
HAL Id: hal-00573628
https://hal.science/hal-00573628

Submitted on 5 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving PPSZ for 3-SAT using Critical Variables
Timon Hertli, Robin Moser, Dominik Scheder

To cite this version:
Timon Hertli, Robin Moser, Dominik Scheder. Improving PPSZ for 3-SAT using Critical Variables.
Symposium on Theoretical Aspects of Computer Science (STACS2011), Mar 2011, Dortmund, Ger-
many. pp.237-248. �hal-00573628�

https://hal.science/hal-00573628
https://hal.archives-ouvertes.fr

Improving PPSZ for 3-SAT using Critical Variables

Timon Hertli1,2, Robin A. Moser1,3, and Dominik Scheder1,4

1 Institute for Theoretical Computer Science

Department of Computer Science

ETH Zürich, 8092 Zürich, Switzerland

2 timon.hertli@inf.ethz.ch

3 robin.moser@inf.ethz.ch

4 dominik.scheder@inf.ethz.ch

Abstract

A critical variable of a satisfiable CNF formula is a variable that has the same value in all satisfying

assignments. Using a simple case distinction on the fraction of critical variables of a CNF formula,

we improve the running time for 3-SAT from O(1.32216n) by Rolf [10] to O(1.32153n). Using a

different approach, Iwama et al. [5] very recently achieved a running time of O(1.32113n). Our

method nicely combines with theirs, yielding the currently fastest known algorithm with running

time O(1.32065n). We also improve the bound for 4-SAT from O(1.47390n) [6] to O(1.46928n),

where O(1.46981n) can be obtained using the methods of [6] and [10].

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems; G.2.1 Combi-

natorics.

Keywords and phrases SAT, satisfiability, randomized, exponential time, algorithm, 3-SAT, 4-

SAT

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.237

1 Introduction

The ideas behind the most successful algorithms for k-SAT are surprisingly simple. In 1999,

Paturi, Pudlák, and Zane [9] proposed the following algorithm. Given a k-CNF formula F ,

we choose a variable x uniformly at random from the n variables in F , choose a truth value

b ∈ {0, 1}, and set x to b, thereby replacing F by F [x7→b], and continue with F [x7→b]. The

value b is chosen as follows: If the formula contains the unit clause (x), we choose b = 1. If it

contains (x̄), we choose b = 0. In these two cases, we say x was forced. If it contains neither,

we choose b randomly and say x was guessed. Finally, if the formula contains both (x) and

(x̄), we can give up, since the formula is unsatisfiable. This algorithm is usually called PPZ

after its three inventors.

Intuitively, if F is “strongly constrained”, then the algorithm encounters many unit

clauses, hence it needs to guess significantly fewer than n variables. On the other hand, if

F is only “weakly constrained”, it has multiple satisfying assignments, making it easier to

find one. Paturi, Pudlák and Zane [9] make this intuition precise and show that PPZ finds

a satisfying assignment for a k-CNF formula with probability at least 2−(1−1/k)n, provided

there exists one.

A couple of years later, Paturi, Pudlák, Saks, and Zane [8] came up with a simple but

powerful idea. In a preprocessing step, they apply a restricted version of resolution. This

increases the number of unit clauses the algorithm encounters and therefore increases its

success probability. This gives an algorithm called PPSZ. If F has a unique satisfying

assignment, its success probability is quite good (for 3-SAT, it is Ω(1.308−n)), and the

© T. Hertli, R.A. Moser, and D. Scheder;
licensed under Creative Commons License NC-ND

28th Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr; pp. 237–248

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.237
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

238 Improving PPSZ for 3-SAT using Critical Variables

analysis is highly elegant. The case of multiple satisfying assignments appears to be much

more difficult and has been the subject of several papers so far. Iwama and Tamaki [6]

made a major step forward when they observed that while the success probability of PPSZ

deteriorates as the number of satisfying assignments increases, that of Schöning’s random

walk algorithm [11] improves. They quantified this tradeoff and obtained an algorithm with

a success probability of Ω(1.32373−n)1. We denote this combined algorithm, consisting of

one run of PPSZ and one run of Schöning’s random walk algorithm, by Comb.

The PPSZ paper. There are two versions of [8], which we call the old version and the

new version. For unique k-SAT, both are the same, but for general k-SAT, the old version

of [8] gives a more complicated analysis. The old version gives a better bound for 3-SAT and

the new version gives a better bound for 4-SAT.

Only the new version is published, but the old version is still available at the Citeseer

cache2. However, we have found some minor errors in that version. There is also a conference

version [7] stating the results of the old version of [8], but without most proofs. Rolf [10]

improved the analysis of the old version to get a bound of Ω(1.32216n). However [10] does not

consider 4-SAT. We use the ideas of [10] for our improvement of 4-SAT. In Timon Hertli’s

master thesis [2], the old version of [8] with the result of [10] is presented in a self-contained

way. We will reference that thesis for detailed proofs.

1.1 Our Contribution

Let F be a satisfiable CNF formula over n variables and x be a variable therein. We call x

critical if all satisfying assignments of F agree on x. Equivalently, x is critical if exactly one

of the formulas F [x7→1] and F [x7→0] is satisfiable. We denote by c(F) the fraction of critical

variables, i.e., the number of critical variables divided by n; if n = 0, we define c(F) := 1.

Our contribution consists of two statements: Theorem 1 shows that for our purposes we

only need to consider formulas with many critical variables. Point 3 of Lemma 9 then implies

that the success probability of PPSZ increases if F has many critical variables. This is

obtained by slightly modifying the existing analysis of [8] and [10] by taking critical variables

into account. However, Lemma 9 is somewhat technical and we need to embed it into a

review of the existing analysis. Theorem 1 is very simple, so we state it here:

◮ Theorem 1. Let p, q, c∗ ∈ [0, 1] and a, b ≥ 1 such that q
b =

(

1− c∗

2

)

=: r. Suppose

algorithm A runs in time an2o(n) and for every satisfiable (≤ k)-CNF formula F with

c(F) ≥ c∗ finds a satisfying assignment with probability at least pn
(

1
2

)o(n)
. Then there

exists an algrotihm A′ that runs in time max{a, b}n2o(n) and for every satisfiable (≤ k)-CNF

formula finds a satisfying assignment with probability at least min{p, q}n
(

1
2

)o(n)
.

Obviously we can turn A′ into a algorithm that finds a satisfying assignment in expected

time
(

max{a,b}
min{p,q}

)n

2o(n).

Proof. By guessing j variables we mean fixing in F j variables chosen uniformly at random

to values chosen uniformly at random, obtaining the formula F ′ over at most n− j variables.

A′ for each j ∈ {0, . . . , n} repeats the following bj times: Guess j variables and then run A
on F ′; the running time bound is trivial. To bound the probability, we first claim that there

1 Using the new version of [8] immediately gives the bound Ω(1.32267−n), as stated in [10].
2 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1134

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1134

T. Hertli, R.A. Moser, and D. Scheder 239

exists a j such that aj ≥ rj

n+1 where aj is the probability that after guessing j variables F ′

is satisfiable and c(F ′) ≥ c∗. Suppose this is not the case: Let bj be the probability that

after guessing j variables F ′ is satisfiable and c(F ′) < c∗. Clearly a0 + b0 = 1 since F is

satisfiable, and ai+1 + bi+1 ≥ bi · r, as guessing one variable preserves satisfiability with

probability at least
(

1− c∗

2

)

= r. By the assumption, bi · r ≥
(

ai + bi − ri

n+1

)

· r; from this

it is easy to show that an + bn ≥ rn−n rn

n+1 = rn

n+1 . If j = n, we have c(F ′) = 1 by definition;

hence bn = 0 and an ≥ rn

n+1 , a contradiction. Now let j∗ be the j given by the claim; we

repeat bj∗

times an algorithm that has success probability at least rj∗

n+1 pn−j∗
(

1
2

)o(n)
; as

r · b = q this gives by a routine argument an algorithm with success probability at least

pn−j∗

qj∗
(

1
2

)o(n)
. ◭

We improve the analysis for PPSZ for formulas with many critical variables. In com-

bination with Theorem 1, this gives a success probability of Ω(1.32153−n) for 3-SAT and

Ω(1.46928−n) for 4-SAT. Very recently, Iwama, Seto, Takai, and Tamaki [5] showed how

to combine an improved version of Schöning’s algorithm [4, 1] with PPSZ and achieved

expected running time of O(1.32113n). We combine our improvement with theirs to obtain

a bound of O(1.32065n). Due to page limitations, we were not able to use the full power

of [5] in this version. We show a bound O(1.321n) that still improves on the bound of [5].

For a proof of the better bound, see the full version of this paper [3]. The only change is we

use a better result of [5] which has different parameters; however these are not not stated

explicitly so we needed to derive and prove them.

We analyze the algorithm Comb(F), where F is a CNF formula. Comb consists essentially

of a call to PPSZ [8] and to Schoening [11]. In [6] it was shown that Comb has a better

success probability than what the analysis of PPSZ and Schoening gives. Let ISTT be

the algorithm of [5] that improves Comb.

◮ Theorem 2. There exists an algorithm that for every satisfiable 3-CNF formula finds a

satisfying assignment with probability Ω(1.32153−n) and runs in subexponential time.

◮ Theorem 3. There exists an algorithm that for every satisfiable 3-CNF formula finds a

satisfying assignment with expected running time O(1.32065−n).

Due to page limitations, we prove the following weaker theorem instead. For the proof of the

previous theorem, see the full version of this paper [3].

◮ Theorem 4. There exists an algorithm that for every satisfiable 3-CNF formula finds a

satisfying assignment with expected running time O(1.321−n).

◮ Theorem 5. There exists an algorithm that for every satisfiable 3-CNF formula finds a

satisfying assignment with probability Ω(1.46928−n) and runs in subexponential time.

This is already very close to unique 4-SAT, which has a success probability of Ω(1.46899−n).

The benefit of Theorem 1 is that when proving Theorems 2 and 5, we only need to consider

formulas with many critical variables. For example, to prove Theorem 2, we choose c∗ such

that 1− c∗/2 = 1/1.32153, i.e., c∗ ≈ 0.4866. Then we have to bound from below the success

probability of Comb for 3-CNF formulas F with c(F) ≥ c∗.

1.2 Notation

We use the notational framework introduced in [12]. We assume an infinite supply of

propositional variables. A literal u is a variable x or a complemented variable x̄. A finite set

STACS’11

240 Improving PPSZ for 3-SAT using Critical Variables

C of literals over pairwise distinct variables is called a clause and a finite set of clauses is a

formula in CNF (Conjunctive Normal Form). We say that a variable x occurs in a clause C

if either x or x̄ are contained in it and that x occurs in the formula F if there is any clause

where it occurs. We write vbl(C) or vbl(F) to denote the set of variables that occur in C or

in F , respectively. A clause containing exactly one literal is called a unit clause. We say that

F is a (≤ k)-CNF formula if every clause has size at most k. Let such an F be given and

write V := vbl(F) and n := |V |.
A assignment is a function α : V → {0, 1} which assigns a Boolean value to each variable.

A literal u = x (or u = x̄) is satisfied by α if α(x) = 1 (or α(x) = 0). A clause is satisfied by

α if it contains a satisfied literal and a formula is satisfied by α if all of its clauses are. A

formula is satisfiable if there exists a satisfying truth assignment to its variables.

For an assignment α on V and a set W ⊆ V , we denote by α⊕W the assignment that

corresponds to α on variables of V \W and is flipped on variables of W .

Given a CNF formula F , we denote by sat(F) the set of assignments that satisfy F .

Formulas can be manipulated by permanently assigning values to variables. If F is a

given CNF formula and x ∈ vbl(F) then assigning x 7→ 1 satisfies all clauses containing x

(irrespective of what values the other variables in those closes are possibly assigned later)

whilst it truncates all clauses containing x̄ to their remaining literals.

We will write F [x7→1] (and analogously F [x7→0]) to denote the formula arising from doing

just this.

We say that two clauses C1 and C2 conflict on a variable x if one of them contains x and

the other x. We call C1 and C2 a resolvable pair if they conflict in exactly one variable x,

and we define their resolvent by R(C1, C2) := (C1 ∪ C2) \ {x, x}. It is easy to see that if F

contains a resolvable pair C1, C2, then sat(F) = sat(F ∪ {R(C1, C2)}). A resolvable pair C1,

C2 is s-bounded if |C1| ≤ s, |C2| ≤ s, and |R(C1, C2)| ≤ s.

By Resolve(F, s), we denote the set of clauses C that have an s-bounded resolution

deduction from F . By a straightforward algorithm, we can compute Resolve(F, s) in time

O
(

n3spoly (n)
)

[8].

By choosing an element u.a.r. from a finite set, we mean choosing it uniformly at random.

By choosing an element u.a.r. from an closed real interval, we mean choosing it according to

the continuous uniform distribution over this interval. Unless otherwise stated, all random

choices are mutually independent.

We denote by log the logarithm to the base 2. For the logarithm to the base e, we write

ln. We define 0 log 0 := 0.

2 Proof of the Main Theorems

In the following let k ≥ 3 be a fixed integer. Let F be a satisfiable (≤ k)-CNF formula,

V := vbl(F) and n := |V |. We first give the concepts from [8] needed to understand Lemma 9.

Then we state the lemma and use it to improve the bounds on the success probability of

Comb and ISTT given sufficiently many critical variables. In Section 3, we prove Lemma 9

and also consider 4-SAT. Most concepts used in the proof are from [8, 10]. Our contribution

is to exploit what these concepts yield for critical variables.

Subcubes. For D ⊆ V and α ∈ {0, 1}V , the set B(D, α) := {β ∈ {0, 1}V | α(x) =

β(x) ∀x ∈ D} is called a subcube. The variables in D are called defining variables and those

in V \D nondefining variables. The subcube B(D, β) has dimension |V \D|. For example,

if V = {x1, x2, x3}, D = {x1, x3} and α = (1, 0, 0), then B(D, α) contains exactly the two

T. Hertli, R.A. Moser, and D. Scheder 241

Algorithm 1 PPSZ(CNF formula F , assignment β, permutation π)

Let α be a partial assignment over vbl(F), initially the empty assignment.

G← Resolve(F, log(|vbl(F)|))
for all x ∈ vbl(G), according to π do

if {x} ∈ G then

α(x)← 1

else if {x} ∈ G then

α(x)← 0

else

α(x)← β(x)

end if

G← G[x7→α(x)]

end for

return α

Algorithm 2 PPSZ(CNF formula F)

{this algorithm is used for 4-SAT}

Choose β(x) u.a.r. from all assignments on vbl(F)

Choose π u.a.r. from all permutations of vbl(F)

return PPSZ(F, β, π)

assignments (1, 0, 0) and (1, 1, 0). Given a nonempty set S ⊆ {0, 1}V , there is a partition

{0, 1}V =
⋃

α∈S

Bα

where the Bα are pairwise disjoint subcubes, and α ∈ Bα for all α ∈ S. See [8] for a proof.

For the rest of the paper, we fix such a partition for S being the set of satisfying assignments.

To estimate the success probability of Comb, consider the assignment β that Comb chooses

uniformly at random from {0, 1}V .

Pr[Comb(F) ∈ sat(F)] =
∑

α∈sat(F)

Pr[Comb(F) ∈ sat(F)| β ∈ Bα] · Pr[β ∈ Bα]

≥ min
α∈sat(F)

Pr[Comb(F) ∈ sat(F) | β ∈ Bα].

Hence instead of analyzing Comb for an assignment β sampled uniformly at random from

all assignments, we fix α ∈ sat(F) arbitrarily and we think of β as being sampled from the

subcube Bα. Let Nα be the set of non-defining variables of this cube, and Dα the set of

defining variables. Intuitively, if Bα has small dimension, then β is likely to be close to α,

thus Schoening has a better success probability:

◮ Lemma 6 ([6]). Pr[Schoening(F, β) ∈ sat(F) | β ∈ Bα] ≥ (2− 2/k)−|Nα|.

Placements. As a next step, we analyze PPSZ(F, β, π) with β chosen uniformly at

random from Bα and the permutation also chosen from some subset of permutations. A

placement of the variables V is a function σ : V → [0, 1], and a uniform random placement

is defined by chosing σ(x) uniformly at random from [0, 1] independently for each x ∈ V .

With probability 1, a uniform random placement is injective and gives rise to a uniformly

distributed permutation via the natural ordering < on [0, 1]. For the rest of the paper, we will

STACS’11

242 Improving PPSZ for 3-SAT using Critical Variables

Algorithm 3 Schoening(CNF formula F, assignment β)

for 3|vbl(F)| steps do

if β satisfies F then

return β

end if

Select an arbitrary C ∈ F not satisfied by β

Select a variable x u.a.r. from vbl(C) and flip x in β

end for

return β

Algorithm 4 Comb(CNF formula F)

{this algorithm is used for 3-SAT}

Choose β(x) u.a.r. from all assignments on vbl(F)

α← PPSZ(F, β)

if α 6∈ sat(F) then

α← Schoening(F, β)

end if

return α

view π as a placement rather than a permutation. Let Γ be a measurable set of placements.

Then

Pr[PPSZ(F, β, π) ∈ sat(F) | β ∈ Bα] ≥
Pr[PPSZ(F, β, π) ∈ sat(F) | β ∈ Bα, π ∈ Γ] · Pr[π ∈ Γ].

The benefit of this is that we can tailor Γ towards our needs, i.e., making the conditional

probability Pr[PPSZ(F, β, π) ∈ sat(F) | β ∈ Bα, π ∈ Γ] fairly large. This may come at the

cost of making Pr[π ∈ Γ] small.

Forced variables. Suppose the permutation π orders the variables V as (x1, . . . , xn).

Let α be a satisfying assignment of F . Imagine we call PPSZ(F, α, π). The algorithm

applies bounded resolution to F , obtaining G = Resolve(F, log(n)) and sets the variables

x1, . . . , xn step by step to their respective values under α, creating a sequence of formulas

by G = G0, G1, . . . , Gn, where Gi = G
[xi 7→α(xi)]
i−1 for 1 ≤ i ≤ n. Since α is a satisfying

assignment, Gn is the empty formula. We say xi is forced with respect to α and π if Gi−1

contains the unit clause {xi} or {x̄i}. By forced(α, π) we denote the set of variables x that

are forced with respect to α and π. If x is not forced, we say it is guessed. We denote by

guessed(α, π) the set of guessed variables. Note that PPSZ(F, β, π) returns α if and only if

α(x) = β(x) for all x ∈ guessed(α, π). Furthermore, since β is chosen uniformly at random

from Bα, we already have α(x) = β(x) for all x ∈ Dα. Therefore

Pr[PPSZ(F, β, π) ∈ sat(F)] ≥ Pr[PPSZ(F, β, π) = α] (1)

= E
[

2−|Nα∩guessed(α,π)|
]

≥ 2−E[|Nα∩guessed(α,π)|], (2)

where the inequality comes from Jensen’s inequality applied to the convex function t 7→ 2−t.

Note that (2) holds when taking π uniformly at random as well as when sampling it from

T. Hertli, R.A. Moser, and D. Scheder 243

some set Γ. Using linearity of expectation, we see that

E[|Nα ∩ guessed(α, π)|] =
∑

x∈Nα

Pr[x ∈ guessed(α, π)]. (3)

Now if α is the unique satisfying assignment, then Nα = V . For 3-SAT, one central result

of [8] is that

◮ Lemma 7 ([8]). Let F be a satisfiable 3-CNF formula with a unique satisfying assignment α.

Then for every x ∈ vbl(F), it holds that Pr[x ∈ guessed(α, π)] ≤ 2 ln(2)− 1 + o(1) < 0.3863.

Combining the lemma with (2) shows that PPSZ on 3-CNF formulas with a unique

satisfying assignment has a success probability of at least 2−(2 ln(2)−1+o(1))n ∈ Ω(1.308−n).

For the case of multiple satisfying assignments, the lemma does not hold anymore.

Critical variables. Let F be a satisfiable CNF formula and x a variable. Recall that we

call x critical if all satisfying assignments of F agree on x. The following observation is not

difficult to show:

◮ Observation 8. Let F be a satisfiable CNF formula and let VC be the set of critical

variables. Let Bα be the subcube as defined above. For a satisfying assignment α, let Nα be

the set of nondefining variables. Then VC ⊆ Nα.

◮ Lemma 9. Let F be a satisfiable 3-CNF formula and α be a satisfying assignment.

There is a measurable set Γ ⊆ [0, 1]V of placements such that for β = 0.8022563838 and

γ = 0.6073995502, we have

1. Pr[π ∈ Γ] ≥ 2−β|Dα|−o(n) ≈ 0.57345159|Dα|−o(n),

2. Pr[x ∈ forced(α, π) | π ∈ Γ] ≥ γ − o(1) ≈ 0.6073995502− o(1) for all x ∈ Nα,

3. Pr[x ∈ forced(α, π) | π ∈ Γ] ≥ 2− 2 ln(2)− o(1) ≈ 0.6137056 for all critical x ∈ V .

The important part of the lemma is point 3, namely that critical variables are forced with a

larger probability than non-critical ones.

Proof of Theorem 2. Using Theorem 1, we can assume c(F) ≥ 0.48659459. Let ∆ :=

|Dα|/|V | = 1− |Nα|/|V | be the fraction of defining variables. Combining (3) with Lemma 9,

we obtain

E[|Nα ∩ guessed(α, π)| | π ∈ Γ] =
∑

x∈Nα

Pr[x ∈ guessed(α, π)]

≤ (2 ln 2− 1)|VC |+ (1− γ)|Nα \ VC |+ o(n)

≤ (2 ln 2− 1)c∗n + (1− γ)(1−∆− c∗)n + o(n)

= 0.389532n− 0.3926004498∆n + o(n).

The expected fraction of nondefining variables we have to guess is thus a little bit larger

than in the case of a unique satisfying assignment, where it is ≈ 0.3863. Together with (2),

we conclude that the success probability of PPSZ is at least

Pr[PPSZ(F, β, π) = α | β ∈ Bα] ≥ Pr[PPSZ(F, β, π) = α | β ∈ Bα, π ∈ Γ] · Pr[π ∈ Γ]

≥ 2−E[|Nα∩guessed(α,π)| | π∈Γ] · Pr[π ∈ Γ]

≥ 2−0.389532n+0.3926004498∆n · 0.57345159∆n · 2−o(n)

≥ 1.3099684−n · 1.328369−∆n · 2−o(n). (4)

STACS’11

244 Improving PPSZ for 3-SAT using Critical Variables

Our bound on the success probability of PPSZ thus deteriorates with the number of defining

variables. A bigger subcube Bα is better for PPSZ. We combine this with the bound for

Schöning’s algorithm from Iwama and Tamaki [6], stated above in Lemma 6

Pr[Schoening(F, β) ∈ sat(F) | β ∈ Bα] ≥ (2− 2/k)−(1−∆)n. (5)

The combined worst case is with ∆ ≈ 0.0309273, in which case both (4) and (5) evaluate

to Ω(1.32153−n). Therefore for any ∆, at least one of Schoening and PPSZ has a success

probability of Ω(1.32153−n). ◭

Proof of Theorem 4. Lemma 6 from [5] tells us that there is an algorithm ISTTSch that

improves Schoening such that for all m∗ ∈ [0, 1
3] we have, after preprocessing time 6m∗n,

Pr[ISTTSch(F, β) ∈ sat(F) | β ∈ Bα] ≥ 1.012795m∗·n · 1.2845745∆n · (3/4)n.

We want to prove that by replacing Schoening with ISTTSch in Comb, we obtain expected

running time of O(1.321n). Setting c∗ := 0.48599 and m∗ := 0.155371873 gives 1− c∗/2 ≥
1/1.321 and 6m∗ ≥ 1.321. With this choice of c∗, we have the following bound for PPSZ

(obtained as in the previous proof, but with a different constant c∗):

Pr[PPSZ(F, β, π) = α | β ∈ Bα] ≥ 1.31−n · 1.3312−∆n · 2−o(n).

The combined worst case is at ∆ ≈ 0.029225 where 1.31−n · 1.3312−∆n > 1.321−n and

1.012795m∗·n · 1.2845745∆n · (3/4)n > 1.321−n, proving that the combined success probability

is Ω(1.321−n) (after preprocessing time O(1.321n)). ◭

3 Proof of Lemma 9

3.1 Critical Clause Trees

Let G := Resolve(F, log(n)). Note that vbl(F) = vbl(G) and sat(F) = sat(G). A critical

clause for x ∈ V w.r.t. α is a clause where α satisfies exactly one literal and this literal

is over x. It can be easily seen that if the output of PPSZ should be α, then exactly the

critical clauses of G are the clauses that might turn into unit clauses. Note that the defining

variables are assumed to be set correctly, so we only need to consider critical clauses for

nondefining variables here.

We now define critical clause trees, a concept that tells us which critical clauses we can

expect in a CNF formula after bounded resolution. Let T be a rooted tree in which every

node is either labeled with a variable from V or is unlabeled. A cut in a rooted tree is a set

of nodes A such that the root is not in A and every path from the root to a leaf contains at

least one node in A. The depth of a node is the distance to the root. For a set A of nodes,

vbl(A) denotes the set of variables occurring as labels in A. We say T is a critical clause tree

for x w.r.t. G and α if the following properties hold:

1. The root is labeled by x.

2. On any path from the root to a leaf, no two nodes have the same label.

3. For any cut A of the tree, there is a critical clause C ∈ G w.r.t. α where the satisfied

literal is over x and every unsatisfied literal is over some variable in vbl(A).

T. Hertli, R.A. Moser, and D. Scheder 245

x

y z

a b c

Figure 1 Example Criti-

cal Clause Tree

It is shown in [8] that we can construct a critical clause tree

for x ∈ Nα as follows: Start with the root labeled x. Now we

can repeatedly extend a leaf node v. Let L be the set of labels

that occur on the path from v to the root. If α ⊕ L does not

satisfy F , then we can extend the tree at that node: There is a

clause C in F (not in G) not satisfied by α⊕L. For each literal

in C that is not satisfied by α, we add a child to v labeled with

the variable of that literal. If there are no such literals, we add

an unlabeled node. As clauses of F have at most k literals, each

node has at most k − 1 children. If the constructed tree has at

most log(n) nodes (as we do log(n)-bounded resolution), then

it is a critical clause tree for x w.r.t. G and α.

We give a simple example: Let

F := {{x, y, z}, {x, y, a}, {z, b, c}, {x, z, c}}.

For the all-one assignment and x, we can get the tree shown in Figure 1 by the de-

scribed procedure. {a, b} is a cut in this tree. We have R({z, b, c}, {x, z, c}) = {x, z, b},
R({x, y, z}, {x, y, a}) = {x, z, a} and R({x, z, b}, {x, z, a}) = {x, a, b}, giving the required

critical clause.

If α is the only satisfying assignment of F , α⊕ L never satisfies F , and we can build a

tree where all leafs are at depth d := ⌊ logk log(n))⌋. We call this a full tree. The important

observation is now that this also works if x is a critical variable, as in that case α⊕ L also

never satisfies F , as x ∈ L.

In the general case, however, the assignment α⊕ L might satisfy F so that we cannot

extend the tree. However if L consists only of nondefining variables, then we know that

α⊕ L does not satisfy F . Hence we can get a tree where every leaf not at depth d is labeled

by a defining variable. We define the trees Tx we will use in the analysis:

◮ Definition 10. For x ∈ Nα, construct the critical clause tree for x as follows: If x is a

critical variable, then construct Tx such that all leaves are at depth d, i.e., construct a full

tree. Otherwise, construct Tx such that all leaves not labeled by defining variables are at

depth d.

This means that a tree might just consist of a root where all children are labeled with

defining variables, which essentially nullifies the benefits from resolution. To cope with this,

we have to make defining variables more likely to occur at the beginning. We achieve this by

choosing the set Γ of placements whose existence we claim in Lemma 9 in a way such that

exactly that happens.

◮ Definition 11. A function H : [0, 1]→ [0, 1] is called a nice distribution function if H is

non-decreasing, uniformly continuous, H(0) = 0, H(1) = 1, H is differentiable except for

finitely many points and H(r) ≥ r.

Compared with [8], we added the requirement H(r) ≥ r. This will mean that defining

variables cannot be less likely to occur at the beginning than nondefining variables. We now

define a random placement where defining variables are placed with distribution function H:

◮ Definition 12. Let H be a nice distribution function. By πH , we define the random

placement on V s.t. π(x) for x ∈ Nα is u.a.r. ∈ [0, 1], and for x ∈ Dα and r ∈ [0, 1],

Pr(π(x) ≤ r) = H(r).

STACS’11

246 Improving PPSZ for 3-SAT using Critical Variables

Assume that the variables are processed according to some placement π. Consider Tx.

If there is a cut A such that π(y) < π(x) for every y ∈ vbl(A), then x is forced, as the

corresponding critical clause has turned into a unit clause for x. Denote the probability that

Sx(π) is a cut in Tx by Q(Tx, π).

For r ∈ [0, 1], let Rk(r) be the smallest non-negative x that satisfies x = (r + (1− r)x)k−1

and Rk :=
∫ 1

0
Rk(r)dr. It was shown in [8] that if Tx is a full tree, then

Q(Tx, πU) ≥ Rk − o(1).

Rk(r) can be understood as follows: Take an infinite (k − 1)-ary tree and mark each node as

“dead” with probability r, except the root. Rk(r) is the probability that this tree contains an

infinite path that starts at the root and contains only “alive” nodes.

We have R3 = 2−2 ln 2 ≈ 0.6137 and R4 ≈ 0.4451. For r ∈ [0, 1
2], we have R3(r) =

(

r
1−r

)2

and for r ∈ [1
2 , 1], we have R3(r) = 1. As H(r) ≥ r, and by definition of πH and of a cut, it

is obvious that

Q(Tx, πH) ≥ Rk − o(1), (6)

if Tx is a full tree. If Tx is not a full tree, we do not have any good bounds on Q(Tx, πU).

In [10] it is shown that if Tx is not necessarily a full tree, but a tree in which every leaf not

at depth d is labeled by a defining variable, then

Q(Tx, πH) ≥ γH − o(1), (7)

where

γH =

∫ 1

0

min{H(r)k−1, Rk(r)}dr.

Obviously γH ≤ Rk, which means that the bound (6) for full trees is at least as strong as

the bound (7) for general trees. The H(r)k−1 term corresponds to the tree that consists of a

root where all children are labeled with defining variables and are thus leaves (remember

that there are at most k− 1 children). It takes a small lemma to show that this tree and the

full tree are the worst cases. See [2] for details. The following observation summarizes this:

◮ Observation 13. If x is a critical variable, then Q(Tx, πH) ≥ Rk−o(1). If x is a noncritical

nondefining variable, then Q(Tx, πH) ≥ γH − o(1).

We want to find a set Γ of placements such that a placement chosen uniformly at random

from Γ behaves more or less like πH .

◮ Lemma 14 (old version of [8]). Let H be a nice distribution function. If |Dα| ≥
√

n, there

is a set of placements Γ depending on n with the following properties: Let πΓ be the placement

choosen uniformly at random from Γ. Then for any tree T with at most log(n) nodes we have

Q(T, πΓ) ≥ Q(T, πH)− o(1)

and

Pr(πU ∈ Γ) ≥ 2−βH |Dα|−o(n)

with

βH :=

∫ 1

0

h(r) log (h(r)) dr

where h(r) is the derivative of H(r).

T. Hertli, R.A. Moser, and D. Scheder 247

The proof of this lemma is long and complicated, see Sections 4.2 and 4.3 in [2]. The

case |Dα| <
√

n is easy to handle: The probability that all defining variables come at the

beginning is substantial, and we are essentially in the (good) unique case.

Below we will show how to choose a good function H for the case k = 3 and k = 4. To

get an intuition, see Figure 2 for a plot of H for k = 3. With this function, one obtains

γH ≈ 0.6073995502 and βH ≈ 0.8022563838. Together with Lemma 14 and Observation 13,

we conclude that for a critical variable x

Pr[x ∈ forced(α, π)] ≥ Q(Tx, πH)− o(1) ≥ Rk − o(1) ≥ 0.61371,

and for a non-critical non-defining variable x

Pr[x ∈ forced(α, π)] ≥ Q(Tx, πH) ≥ γH − o(1) ≥ 0.6073995502− o(1).

3.2 Choosing a good H

3-SAT. Let now k = 3. We choose H as in [10]: Let θ ∈ [0.5, 1] be a parameter. With some

appropriate parameters a and b > 1, we define H(r) as follows:

Figure 2 H(r) for 3-SAT

H(r) :=

{

r/θ if r ∈ [0, 1− θ)

1− (−a ln(r))
b

if r ∈ [1− θ, 1]

To determine a and b, we set the constraints

H(1− θ) = R3(1− θ)1/2

(as θ ≥ 1/2, this right-hand side is equal to 1−θ
θ)

and

h(1− θ) = 1/θ.

If these constraints are satisfied, H(r) is a nice

distribution function that is differentiable on [0, 1].

Figure 2 gives a plot of the H(r) we use. Numerical

optimization gives θ ≈ 0.52455825 and as before c∗ ≈ 0.48659459. See Section 4.6 in [2] for

details of the computation. This gives

a ≈ 0.96782885577,

b ≈ 7.19709520894,

βH ≤ 0.8022563838,

γH ≥ 0.6073995502.

This concludes the proof of Lemma 9.

4-SAT. For 4-SAT, we use the H corresponding to the new version of [8]. For some

parameter θ ∈ [2
3 , 1], we let H(r) := min{ r

θ , 1}. It turns out that the optimum is when

βH = 1− γH . In that case it is easily seen that the bound for PPSZ does not depend on

|Dα|, and hence we do not need Schoening. Numerical optimization gives θ ≈ 0.6803639

and c∗ ≈ 0.63878808. This implies the success probability Ω(1.46928−n), proving Theorem 5.

STACS’11

248 Improving PPSZ for 3-SAT using Critical Variables

4 Conclusion

We have shown how to improve PPSZ by a preprocessing step that guarantees that a

substantial fraction of variables will be critical. With this, we were able to improve the bound

for 3-SAT and 4-SAT from [10]. We have also shown that our approach nicely combines with

the improvement by [5] by giving an even better bound. In 4-SAT, we are already very close

to the unique case. We do not know if a more refined choice of H (similar to [10]), possibly

depending on ∆, allows us to close that gap.

It is interesting to see that we could make use of multiple assignments in the guessing

step before considering just one assignment using the subcube partition.

Acknowledgments

We thank Emo Welzl for many fruitful discussions and continous support and Konstantin

Kutzkov for pointing us to [5].

References

1 Sven Baumer and Rainer Schuler. Improving a probabilistic 3-SAT algorithm by dynamic

search and independent clause pairs. In Theory and Applications of Satisfiability Test-

ing, volume 2919 of Lecture Notes in Computer Science, pages 150–161. Springer Berlin /

Heidelberg, 2004.

2 Timon Hertli. Investigating and improving the PPSZ algorithm for SAT, master’s thesis.

ETH Zürich, 2010. doi: http://dx.doi.org/10.3929/ethz-a-006206989.

3 Timon Hertli, Robin A. Moser, and Dominik Scheder. Improving PPSZ for 3-SAT using

critical variables. CoRR, abs/1009.4830, 2010.

4 Thomas Hofmeister, Uwe Schöning, Rainer Schuler, and Osamu Watanabe. A probabilistic

3-SAT algorithm further improved. In STACS 2002, volume 2285 of Lecture Notes in

Comput. Sci., pages 192–202. Springer, Berlin, 2002.

5 Kazuo Iwama, Kazuhisa Seto, Tadashi Takai, and Suguru Tamaki. Improved randomized

algorithms for 3-SAT. In Algorithms and Computation, volume 6506 of Lecture Notes in

Computer Science, pages 73–84. Springer Berlin / Heidelberg, 2010.

6 Kazuo Iwama and Suguru Tamaki. Improved upper bounds for 3-SAT. In Proceedings

of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 328–329

(electronic), New York, 2004. ACM.

7 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An Improved

Exponential-Time Algorithm for k-SAT. In Proceedings of the 39th Annual Symposium on

Foundations of Computer Science, pages 628–637. IEEE Computer Society, 1998.

8 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved

exponential-time algorithm for k-SAT. J. ACM, 52(3):337–364 (electronic), 2005.

9 Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chicago

J. Theoret. Comput. Sci., pages Article 11, 19 pp. (electronic), 1999.

10 Daniel Rolf. Improved Bound for the PPSZ/Schöning-Algorithm for 3-SAT. Journal on

Satisfiability, Boolean Modeling and Computation, 1:111–122, 2006.

11 Uwe Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems.

In 40th Annual Symposium on Foundations of Computer Science (New York, 1999), pages

410–414. IEEE Computer Soc., Los Alamitos, CA, 1999.

12 Emo Welzl. Boolean satisfiability – combinatorics and algorithms (lecture notes), 2005.

http://www.inf.ethz.ch/~emo/SmallPieces/SAT.ps.

	Introduction
	Our Contribution
	Notation

	Proof of the Main Theorems
	Proof of Lemma 9
	Critical Clause Trees
	Choosing a good H

	Conclusion

