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Abstract

Given a stream of (x, y) points, we consider the problem of finding univariate polynomials that

best fit the data. Over finite fields, this problem encompasses the well-studied problem of de-

coding Reed-Solomon codes while over the reals it corresponds to the well-studied polynomial

regression problem.

We present one-pass algorithms for two natural problems: i) find the polynomial of a given

degree k that minimizes the error and ii) find the polynomial of smallest degree that interpolates

through the points with at most a given error bound. We consider a range of error models

including the average error per point, the maximum error, and the number of points that are not

fitted exactly. Many of our results apply to both the reals and finite fields. As a consequence we

also solve an open question regarding the tolerant testing of codes in the data stream model.
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1 Introduction

In this paper we consider the following problem: given a stream of n input points (xi, yi) ∈ F
2

(where all the xi’s are distinct1) for some field F, fit them with a univariate polynomial

with low error. This general problem has been intensively studied under at least two broad

specifications. The first case is when F is the set of reals and we want to minimize the least

squares or least absolute deviation errors – in this setting the problem is called (polynomial)

regression. The second case is when F is a finite field and we are trying to minimize the

number of disagreements– this corresponds to the problem of decoding Reed-Solomon codes.

Both of these problems have great practical value: regression is used to build a succinct model

of the input points and is perhaps the most widely used statistical tool. Reed-Solomon codes

are widely used to guard against corruption of data in everyday use such in communication

protocols and in storage media. We present data stream algorithms for both problems.

The case for data stream algorithms as a tool to handle massive data sets has been

well made over the last couple of decades (see, e.g., the survey by Muthukrishnan [14]).
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Uurtamo were supported by NSF CAREER Award CCF-0844796.
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© A. McGregor, A. Rudra, and S. Uurtamo;
licensed under Creative Commons License NC-ND

28th Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr; pp. 428–439

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.428
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Andrew McGregor, Atri Rudra, and Steve Uurtamo 429

As polynomial fitting is an extremely basic problem, it is natural to consider its data

stream complexity. In addition, these problems also have practical motivations. Polynomial

regression dates back to work of Legendre and Gauss and can be used to make sense of large

data sets or to use a large experimental data set to accurate estimate model parameters, see,

e.g., work in epidemiology [7] and marine geography [1]. Polynomial regression is actually

a special case of multivariate linear regression since some variables may be polynomial

functions of other variables. Multivariate linear regression has been recently considered in

the data stream model but existing work is either only applicable to least squares polynomial

regression [3] (and we’ll observe that a simpler approach works in this case) or is not as

time-efficient [6]. By focusing on a special case of the regression problem we are able to a)

consider a wider range of error measures such as maximum absolute error and cardinality

of errors, b) develop faster and more space-efficient algorithms, c) consider variants of the

problem such as fitting the simplest model subject to an error budget, and d) consider fields

other than the reals.

Approximation of decoding codes under the umbrella of property testing has been

intensively studied since the the advent of interactive proofs more than two decades ago.

While Reed-Solomon codes are less interesting from a sampling perspective, the second

and third authors recently introduced the problem of designing data stream algorithms for

codeword testing [15]. They detailed applications of data stream algorithms for codeword

testing in storage systems and network systems. We discuss this further in Section 1.1.

The problems of polynomial regression and decoding of Reed-Solomon codes have in-

herently different motivations. In particular, let k be the degree of the polynomial that we

are trying to fit through the data. In polynomial regression we want to make k as small as

possible as that means that our data has a small representation. On the other hand, for

Reed-Solomon codes we want k to be as large as possible as that means we introduce as little

redundancy as possible. Further, different kinds of error make sense in the two problems.

For the Reed-Solomon case, which are defined over finite fields, the measure of error is the

Hamming distance, or the ℓ0 norm. On the other hand, for polynomial regression, ℓp and

ℓ∞ measures also make sense. These differences crop up in the kind of algorithms generally

used to tackle these two problem. Many of our solutions, however, are “oblivious" as to

whether we are working over finite fields or the reals. Some proofs were omitted for space

considerations, however, all omitted proofs are available in the full version of the paper.

1.1 Decoding of Reed-Solomon Codes and Related Problems

We now focus on the polynomial fitting problem when F is a finite field. In this case, we

will primarily consider the error distance of Hamming distance (i.e. the number of positions

where the fitted polynomial disagrees with in the input point). However, some of our results

also extend to the ℓp case for p > 0.

First consider the problem of error detection, i.e., we want to figure out if a polynomial

of degree at most k fits exactly through all the n input points. Even though much weaker

than the error correction problem, error detection is widely used in practice, e.g., in Internet

traffic where one uses a checksum to detect errors. In fact, the error detection algorithm

(compute the checksum of the data and compare it with the stored checksum) is a very

efficient one-pass data stream algorithm. This feature of checksums is hugely attractive

in practice even though checksums have terrible error-correction properties. One of the

motivations of [15] was to see if the Reed-Solomon code, which has excellent error-correction

capabilities, could also have data stream algorithms for error detection. It was shown in [15]

that this problem does indeed have a poly-log space, single-pass data stream algorithm if we
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430 Polynomial Fitting of Data Streams with Applications to Codeword Testing

allow the algorithm advance knowledge of the xi’s.

Given the somewhat surprising fact that error detection for Reed-Solomon codes does

indeed have efficient data stream algorithms, [15] also looked at the following tolerant testing

problem: Is it the case that there exists a polynomial of degree at most k that disagrees with

at most t points in the input or do all polynomials of degree at most k have to disagree in

at least 2t points? They showed that the trivial algorithm of trying out all possible error

locations can be implemented in Õ(t) space with one pass. They also used group testing

ideas to improve the running time with similar parameters under the additional constraint

of tk ≤ O(n). It was an open question whether this could be improved (and, in fact, the

second author has widely conjectured that one would need Ω̃(t) space). In this paper, we

show that one can in fact solve this problem in Õ(k) space independent of t.

The main building block for the algorithm above is an algorithm to estimate the F0

value of a vector where each coordinate is updated by an addition over the field F. This

problem of course, is very well studied for the case of the reals and has been implicitly

studied for finite fields [10]. Our algorithm is similar to existing algorithms for estimating

F0 (see, e.g., [12]) and works for any field F. The technical ingredient is a subroutine to

determine efficiently if a given subset of vector positions has a nonzero value in it (the catch

is that for fields in general nonzero elements can add up to zero). Given this subroutine,

the algorithm mentioned in the paragraph above is simple: sketch the input y values and

then cycle through all the qk possibilities for the codewords. (The latter can be done in

low space if the algorithm has full knowledge of the xi’s.) In general, trying to improve the

running time of this algorithm is hopeless as it would solve the maximum likelihood problem

for Reed-Solomon codes, i.e., computing the degree k polynomial that disagrees with the

minimum number of input points), which is known to be NP-hard [8]. In fact, there are no

known approximate maximum likelihood algorithms for any nontrivial codes, and this is a

notoriously hard problem [5]. However, under additional constraints on t, we show that one

can in a single pass, compute the closest polynomial and estimate t in space Õ(k).

We also consider the following natural problem related to polynomials: given the coef-

ficients of a degree k polynomial, compute the number of roots of the polynomial. Note

that in this case the trivial algorithm of storing the entire input takes Õ(k) space. In fact,

computing the number of non-roots is the same as computing the F0 value of the stream of

the evaluation of the polynomial over all elements of the field, which by our earlier algorithm

is easy. However, we show that the complementary problem of computing the number of

roots takes Ω(k) space. In fact, this is true even if we want to solve the simple problem of

checking if the polynomial has any roots at all. The reduction is from set-disjointness and

makes use of some properties of non-squares in fields.

1.2 Polynomial Regression

We now discuss our results for polynomial regression over the reals (though some of our

results work over any field). Given p ≥ 0, and n points (x1, y1), . . . , (xn, yn), the aim is to

find a univariate polynomial f(X) of degree at most k that minimizes the ℓp error, i.e. the

sum
∑

i∈[n] |yi − f(xi)|
p. A fairly easy argument shows that one requires Ω(k) space to solve

this problem. We show that under many scenarios, this lower bound is indeed tight. Contrast

this with the general regression problem where the corresponding space bound is Θ̃(k2) [3].

We first consider the case when we are given a bound e on the error we are willing to

tolerate and we are interested in computing f(X) of the smallest possible degree k that

results in an error of at most e. Note that in this case k is unknown but we still want to use

space that is Õ(k). We present two one pass Õ(k + e)-space algorithms for the case when
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e = 0 and e > 0 but p = 0. In both cases, our algorithms work under extra conditions on n, k

and e. The main idea in both of these algorithms is to build an estimate k̂ on k progressively.

It is not too hard to figure out when the estimate k̂ is smaller than the actual value of k.

Our main insight is that under suitable conditions on n, k and e, when we discover that

our estimate k̂ is insufficient, we can discard all we have seen so far and start from scratch.

The conditions guarantee that we never throw away too much information. Also crucial to

our algorithms are the known observations that (i) Newton’s interpolation formula can be

implemented in an “online" fashion and uses Õ(k) space and (ii) existing decoding algorithms

for Reed-Solomon codes can be implemented in linear space.

Next we consider the case when k is specified up-front. For p = 0, our algorithm samples

O(k) points and then uses the decoding algorithm for Reed-Solomon codes mentioned in

the previous paragraph to compute the optimal polynomial. For p ∈ [1, 2), we use Indyk’s

p-stable sketching technique to sketch the y and x values. A naive approach would then be

to cycle through all possible values for the coefficients (we also provide a simple one pass

algorithm to bound the range of values each coefficient can take). While this results in an

Õ(k) space algorithm, the running time is not satisfactory. Using the convexity of the error

function, we present an algorithm that effectively does a binary search in a k-dimensional

space to compute the best values of the coefficients. This leads to a O(logk n)-pass Õ(k)

space algorithm, which we then refine to a one-pass, Õ(k) space and O(logk n) time algorithm.

Finally, we consider the case of p =∞. We observe that a result due to Chan and Chen [2]

can be used to solve the problem exactly in constant passes and sub-linear space. We also

present a one-pass Õ(k) space algorithm to approximate the ℓ∞ error that is in turn based

on the fact that one can compute the optimal polynomial for any even p ≥ 2 with one pass

and Õ(p2k) space.

2 Finding Smallest Degree Polynomials

We first consider the following problem: Given n input points (xi, yi) (1 ≤ i ≤ n) and

an integer 0 ≤ e ≤ n, compute the polynomial f(X) of the smallest degree k such that

|{i|f(xi) 6= yi}| ≤ e.

2.1 Perfect interpolation

We begin with a one-pass Õ(k) space algorithm to compute the polynomial of minimum

degree k that interpolates through all the points, i.e., we solve the problem above with e = 0.

This will serve as a warmup for the general case (in addition to giving a slightly better result

for this special case.) Note that here we do not know k in advance and this is what makes

the problem nontrivial. Furthermore, we do not make any assumptions about the range or

order of the points nor do we know {xi : i ∈ [n]} in advance.

◮ Theorem 1. Let (x1, y1), . . . , (xn, yn) be n input points such that there is an unknown

polynomial f(X) such that for every 1 ≤ i ≤ n, f(xi) = yi. Then there exists a one-pass

Õ
(

1
ǫ · deg(f)

)

space algorithm to compute f(X), provided deg(f) ≤ (1/2−ǫ)n. The amortized

update time of the algorithm is O(deg(f)).

We will use the following well-known result crucially in our algorithm:

◮ Proposition 2. Let the points (x1, y1), · · · , (xm, ym) be explained by a polynomial P (X)

of degree at most m. Then the points (x1, y1), . . . , (xm, ym), (xm+1, ym+1) are explained by
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the unique polynomial

Q(X) = P (X) + (ym+1 − P (xm+1)) ·

m
∏

i=1

X − xi

xm+1 − xi
.

Further, deg(Q) ∈ {deg(P ), m}.

It is easy to verify that the polynomial Q(X) does indeed work – its uniqueness follows

from the fact that two distinct polynomials of degree at most m can agree in at most m

points. Further, the claim on the degree of Q(X) follows from the fact that Q(X) = P (X) if

ym+1 = P (xm+1). Finally, note the following corollary that we will use later on: Q(X) can

be computed from just the knowledge of P (X), ym+1 and x1, . . . , xm+1.

Proposition 2 implies the following O(log(deg(f)))-pass algorithm: guess the degree of

f(X) in a geometric series and then use Proposition 2 to fit the data with a polynomial with

the guessed degree. Our algorithm achieves the result in a single pass.

Proof of Theorem 1. For notational simplicity define k = deg(f). The algorithm maintains

an estimate k′ of k. The algorithm also maintains a polynomial P (X) of degree at most k′

that explains the last few points (the exact number will be specified later). Now consider the

case when the algorithm sees a new point (xi, yi). Two things can happen: (i) P (xi) = yi.

In this case, we are good as the current polynomial P (X) explains the new point; or (ii)

P (xi) 6= yi. In this case we want to use Proposition 2 to compute the new polynomial Q(X).

Note that in this second case, deg(Q) = m. However, to compute Q(X), we also need to

remember all the xi’s we have seen so far.

To implement the idea for part (ii), we will need to keep track of all the xi’s we have

seen so far. However, we cannot store all the xi values if case (ii) never happens (as in that

case we would have stored ω(deg(f)) values). The main observation is to keep track of O(k′)

xi values and in case those are not sufficient enough to compute the new Q(X), we update

k′ accordingly and restart the whole process. The bound of k ≤ (1/2− ǫ)n is to make sure

that by the time we attain k′ = k, we still have k + 1 points left to interpolate through.

We now present the details of the algorithm. Let c = O(1/ǫ) be a constant that we will

fix later on.

1. Initialize k′ ← 1 and let P (X) be the line that passes through (x1, y1) and (x2, y2).

2. Set i, j ← 2 and S ← {x1, x2}. The role of i is to count the total number of points seen

so far while j counts the number of points seen since last restart.

3. Repeat until i ≤ n− k′ − 1:

a. Set i← i + 1 and read (xi, yi).

b. If P (xi) == yi then add xi to S unless |S| == ck′. Set j ← j + 1.

c. Else if j == |S| then set k′ ← j and set P (X) as the Q(X) given by Proposition 2.

(Note that this be computed from the existing P (X) and S.) Finally, add xi to S.

d. Else set k′ ← j and j ← 0. (the “Restart")

Read the points (xi+1, yi+1), . . . , (xi+k′ , yi+k′).

Set S ← {xi, . . . , xi+k′}.

Set P (X) to be the unique degree at most k′ polynomial through (xi, yi), . . . , (xi+k′ , yi+k′).

Set i← i + k′.

4. If P (X) explains the remaining points then output P (X),

5. Else output k > (1/2− ǫ)n.

Note that if the algorithm halts and outputs P (X) and k′ = k, then it indeed outputs

the correct f(X). This is because P (X) explains at least k + 1 points and there is a unique
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polynomial of degree at most k that explains any k + 1 points. Further, note that the

algorithm can be implemented in one pass and uses space O(ck) assuming k′ = k at the end

of the algorithm.

To complete the proof, we will show that assuming k ≤ (1/2− ǫ)n, the algorithm indeed

outputs f(X). Toward this end, we first note that in the algorithm whenever we update k′,

there exists a polynomial of degree k′ that agrees with the last k′ + 1 points. Now, if at any

update we get k′ > k, then it means that two polynomials – one of degree k′ (the polynomial

P (X)) and another of degree k < k′ (the polynomial f(X)) agree on k′ + 1 points, which is

not possible. Thus, we have that at any stage of the algorithm, k′ ≤ k. To prove that at the

end, k′ = k, we claim that the last restart happens at i ≤ n− k − 1. Assuming this claim is

true, note that the algorithm outputs a polynomial P (X) of degree k′ ≤ k that agrees with

the last k + 1 points. This implies that f(X) = P (X) (and hence k′ = k).

To complete the proof we need to prove that the last restart happens at i ≤ n− k − 1.

To this end, we will show that the number of items discarded during restarts is at most

n− k − 1. Indeed, we consider the set of indices {i1, . . . , im} ⊆ [n], where during the iℓth

iteration (ℓ ∈ [m]), the value of k′ changed. For ease of notation, let the k′ value at the iℓth

iteration for ℓ ∈ [m] be denoted by k′(ℓ). Note that for every 1 ≤ ℓ < m, k′(iℓ) ≤ k′(iℓ+1).

Further, call j ∈ [m] bad if k′ changed as a result of a restart. Further, note that the number

of discarded points is exactly
∑

ℓ bad k′(ℓ). Now, note that when ℓ is bad then since we did

not go through Step 3(c), we have the current value of j in Step 3(d) satisfying j > ck′(ℓ− 1).

Thus, this implies that for bad ℓ, k′(ℓ) > ck′(ℓ− 1). Further recall that we had shown earlier

that k′(m) ≤ k. Thus, the sum above is bounded by
∑

i=0 k/ci = c
c−1 · k ≤ (1 + ǫ)k − 1,

where the last inequality follows by choosing an appropriate c ∈ O(1/ǫ). Thus, we would

have proved the claim if (1 + ǫ)k− 1 ≤ n− k− 1, which in turn is implied by the assumption

that k ≤ (1/2− ǫ)n. ◭

2.2 Interpolation with outliers

We now present a one-pass Õ(k) space algorithm to compute the polynomial of minimum

degree k that interpolates through all but e points.

◮ Theorem 3. Let (x1, y1), . . . , (xn, yn) ∈ F
2 be n input points such that there is an unknown

polynomial f(X) such that |{i|f(xi) 6= yi}| ≤ e for some 0 ≤ e ≤ n. Then there exists a one-

pass Õ (e + deg(f)) space algorithm to compute f(X), provided (e + deg(f)) · log(deg(f)) ≤

O(n). The amortized update time of the algorithm is Õ(k + e).

To prove the theorem above, we will need the error-version of Proposition 2, i.e. a decoding

algorithm for Reed-Solomon codes. It is known, for example, that the Berlekamp-Massey

algorithm implies the following:

◮ Theorem 4. Let 1 ≤ K ≤ N be integers. Let (x1, y1), . . . , (xN , yN ) ∈ F
2 be points.

There exists an Õ(N) space algorithm using Õ(N2) field operations that outputs the unique

polynomial P (X) of degree at most K such that |{i|f(xi) 6= yi)}| < (N −K)/2.

The proof of Theorem 3 follows that of Theorem 1, where we use Theorem 4 instead of

Proposition 2. The proof is a bit simpler because of the stricter bounds on deg(f).

3 Polynomial Fitting

In this section we consider finding the degree k polynomial f(x) =
∑k

i=0 aix
i that best fits a

stream (x1, y1), . . . , (xn, yn) of points. We will consider various measures of fit including the
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total number of points that are not interpolated exactly, the average error on each point,

and the maximum error over all points. We introduce the following family of functions

Ep : Rn × R
n × R

k+1 → R

Ep(x, y, a) :=

n
∑

i=1

|yi − fa(xi)|
p where fa(x) =

k
∑

i=0

aix
i

and write E
(k)
p (x, y) := minak,...,a0

Ep(x, y, a). We also write E∞(x, y, a) := maxi∈[n] |yi −

fa(xi)| and E
(k)
∞ (x, y) := minak,...,a0

E∞(x, y, a).

We start by noting that the case of minimizing E2 is actually easy in O(k log n) bits

of space! This is because the optimal choices of the ai coefficients are determined by the

following k + 1 equations:

a0

∑

i∈[n]

xj
i + a1

∑

i∈[n]

xj+1
i + . . . + ak

∑

i∈[n]

xj+k
i =

∑

i∈[n]

xj
i yi ∀ 0 ≤ j ≤ k .

The equations correspond to the derivatives of E2(x, y, a) with respect to each aj . It is

therefore sufficient to compute the following O(k) values

∑

i∈[n]

xj
i for 0 ≤ j ≤ 2k , and

∑

i∈[n]

xj
i yi for 0 ≤ j ≤ k

as the stream is processed. The resulting set of simultaneous equations are then solved in

post processing.

A similar idea works for p ∈ {4, 6, 8, . . .} but requires a bit more space. The main idea is

simple (and has been observed for the more general regression problem): if one thinks of the

coefficients a0, . . . , ak as variables then Ep(x, y, a) is a (k + 1)-variate polynomial of degree p.

Thus, if we can keep track of all the coefficients in this polynomial, then after the pass over

the input, one can estimate E
(k)
p (x, y) by cycling through all possibilities for a. This requires

keeping track of roughly pk values, which is not satisfactory. However, it is easy to check

that these roughly pk coefficients only depend on the following O(p2k) sums:

∑

i∈[n]

yj
i xℓ

i for 0 ≤ j ≤ p, and 0 ≤ ℓ ≤ (p− j)k.

Thus, we only need to keep track of the above O(p2k) sums and E
(k)
p (x, y) can be evaluated

in post-processing.

However, it is not possible to find the best coefficients in general in sublinear space. An

easy way to see this is to consider p = 1 and k = 0. Given a set of points {(xi, yi) : i ∈ [n]}

we seek the value a such that
∑

i∈[n] |xi − a| is minimized. But it is well known that the

optimal value of a is the median of the yi values and computing the median exactly in the

data stream model requires Ω(n) bits of space [9].

Another simple lower bound shows that if, rather than reporting the best k+1 coefficients,

we just want to multiplicatively estimate E
(k)
p (x, y) then this requires Ω(k) bits of space. This

follows from a reduction from indexing where Alice has a set A ∈ [2k] of cardinality k and

Bob has an index j ∈ [2k]. Alice computes the degree k polynomial f(x) =
∏

a∈A(x− a) and

defines the first k + 1 elements of a stream {(2k + i, f(2k + i)) : i ∈ [k + 1]}. Bob then adds

the point (j, 0). If j ∈ A then there is a degree k polynomial, namely f , that interpolates

through all the k + 2 points exactly. Alternatively if j 6∈ A then any interpolating polynomial

must have degree at least k + 1.
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3.1 Maximizing the number of points fitted exactly

We first consider fitting a degree k polynomial to the stream of points with the goal of

interpolating exactly through as many of the points as possible. The following result applies

to both finite fields Fq and the reals. The application to finite fields relies on the observation

that many sketching algorithms for estimating the number of distinct items, F0, can be

carefully modified to estimate |{i : fi mod p 6= 0}| for an arbitrary prime p where fi is the

frequency of the value i in the stream.2

◮ Theorem 5. Let n ≥ (1+2γ)k be integers for γ > 0. Assume that E0(x, y) ≤ ((1−γ)n−k)/2

for some γ > 0. Then it is possible to find the optimal polynomial and estimate E0(x, y) up

to a factor (1 + ǫ) with probability 1− δ (where δ ≤ exp(−Ω(γ2k))) in a single pass using

Õ(ǫ−2 log(1/δ) + γ−2k) space.

Proof. Let f be a degree k polynomial that interpolates through the maximum number of

points. Note that by the bound on t = E0(x, y), f will be unique. Call a point (xi, yi) good

if f(xi) = yi and bad otherwise. The idea in the algorithm is to essentially sample enough

points and run the unique decoding algorithm from Theorem 4 on the sampled points. We

next present the details.

First assume that t ≤ γk. In this case, we just run the algorithm from Theorem 4 with

K = k and N = (1 + 2γ)k on the first N points. Thus, even if in the worst case all the t

errors occur in the first N positions, the algorithm from Theorem 4 will output f in space

Õ(k). Note that once we have computed f , we can check that t ≤ γk by verifying that f

explains the remaining points. Further, we can compute t exactly.

Next we consider the case when t > γk. In this case we first sample each of the n

input points with probability 4k/(γ2n). By Chernoff, except with probability exp(−Ω(k)),

we would have sampled N = ck points with 4/γ2(1 − γ/2) < c < 5/γ2. Then we run the

algorithm from Theorem 4 on the sampled points. Note that if we sample at most (ck− k)/2

bad points, the algorithm will indeed return f . Next, we show that this is indeed the case.

Note that the expected number of bad points is µ = 4kt/(nγ2). We show by a case analysis

that the probability we get more than ∆ := (c− 1)k/2 bad points is exponentially small.

We first consider the sub-case that γk ≤ t < n/(8e). Note that in this case ∆/µ > 2e,

which implies that the probability that the number of bad points is more than ∆ is at

most 2−t = exp(−Ω(k)) [4]. Finally we consider the sub-case that t ≥ n/(8e). Note that

by the assumption on t, we also have t ≤ (1 − γ)n/2, which implies that in this case

µ ≤ 4k(1 − γ)/(2γ2). This implies that ∆ > (1 + γ/2)4k(1 − γ)/(2γ2) ≥ (1 + γ/2)µ (as

c > (1− γ/2)4/γ2 ≥ 4/γ2(1− γ/2− γ2/2) + 1). Thus, the probability that we will have at

least ∆ bad points by the “usual" Chernoff bound is upper bounded by exp(−Ω(γ2 · µ)) ≤

exp(−Ω(γ2n)). Thus, in a single pass and Õ(k/γ2) space we can compute the optimal

polynomial f(X) =
∑k

i=0 aiX
i with error probability at most exp(−Ω(γ2k)).

2 In particular, the algorithm detailed in [12] computes
∑

i∈S
fi for random subsets S and makes an

estimation based on the fraction of random subsets S such that
∑

i∈S
fi 6= 0 as this indicates that there

exists i ∈ S such that fi 6= 0. However, in the case of Fp for example, it is possible that
∑

i∈S
fi = 0

mod p while there exists i ∈ S such that fi 6= 0 mod p. One approach, as taken in Indyk [10] for the
case p = 2, is to take the probability of this event into account and adjust the estimator appropriately.
An alternative approach is to consider log(1/γ) random subsets of each S, {Sj : j ∈ log(1/γ)}: if
there exists i ∈ S such that fi 6= 0 mod p then with probability at least 1 − γ, there exists Sj such
that

∑

i∈Sj
fi 6= 0 mod p. The results in a factor log(1/γ) increase in the space and time use of the

algorithm but it suffices for γ to be O(ǫ−2) so this increase is not significant.
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In parallel with the algorithm above, we compute sketches to estimate the value of t.

Compute F0 sketches (e.g., [13]) of y = (y1, . . . , yn) and xj = (xj
1, xj

2, . . . , xj
n) for 0 ≤ j ≤ k

and return an estimate based for t using sketch(y −
∑k

j=0 ajxj) = sketch(y) −
∑k

j=0 aj ·

sketch(xj) .

Repeating the above process O(log 1/δ) times and taking the smallest estimate gives a

(1± ǫ) approximation on t with error probability at most δ. Note that we use Õ(ǫ−2 log(1/δ))

space in this part of the algorithm. The assumption on δ in the statement of the theorem

completes the proof. ◭

3.2 Minimizing the average error

To minimize Ep(x, y, a) for p ∈ (0, 2), we first consider the case where we may assume that

each ai comes from some set of t discrete values. Using the p-stable sketching technique

[11], construct linear sketches of the k + 1 vectors xj = (xj
1, xj

2, . . . , xj
n) for 0 ≤ j ≤ k and

y = (y1, . . . , yn). Call these sketches sketch(xj) Then for a given setting of a0, . . . , ak, we

can estimate Ep(x, y, a) up to factor 1 + ǫ because the sketches are linear:

sketch(y −
k

∑

j=0

ajxj) = sketch(y)−

k
∑

j=0

aj · sketch(xj) .

If the sketches are of size Õ(ǫ−2 log δ−1) then this procedure fails with probability at most δ.

Since there are at most tk settings for a, this procedure works for testing all settings of a

with probability at least 1− tkδ. Rescaling δ gives a Õ(ǫ−2k log t log δ−1) space algorithm.

A similar idea was used in Feldman et al. [6] for multivariate linear regression. The main

drawback with this approach is the O(tk) time required for post-processing.

To ameliorate the situation slightly, we first argue that if we restrict ourselves to finding

coefficients up to polynomial precision, we may assume that t is polynomial. In particular

we know how to compute a value B in one pass over the input such that all the coefficients

of the polynomial f(X) =
∑k

i=0 aiX
i minimizing Ep(x, y, a) satisfy |ai| ≤ B. Note that in

this case t = O(B/γ), where γ = 1/ poly(n) is the (additive) precision value.

◮ Lemma 6. Let n > k ≥ 0 be integers, p ∈ (0,∞) be a real and (x, y) be the input points.

Assume that the polynomial f(X) =
∑k

i=0 aiX
i satisfies E

(k)
p (x, y) = Ep(x, y, a). Then, for

every 0 ≤ i ≤ k, |ai| ≤ 6n1/pymax/min(1, xk
min), where ymax = maxi |yi| and xmin = mini |xi|.

By applying a random shift to the x values we may ensure that the numerator is Ω(1)

and we may subsequently assume that B = poly(n). For constant k, this ensures that the

post-processing step is polynomial in n. In the remainder of this section we show that this

dependence on n can be made poly-logarithmic when k is constant and p ≥ 1.

3.2.1 Poly-logarithmic post processing for constant k:

We start by defining the family of functions hj : Rj → R for j = 1, . . . , k + 1:

hj(ak, . . . , ak−j+1) = min
a0,...,ak−j

n
∑

i=1

∣

∣

∣

∣

∣

yi −

k
∑

m=0

amxm
i

∣

∣

∣

∣

∣

p

and h0 = Ep(x, y) .

In other words, hj is the smallest interpolation error that can be achieved when the j highest

coefficients are fixed. We first note that hj is convex.

◮ Lemma 7. For any p ≥ 1, j ∈ {0, 1, . . . , k} and ak, . . . ak−j+2 ∈ R, the function h(x) =

hj(ak, . . . , ak−j+2, x) is convex.
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Evaluate[j, ak, . . . , ak−j+1]

1. If j == k + 1, return a (1 + ǫ) approximation based on the sketches.

2. Initialize a← −B and b← B where B upper bounds the magnitude of all coefficients.

3. Repeat

a. For x← a + b−a
4 , y ← a + b−a

2 , and z ← a + 3(b−a)
4

ex ← Evaluate[j + 1, ak, . . . , ak−j+2, x]

ey ← Evaluate[j + 1, ak, . . . , ak−j+2, y]

ez ← Evaluate[j + 1, ak, . . . , ak−j+2, z]

b. If ey < ez/(1 + ǫ) then b← z and repeat

c. If ey < ex/(1 + ǫ) then a← x and repeat

4. Until ey ≥ min(ex, ez)/(1 + ǫ) or |b− a| < γ

5. Return ey

Figure 1 The Evaluate Algorithm

To find the minimum value of a convex function h(·) in the range [a, b], a natural approach

would evaluate h at a few intermediate points, e.g., a < x < y < z < b, and recurse on

the appropriate subinterval of [a, b] based on the intermediate valuations. If h(y) ≤ h(z),

we deduce that the minimum lies in the range [a, z] and if h(x) ≥ h(y) we deduce that the

minimum lies in the range [x, b]. Note that one of the above cases must apply since h is

convex. If x, y, z are equally spaced in the interval, after O(log n) iterations we can determine

the value that minimizes h.

As a warm-up to the main algorithm of this section, we next present a O(logk n) pass

algorithm. The algorithm is based on the recursion:

hj(ak, . . . , ak−j+2, ak−j+1) = min
a

(

hj+1(ak, . . . , ak−j+2, ak−j+1, a)
)

.

We can evaluate hk for a given ak, . . . , a1 in O(log n) as described above. By appealing to

the above recurrence, we can then determine hk−1 in O(log2 n) passes: we minimize hk−1 for

a given ak, . . . , a2 by performing the quaternary search to find a such that hk−1(ak, . . . , a2) =

hk(ak, . . . , a2, a). Since each evaluation of hk requires O(log n) passes, it takes O(log2 n)

passes to evaluate hk−1 for a given ak, . . . , a2. Continuing in this manner gives a O(logk n)

pass algorithm for evaluating h0. This leads to the following theorem.

◮ Theorem 8. Assume each coefficient may take only t different known values. Then there

exists a O(logk t) pass algorithm that computes Ep(x, y) exactly in Õ(k) space and O(1)

per-item processing and O(1) processing at the end of each pass.

We next transform the multiple pass algorithm into a single pass algorithm where

each of the evaluations performed in the quaternary search is computed using a single

sketch of the data. In Figure 1, we present the algorithm Evaluate for approximating hj .

Evaluate[j, ak, . . . , ak−j+1] approximates hj(ak, . . . , ak−j+1) by minimizing a sequence of

convex functions. Note that Evaluate is solely concerned with post-processing: while the

points are being streamed it suffices to construct the appropriate sketches. Before we analyze

the running time and accuracy of Evaluate, we need the following result.

In our algorithm it won’t be possible to evaluate h exactly. However, the following

lemma demonstrates that when the approximate evaluations become so close that it becomes

impossible to evaluate pairwise comparisons, we have identified a sufficiently accurate

approximation of the minimum.
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◮ Lemma 9. Let h : [a, b]→ R be a convex function and let h̃ : [a, b]→ R satisfy (1− γ) ≤

h(x)/h̃(x) ≤ (1 + γ) for all x ∈ R. Suppose for some a, b, (1 + ǫ)h̃(y) ≥ max(h̃(z), h̃(x))

where x = a + (b− a)/4, y = a + (b− a)/2, and z = a + 3(b− a)/4. Then

(1 + ǫ)h̃(y) ≥ min
x∈[a,b]

h(x) ≥ h̃(y)/(1 + 8ǫ) .

Proof. Without loss of generality assume that h(x) ≤ h(z). Note that h(y) ≤ h(z) because

of convexity. We have to analyze the following two cases.

1. h(x) ≤ h(y): In this case the minimum value is at least

h(y)− 2(h(z)− h(y)) = 3h(y)− 2h(z) ≥ h̃(y)[3/(1 + ǫ)− 2(1 + ǫ)2] .

2. h(y) ≤ h(x): In this case the minimum value is at least

h(y)− (h(z)− h(y)) = 2h(y)− h(z) ≥ h̃(y)[2/(1 + ǫ)− (1 + ǫ)2] .

In either case, the minimum value is at least h̃(y)/(1 + 8ǫ) assuming ǫ < 1/15.

◭

◮ Theorem 10. The running time of Evaluate[0] is O(logk+1 n) and returns a value that

satisfies 1/(1 + Ok(ǫ))k ≤ Evaluate[0]/Ep(x, y) ≤ (1 + Ok(ǫ))k .

Using an appropriately rescaled ǫ when sketching the original points leads to a (1 + ǫ)

approximation using O(ǫ−2 polylog(n)) space and O(polylog n) update and post-processing

time for constant k. We note that dependence on k is such that this approach is only practical

for small values of k.

Proof of Theorem 10. For the running time, note that in each iteration the innermost loop

is performed O(log n) times since B = O(poly n) and γ = 1/ poly(n). The result follows

because the depth of the recursion is at most k + 1. The claim on the accuracy follows by

induction on the depth and Lemma 9. ◭

3.3 Minimizing the maximum error

In this section, we consider the problem of finding coefficients a such that the maximum

absolute error, E∞(x, y, a), is minimized. We will present two results. The first follows from a

straight-forward observation and results in a constant pass algorithm that finds the error and

the coefficients exactly. The second algorithm only uses a single pass but returns coefficients

that minimize the maximum error up to a constant factor.

The first observation is that the problem can be expressed as a linear program in O(k)

variables,

min ǫ subject to − ǫ ≤

k
∑

j=0

ajxj
i − yi ≤ ǫ ∀i ∈ [n] .

Such a problem can be solved in constant passes in O(nδ) space for any constant δ using the

sub-linear time (for constant k) algorithm of Chan and Chen [2].

◮ Theorem 11. It is possible to minimize E∞(x, y, a) in constant passes and O(nδ) space

for any constant δ.

Our single pass algorithm is based on the following relationship between E∞ and Ep.
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◮ Proposition 12. For p ≥ log n
log(1+ǫ) , E

(k)
∞ (x, y) ≤

p

√

E
(k)
p (x, y) ≤ (1 + ǫ)E

(k)
∞ (x, y).

Proof. The result follows because for any non-negative vector z ∈ R
n with r = maxi zi,

r ≤ (
∑

i∈[n] zp
i )1/p ≤ (nrp)1/p ≤ (1 + ǫ)r. ◭

In Section 3, we noted that it is possible to evaluate E
(k)
p (x, y) (and determine the

corresponding polynomial) in O(p2k) space if p was even. Therefore, by choosing p =

2⌈(log n)/(2 log(1 + ǫ))⌉ and appealing to Proposition 12, get the following theorem.

◮ Theorem 13. E
(k)
∞ (x, y) can be (1+ǫ)-approximated in a single pass with O(ǫ−2k polylog(n))

space.
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