.
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We now proceed with the proof of Proposition 12. The proof is by induction on two

parameters, ordered lexicographically. The first, and more important, parameter is the

number of orbits in the data monoid M . The second parameter is the position of the O-

class of m in the (inverse of the) order ≤O. We begin with the O-class of the empty word,

and proceed to bigger words, the idea being that it is easier to write formulas for infixes

than extensions.

The induction base is done the same way as the induction step, so we omit it, and only

do the induction step. Let O be the O-class of m. By induction assumption, we can use

formulas for elements with strictly bigger O-classes, which correspond to infixes of m. There

are two cases two consider, depending on whether O is a J -class, or not. The case when O

is a J -class is more similar to the proof for finite alphabets.

O is not a J -class. Let J ( O be the J -class that contains m. Let us expand the set of

constants from C to mem(J). Consider the data monoid homomorphism

h/J : M → M/J

which squashes all elements that are not infixes of J into a single element, as in Lemma 9.

Recall the data monoid homomorphism h that recognizes L. It is easy to see that the

composition g = hJ ◦ h recognizes h−1(m), since g maps the same elements to m as h.

◮ Lemma 14. M/J has fewer orbits than M .

Thanks to the above lemma, we can use the induction assumption to produce the formula

for m. This finishes the case when O is not a J -class.

O is a J -class. For n ∈ M , define Kn to be the set of data words that have image n under

h, but all of their proper infixes have image in a strictly bigger O-class than O. Using the

induction assumption, we prove the following lemma.

◮ Lemma 15. For each n ∈ M , the language Kn can be defined by a formula of first-order

logic with data predicates mem(n).

◮ Lemma 16. There are finitely many elements m1, . . . , mk and a subset B ⊆ mem(m)

such that for every n ∈ M ,

n ∼R m iff n ∈ ΓB{m1, . . . , mk}.

By combining Lemmas 15, 13 and 16, we get the following lemma.

◮ Lemma 17. The infinite union of languages Kn, ranging over n ∼R m, can be defined by

a formula of first-order logic with data predicates mem(m).

Using Lemma 17 and its symmetric variant for L-classes, we can write a formula of first-

order logic, with data predicates mem(m), which describes the set, call it Lm, of elements

that have a prefix in the R-class of m, and a suffix in the L-class of m:

Lm =
⋃

n
n∼Rm

KnD∗ ∩
⋃

n
n∼Lm

D∗Kn.

If a word w belongs to Lm, then its image n = h(w) satisfies n ≤R m, likewise for ≤L.

By the following lemma, if we additionally assume that n ∼J m, then also n ∼L m and

n ∼R m, and hence n ∼H m.
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◮ Lemma 18. In a locally finite monoid, m ∼J n and m ≤R n imply m ∼R n. Likewise

for L.

In other words, if a word belongs to Lm and has the same J -class as m, then its image is in

the H-class of m. In a locally finite aperiodic monoid, this means that its image is simply

m:

◮ Lemma 19. In a locally finite aperiodic monoid, all H-classes are singletons.

Above we have shown that a word in Lm has image m, using the assumption that its

image is in the same J -class as m. Therefore, a word has image m if and only if it belongs

to language Lm, which is definable in first-order logic, and its J -class is O. Let K be the

set of data words that have an infix in O, but are not in O. As argued before, a word has

image m if and only if it belongs to the difference Lm − K. Therefore, to conclude we only

need the following lemma.

◮ Lemma 20. The language K can be defined in first-order logic.

Proof. When does a word w belong to K? Consider the smallest infix of w that belongs to

K. Cutting off the first or last letter of that infix leads to a word in O. Therefore:

K = D∗ ·
(

⋃

d∈D,n∈O
h(d)·n 6∈O

d · h−1(n) ∪
⋃

d∈D,n∈O
n·h(d) 6∈O

h−1(n) · d
)

· D∗

The important observation is that it does no harm to replace h−1(n) by the language Ln

defined above. This is because Ln contains h−1(n) and is contained in h−1(n)∪K. Therefore,

K = D∗ ·
(

⋃

d∈D,n∈O
h(d)·n 6∈O

d · Ln ∪
⋃

d∈D,n∈O
n·h(d) 6∈O

Ln · d
)

· D∗

We deal with the infinite union using Lemma 13. ◭

7 Further work

Characterize other logics. It is natural to extend the characterization of first-order logic

to other logics. Candidates that come to mind include first-order logic with two variables,

or various logics inspired by XPath, or piecewise testable languages. Also, it would be

interesting to see the expressive power of languages recognized by orbit-finite data monoids.

This class of languages is incomparable in expressive power to first-order logic, e.g. the first-

order definable language “some data value appears twice” is not recognized by an orbit-finite

data monoid. It would be nice to see a logic, maybe a variant of monadic second-order logic,

with the same expressive power as orbit-finite data monoids.

More structure on the data values. In this paper, we study languages that are closed

under arbitrary renamings of data values. One could be interested in weaker requirements,

that give more general language classes. For instance, consider languages L ⊆ R∗ that

are closed under order-preserving renamings. Another, very interesting example, concerns

languages of timed automata.

Use mechanisms more powerful than monoids. Even if we are interested in languages

that are preserved under arbitrary data renamings, orbit finite data monoids have weak

expressive power. Contrary to the case of finite alphabets, over infinite alphabets, (orbit
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finite) data monoids are strictly less expressive than the natural automaton counterpart5. If

we only require the syntactic left-to-right automaton to be orbit finite, we get a larger class

of languages. This larger class includes the language “the first letter in the word appears

also on some other position”, which has a syntactic monoid with infinitely many orbits.

Therefore, one can ask: is it decidable if an orbit finite automaton recognizes a language

that can be defined in first-order logic? We conjecture that this problem is decidable, and

even that a necessary and sufficient condition is aperiodicity of the syntactic monoid (which

need not be orbit finite). Aperiodicity is not, in general, the right condition for first-order

logic, as witnessed by the language “words with an even number of distinct letters”, which

has an aperiodic syntactic monoid (sic!), but is not definable in first-order logic.
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