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Abstract

We consider the exploration of a simple polygon P by a robot that moves from vertex to vertex

along edges of the visibility graph of P. The visibility graph has a vertex for every vertex of P

and an edge between two vertices if they see each other, i.e. if the line segment connecting them

lies inside P entirely. While located at a vertex, the robot is capable of ordering the vertices it

sees in counter-clockwise order as they appear on the boundary, and for every two such vertices,

it can distinguish whether the angle between them is convex (≤ π) or reflex (> π). Other than

that, distant vertices are indistinguishable to the robot. We assume that an upper bound on

the number of vertices is known and show that the robot is always capable of reconstructing the

visibility graph of P. We also show that multiple identical, indistinguishable and deterministic

such robots can always position themselves such that they mutually see each other, i.e. such that

they form a clique in the visibility graph.
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1 Introduction

Autonomous mobile robots are used for various tasks like cleaning, guarding, data retrieval,

etc. in unknown environments. Many tasks require the exploration of the environment and

the creation of a map. The difficulty of the mapping problem depends on the characteristics

of the environment itself and on the sophistication of the robots, i.e. on their sensory and

locomotive capabilities. A natural question is how much sophistication a robot needs to be

able to solve the problem. The ultimate goal is to characterize the difficulty of the mapping

problem by finding minimal robot configurations that allow a robot to create a map.

We focus on robots operating in simple polygons. For many tasks, instead of inferring a

detailed map of the geometry of the environment, it is enough to obtain the visibility graph.

The visibility graph has a node for each vertex of the polygon and an edge connecting two

nodes if the corresponding vertices see each other, i.e. if the straight-line segment between

them is contained in the polygon. The goal in this context becomes to find minimal robot

models that allow a robot inside a polygonal environment to reconstruct the visibility graph

of its environment. The information the robot can gather must be sufficient to uniquely infer

the visibility graph.
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A variety of minimalistic robot models have been studied, focusing on different types of

environments and objectives [1, 5, 8, 10, 14]. The model considered here originates from [12].

Roughly speaking, our robot is allowed to move along edges of the visibility graph. While

at a vertex, the robot sees the vertices visible to its current location in counter-clockwise

(ccw) order starting with its ccw neighbor along the boundary. Apart from this ordering

the vertices are indistinguishable to the robot. In each move the robot may select one of

them and move to it. The robot has no way of looking back, i.e. it has no immediate way of

knowing which vertex it came from among the vertices it sees now. However, the robot is

assumed to be aware of is an upper bound n̄ on the number of vertices n.

Unless extended with additional capabilities, a robot as defined above cannot reconstruct

the visibility graph of a polygon when restricted to moving along the boundary only [3]. If we

allow the robot to measure the angles between pairs of visible vertices in addition to ordering

them, moving along the boundary is sufficient to reconstruct the visibility graph however [9].

As soon as a robot starts moving across the polygon (as opposed to along the boundary), the

lack of the ability to look back makes it difficult for the robot to relate the information it

collected so far to subsequent observations. It thus makes sense to consider look-back robots

which have the ability to look back and identify the vertex they came from in their last move.

This ability empowers a look-back robot to retrace all of its movements. If we add the ability

to distinguish convex (≤ π) and reflex (> π) angles, it was shown that a look-back robot

can reconstruct the visibility graph [3]. Later, it was shown that a look-back robot in fact

does not even need to distinguish convex and reflex angles [6]. In the same paper, it was

also shown that look-back robots can solve the weak-rendezvous problem in which multiple

identical, indistinguishable and deterministic robots need to position themselves such that

they mutually see each other. In the following we show that a robot can reconstruct the

visibility graph even without looking back, as long as it can distinguish convex and reflex

angles. Along the way, we show that such robots can also solve the weak-rendezvous problem.

In the robot model we use, robots move along edges of the visibility graph and can locally

access some information about the edges. We can model this in the context of general robotic

exploration of edge-labeled graphs, where the edge-labeling is usually restricted to be locally

bijective at every vertex (i.e. no two edges incident to the same vertex have the same label).

In this more general context, robots are aware of the degree of the vertex they are located at

as well as of the labels of the edges incident to it. In every step, the robot selects an edge and

move to its other end. It is known that labeled graphs can appear mutually indistinguishable

to a robot, i.e. the reconstruction problem is not always solvable [2, 4]. The rendezvous

problem is generally not solvable either [7, 13]. We will see later, that polygon exploration

can be transformed to the exploration of a particular class of directed, arc-labeled graphs,

where both the reconstruction problem as well as the weak-rendezvous problem are solvable.

As it is impossible to reconstruct general graphs, it is natural to ask how much information

a robot can obtain about a graph. This information is encoded in the unique minimum base

graph of a graph G – the smallest graph among all graphs indistinguishable from G by a

robot [4]. In general, the mapping from a graph to its minimum base graph is not one-to-one

in the sense that there are graphs which share the same minimum base graph. Our question

whether a robot with certain capabilities can reconstruct the visibility graph of a polygon

can be translated to whether the mapping is one-to-one for the class of visibility graphs

with an appropriate labeling. We show that if the labeling locally encodes the convexity

information about every angle at a vertex, this mapping becomes one-to-one. In other words,

visibility graphs can be reconstructed from their minimum base graph if a bound n̄ on the

total number of vertices and the type of every angle (convex or reflex) are known.
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2 The visibility graph reconstruction problem

We consider the exploration of a (simple) polygon P by a robot that moves from vertex to

vertex along straight lines in P. Two vertices u, v that can be connected with a straight line

inside P are said to see each other. We define the visibility graph Gvis = (V, E) of P to be a

directed graph, where V is the set of vertices of P and there is an arc from u to v (and vice

versa) if u and v see each other. Whenever convenient we identify Gvis with its canonical

straight-line embedding in the polygon. For example, we speak of angles between arcs of Gvis

meaning the angles between the corresponding line segments of its straight-line embedding.

Depending on the additional capabilities we equip a robot with, it might or might not

be able to perform certain tasks. We focus on the visibility graph reconstruction problem

in which the robot has to uniquely infer Gvis. Here and throughout this paper we consider

isomorphic graphs to be the “same” graph, as we cannot hope to distinguish graphs further.

We also consider the weak-rendezvous problem in which multiple identical and deterministic

robots need to position themselves on vertices of the polygon that mutually see each other.

Before defining a specific robot model we introduce some formalism for Gvis. We fix a

vertex v0 and denote the vertices of P in ccw order along the boundary by v0, v1, . . . , vn−1.

Note that v0, v1, . . . , vn−1, v0 is a Hamiltonian cycle in Gvis. By chain(vl, vr) we denote the

sequence (vl, vl+1, . . . , vr) and by chainv(vl, vr) we denote the subsequence of chain(vl, vr)

containing only the vertices visible to v. Here and throughout this paper all indices are

understood modulo n. Let vi ∈ V and (u1, . . . , udi
) := chainvi

(vi+1, vi−1) be the vertices

visible to vi. We say di is the degree of vi and define visvi
(x) := visvi

(− (di + 1 − x)) := ux

to be the x-th vertex visible to vi in ccw order or equivalently the (di + 1 − x)-th vertex

visible to vi in clockwise (cw) order for 1 ≤ x ≤ di. Conversely, we set Ovi
(ux) := x or

interchangeably Ovi
(ux) = − (di + 1 − x) for 1 ≤ x ≤ di. For 1 ≤ x < y ≤ di we write

Avi
(x, y) = Avi

(y, x) to denote the ccw angle between the arcs (vi, ux) and (vi, uy) in that

order. Furthermore, we define the angle type Tvi
(·, ·) as follows: Tvi

(x, y) = Tvi
(y, x) = 1 if

Avi
(x, y) > π and Tvi

(x, y) = 0 otherwise. For convenience we set Tvi
(x, x) = 0. A vertex vi

is called reflex if Tvi
(1, di) = 1 and convex otherwise.

The exploration of Gvis can be reduced to the general problem of exploring a strongly

connected, directed and arc-labeled graph G (from now on we use the word “graph” to refer

to such graphs). We write λ(e) to denote the label of an arc e. A robot exploring a graph is

assumed to be aware of the labels of all the outgoing arcs at its location. In every move, the

robot may choose one of those arcs and follow it to its target. In the following we distinguish

between (directed) paths that visit every vertex at most once and (directed) walks that do

not have this restriction. Every walk p in the graph uniquely induces a label-sequence λ(p).

Conversely, any label-sequence Λ induces a set of walks Λ(G) such that λ(p) = Λ for all

p ∈ Λ(G). By Λ(v) we denote the set of walks in Λ(G) that start at v. If no two outgoing

arcs of the same vertex share a label, we say the graph has a local orientation or is locally

oriented. Then, for every label-sequence Λ and vertex v we have Λ(v) = ∅ or |Λ(v)| = 1; in

the latter case we write Λ(v) to denote this unique walk.

We can now introduce our robot model in detail. As described above, we allow a robot to

move along arcs of the visibility graph. In addition, while situated at a vertex v of degree d,

the robot can order all outgoing arcs in ccw order starting with the arc to its ccw neighbor

along the boundary, and is aware of Tv(x, y) for all 1 ≤ x, y ≤ d. We assume the robot to be

aware of an upper bound n̄ ≥ n on the total number of vertices n. From now on, when we

talk about a robot in a polygon, we refer to the robot model described above.

The exploration of P by a robot is in fact equivalent to the exploration of an arc-labeled

STACS’11
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version of Gvis, with an appropriate labeling that encodes the information available to the

robot. For every vertex of the polygon we need to encode the local orientation and the angle

type information into a labeling of the outgoing arcs at the corresponding vertex in Gvis.

We introduce a labeling in which each label is a sequence of integers. Let u be a vertex of

the visibility graph with degree d and (u, v) be an outgoing arc of u. We label (u, v) with

the label (x0, x1, . . . , xd), where x0 := Ou(v) and xi := Tu(x0, i). Note that by the definition

of Ou our labeling is a local orientation. Further note that the arcs (u, v) and (v, u) can be

labeled differently. It is immediate to check that a robot exploring Gvis encounters the exact

same information as a robot inside the polygon (that is aware of Tv) if both start at the

same vertex. It is thus sufficient to show that the labeled graph Gvis can be reconstructed in

the framework of exploring general graphs in order to show that a robot can indeed solve the

visibility graph reconstruction problem.

3 Overview of the algorithm

The visibility graph reconstruction algorithm that we design in this paper combines several old

and new graph-theoretical and geometrical properties of visibility graphs as well as techniques

developed in earlier studies. Rather than formally introducing all relevant concepts right

away, this section aims to give an intuitive overview of the algorithm. We informally describe

the underlying techniques and defer their formal discussion to later sections. Note that we

are primarily interested in showing that a robot is at all capable of uniquely reconstructing

the visibility graph of any simple polygon. The algorithm we provide as a proof does not

need to be particularly efficient as long as it is guaranteed to terminate in finite time. An

algorithm that solves the weak-rendezvous problem is obtained as a byproduct.

In Section 2 we argued that the exploration of P by a robot is equivalent to the exploration

of Gvis in the context of general graph exploration. In general and without any prior knowledge

of the graph, there can be infinitely many graphs that are compatible with the observations

of the robot no matter how far it moves, i.e. all these graphs are indistinguishable to the

robot. However, it is known [4] that for every graph G, there is always a unique minimum

base graph G⋆ that is indistinguishable from G and has minimum size. Using the fact that

Gvis is locally oriented and that an upper bound n̄ on n is known a priori, we are able to

show the following result.

◮ Theorem 1. A robot in P can determine G⋆
vis.

The main ingredient for this theorem is the observation that given two candidate graphs

for G⋆
vis, the robot can eliminate one of them in finite time by following an appropriate

sequence of arc labels. It is then sufficient to iterate over pairs of graphs with size at most n̄,

discarding one of the two in every step. Once the robot determined G⋆
vis, it has extracted all

the information it can possibly gather by moving around. Subsequent steps of the algorithm

can thus operate on G⋆
vis directly without further need of moving at all in Gvis.

We associate each vertex of Gvis with a vertex of G⋆
vis such that each vertex of G⋆

vis

represents a class of vertices of Gvis. For two vertices u, v of Gvis in the same class we have

Λ(u) = ∅ ⇔ Λ(v) = ∅ for all label-sequences Λ. Furthermore, the classes with which the

vertices are associated repeat periodically along the boundary and in particular all classes

have the same size. We define a unique order between the classes and use a procedure similar

to the one in [6] to show that at least one of them forms a clique in Gvis. The idea is to

repeatedly “cut off” ears of the polygon, i.e. vertices whose neighbors on the boundary see

each other. Cutting off such an ear yields a subpolygon of P and we can repeat the process
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Figure 1 Left: cutting away a class of vertices (ears) from P to obtain P
′. Middle: visibility

graph Gvis of P. Right: minimum base graph G⋆

vis of Gvis. Dashed edges are in P but not in P
′.

on the subpolygon. However, the robot cannot operate on Gvis directly as it only has access

to G⋆
vis. The following lemma allows the robot to cut off an entire class of vertices at a time,

an operation that can be performed in G⋆
vis simply by deleting the corresponding vertex (and

adjusting the arc labels of its neighboring vertices).

◮ Lemma 2. Let v be an ear of P. Then every vertex in the same class as v is an ear of P.

As every polygon has at least one ear, the robot can thus “cut off” an entire class of P in

order to obtain a new and smaller polygon P ′ (cf. Figure 1). By removing the corresponding

vertex of G⋆
vis and updating the arc labels, it obtains a graph G′⋆

vis that is indistinguishable

from the visibility graph of P ′. If this process is repeated, always selecting the smallest

class with respect to the order relation for removal, eventually a situation is reached in

which only one (uniquely defined) class C⋆ remains. As the corresponding subpolygon must

again have at least one ear, by the above lemma the entire class C⋆ consists of ears and the

corresponding subpolygon thus is convex. A convex subpolygon is a clique in the original

visibility graph and we may conclude the following crucial theorem.

◮ Theorem 3. There is a uniquely defined class C⋆ in Gvis whose vertices form a clique.

While the robot could explicitly execute the procedure described above, finding the class

C⋆ can be done much more directly. If the number of self-loops of a vertex in G⋆
vis equals the

size of the corresponding class minus one, this class is a clique. It is thus enough to inspect

all classes in turn. Among all classes that form a clique, the largest class with respect to the

order relation must be C⋆. The previous theorem guarantees the existence of such a class.

This result also gives a robot the means to infer n from n̄: n is equal the size of C⋆ times

the number of classes in Gvis. To compute the size of C⋆, the robot can do the following.

Consider a vertex v in G∗
vis such that the number of self-loops incident to v is greater or

equal than the number of self-loops incident to any other vertex of G∗
vis. Then, the class C

corresponding to v is a clique and there are exactly |C| − 1 self-loops incident to v.

The above yields an algorithm for multiple robots to weakly meet: As C⋆ is unique, every

robot can determine C⋆ and then simply position itself on a vertex of C⋆. We get

◮ Theorem 4. Any number of robots in P can solve the weak-rendezvous problem.

Starting from the clique C⋆, we show that by sequentially “gluing” ears back to the

polygon, a robot can extend the initial clique and reconstruct the entire visibility graph step

by step. Every step relies on a recursive counting method that was first introduced in [3].

In order to know how to glue ears back on, the robot explicitly needs to construct C⋆ by

repeatedly cutting off ears and remember in which order the classes are cut off in the process.

◮ Theorem 5. A robot in P can solve the visibility graph reconstruction problem.

STACS’11
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4 Finding the minimum base graph G
⋆

vis

This section focuses on the problem of exploring a general, locally oriented directed graph

G = (V, E) with a robot. Again, we assume an upper bound n̄ on the number of vertices n

to be known and we do not impose a limitation on the memory of the robot. We prove a

generalization of Theorem 1 to general, locally oriented graphs.

Before we define the notion of the minimum base graph G⋆ of G we need to introduce a

few graph-theoretical concepts. First, given an arc e from vertex u to vertex v, we denote by

s(e) the source of arc e, i.e. the vertex u, and by t(e) the target of arc e, i.e. the vertex v.

Note that in the following we allow graphs to have parallel arcs between a pair of vertices. A

morphism µ : G → G′ from G to a graph G′ is a mapping from G to G′ that maps vertices

to vertices and arcs to arcs and maintains adjacencies and arc labels. More formally, if e

is an arc in G from u to v then s(µ(e)) = µ(u), t(µ(e)) = µ(v), and λ(e) = λ(µ(e)). An

opfibration ϕ : G → Ḡ with Ḡ =
(

V̄ , Ē
)

is a morphism such that for every arc ē ∈ Ē with

ū = s(ē) and for every vertex u ∈ ϕ−1(ū) in the preimage of ū there is a unique arc e with

source s(e) = u such that ϕ(e) = ē. We say that Ḡ is a base graph of G and G is a total

graph of Ḡ. Trivially, G is both its own base graph and total graph. If G has no base graph

smaller than itself, we say G is opfibration prime. An out-tree is a graph that has a root

vertex r such that there is exactly one directed walk from r to every other node.

We give the following properties without proof. For a detailed discussion, refer to [4].

◮ Proposition 6. Let ϕ : G → Ḡ be an opfibration. For every label-sequence Λ and every

vertex v ∈ V we have that Λ(v) 6= ∅ iff Λ(ϕ(v)) 6= ∅.

◮ Proposition 7. There is exactly one opfibration prime base graph of G. We call it the

minimum base graph of G and denote it with G⋆.

◮ Proposition 8. For every v ∈ V , there is a unique (but not necessarily finite) total graph

Hv of G that is an out-tree with root in ϕ−1(v), where ϕ is the opfibration mapping Hv to

G. We call it the universal total graph of G at v.

◮ Proposition 9. A graph is opfibration prime iff all its universal total graphs are distinct.

◮ Proposition 10. Two different opfibration prime graphs have different sets of universal

total graphs.

We can now show that if we have a local orientation, there is a label sequence of finite length

that can be used to distinguish any two opfibration prime graphs.

◮ Lemma 11. Let G1 = (V1, E1) , G2 = (V2, E2) be two distinct, locally oriented opfibration

prime graphs. There is a label-sequence δ of finite length for which δ(G1) = ∅ and δ(G2) 6= ∅

or vice versa.

Proof. We first show that (without loss of generality) there is a vertex x ∈ V1 such that for

every vertex v2 ∈ V2 there is a label-sequence δx,v2
of finite length with δx,v2

(x) 6= ∅ and

δx,v2(v2) = ∅ or vice versa. By Proposition 10, without loss of generality, there is a vertex

x ∈ V1 such that the universal total graph Hx of G1 at x is not a total graph of G2. Then

for every vertex v2 ∈ V2, Hx and the universal total graph Hv2
of G2 at v2 are different.

Because G1 and G2 are locally oriented, so are Hx and Hv2
. Let rx and rv2

be the roots of

Hx and Hv2
respectively. Because Hx, Hv2

are distinct and locally oriented, there is a finite

label-sequence δx,v2 with δx,v2(rx) 6= ∅ and δx,v2(rv2) = ∅ or vice versa. By Proposition 6

this implies δx,v2
(x) 6= ∅ and δx,v2

(v2) = ∅ or vice versa.



J. Chalopin, S. Das, Y. Disser, M. Mihalák, and P. Widmayer 159

We now describe how to use the above to obtain the desired label-sequence δ. We start

with the empty label-sequence δ(0) and iteratively extend it to a longer but still finite label-

sequence δ(i) in step i. Let A(i) :=
{

v ∈ V1|δ(i)(v) 6= ∅
}

and B(i) :=
{

v ∈ V2|δ(i)(v) 6= ∅
}

be the sets of vertices that are “compatible” with δ(i). As δ(i+1) extends δ(i), we have by

construction that A(i+1) ⊆ A(i) and B(i+1) ⊆ B(i). We show that our extension satisfies
(

A(i+1) ∪ B(i+1)
)

(
(

A(i) ∪ B(i)
)

in every step and that either δ(i+1)(G1) 6= ∅ or δ(i+1)(G2) 6=

∅. At some point we thus obtain a label-sequence δ for which exactly one graph has no

compatible vertices. It remains to show the existence of such an extension.

Let δ(i) be a finite label-sequence with δ(i)(G1) 6= ∅ or δ(i)(G2) 6= ∅. If A(i) = ∅ or

B(i) = ∅, we have either δ(i)(G1) = ∅ or δ(i)(G2) = ∅. We can thus set δ = δ(i) and are

done. So assume A(i) 6= ∅ and B(i) 6= ∅. Then, there are two vertices v1 ∈ A, v2 ∈ B.

Let p1 = δ(i)(v1), p2 = δ(i)(v2) and v′
1 be the target of p1 (i.e. the vertex at which p1

ends). As G1 is strongly connected, there is a path q from v′
1 to x, where x is defined as

above. Let π = λ(q) be the associated label-sequence and π+ = δ(i) ◦ π, where “◦” denotes

the concatenation of sequences. We certainly have π+(v1) 6= ∅ and thus π+(G1) 6= ∅. If

π+(v2) = ∅, we set δ(i+1) = π+ and have B(i+1) ( B(i). Otherwise let v′′
2 be the target of

π+(v2) (remember that x is the target of π+(v1)). Without loss of generality, we can set

δ(i+1) = π+ ◦ δx,v′′

2
. By definition of δx,v′′

2
, we have δ(i+1)(v1) 6= ∅ and δ(i+1)(v2) = ∅ or vice

versa. Thus A(i+1) ( A(i) or B(i+1) ( B(i) and hence
(

A(i+1) ∪ B(i+1)
)

(
(

A(i) ∪ B(i)
)

. ◭

◮ Theorem 12. A robot exploring G can determine G⋆ if it knows an upper bound n̄ on the

size of G.

Proof. We prove the theorem for the case when the robot knows n exactly and show later

how to generalize the approach to the case when only an upper bound n̄ on n is given.

By Proposition 7, G⋆ is unique. We will give an algorithm that maintains a finite set C of

graphs that is always guaranteed to contain G⋆. In every step our algorithm will rule out at

least one member of C, until there is only one left. This graph will then be G⋆. Throughout

the algorithm, we denote by πhist the label-sequence associated with the walk along which

the robot has travelled so far and by vhist the target of the walk. As G is locally oriented,

πhist together with the initial starting location of the robot uniquely corresponds to this walk

in G. The walk however is not explicitly known to the robot as it neither knows G nor its

starting location.

We start by setting C to contain all opfibration prime graphs of size at most n. In every

step let G1 be a graph of minimum size in C and G2 be a graph of minimum size in C\ {G1}

(if C\ {G1} = ∅, we are done and set G⋆ = G1). We now describe how to discard either G1

or G2 from C.

By Lemma 11, there is a label-sequence δ for which δ(G1) = ∅ and δ(G2) 6= ∅ or vice

versa. The robot can determine the shortest such label-sequence δ simply by enumerating all

possible label-sequences in order of increasing lengths and checking for each in turn whether

it has the desired property. Without loss of generality assume δ(G1) = ∅ and δ(G2) 6= ∅.

The robot does not explicitly know G nor where in G it was initially located. It thus iterates

over all candidate graphs G′ = (V ′, E′) of size n and all vertices v′ ∈ V ′ (again there are

only finitely many choices). For every choice of G′, let Π(G′) be the set of all label-sequences

associated to walks in G′ that have the same length as δ. It is easy to see that there is

a label-sequence π of finite length in G′ for which π(vhist(v
′)) 6= ∅ and which contains all

label-sequences in Π(G′) as a subsequence. The robot follows this label-sequence (because of

local orientation, every decision is unique) either until is reaches its end, or until it cannot

anymore because there is no arc of the required label emanating from its current vertex.
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As we iterate over every choice of G′ and v′, we are sure to reach G and the robot’s

initial starting location at some point in the process. We can thus be sure that in the end

πhist contains all label-sequences associated to walks in G with the same length as δ as a

substring, and of course conversely all substrings of πhist of that length are label-sequences of

walks in G. It remains to check whether πhist contains δ as a substring. If yes, we discard G1

from C and otherwise we discard G2. We can do this because δ(G1) = ∅ and δ(G2) 6= ∅ and

because by Proposition 6, any valid choice for G⋆ must have the same set of label-sequences

as G. We then continue with new choices for G1 and G2. After a finite number of steps C

will only contain one graph which is a valid choice for G⋆. This concludes the proof.

Observe now that if only an upper bound n̄ on n is given, the algorithm can easily be

adapted to find G⋆ in the same way by iterating over all graphs G′ of size at most n̄ for

every pair of graphs G1, G2. ◭

We obtain Theorem 1 immediately by applying Theorem 12 to Gvis. Note that the results

of this section are not restricted to visibility graphs.

5 Identifying the clique C
⋆

In this section we study structural properties of G⋆
vis = (V ⋆, E⋆) which we later use to show

Theorem 3.

Let ϕ : Gvis → G⋆
vis be the opfibration from Gvis to G⋆

vis. As G⋆
vis is the minimum base of

Gvis, ϕ is unique. Every vertex v⋆ of G⋆
vis corresponds to a set of vertices of Gvis. We write

Cv⋆ := ϕ−1(v⋆) ⊆ V and say Cv⋆ is the class of v⋆. For all v ∈ ϕ−1(v⋆), we set Cv := Cv⋆ .

From the definition of opfibrations it follows that every two vertices u, v of the same class Cu

have the same degree d and that due to local orientation we have Cvisu(i) = Cvisv(i) for all

1 ≤ i ≤ d. We may thus write Cu(i) := Cvisu(i). Finally, we define B :=
(

Cv0 , Cv1 , . . . , Cvn−1

)

to be the sequence in which the classes appear along the boundary.

As G⋆
vis is opfibration prime, by Proposition 9 every vertex has its unique universal total

graph. We use this and define a natural order O on the vertices of G⋆
vis and thus on the

classes of Gvis.

◮ Lemma 13. The sequence B is periodical with period |V ⋆| and thus all classes have the

same size.

Proof. The image of the boundary under ϕ consists of n/|V ⋆| copies of a Hamiltonian cycle

of G⋆
vis. Hence B is periodical with period |V ⋆| and all classes have the size n/|V ⋆|. ◭

We show that if a vertex from some class is an ear, then every vertex of the class is an

ear. Recall that an ear of Gvis is a vertex vi ∈ V for which vi−1 and vi+1 see each other. We

will need the following property of the shortest curve between two vertices of P.

◮ Theorem 14 ([11]). Let s, t ∈ V . There is a unique shortest curve p from s to t that lies

in P. This curve is a chain of straight-line segments connected at reflex vertices of P, and

the two line segments at any vertex of p form a reflex angle. We say p is the (euclidean)

shortest path in P between s and t.

◮ Lemma 15. Let |V ⋆| > 2 and vx, vy ∈ V such that Cvx
(2) = Cvy

and Cvy
(−2) = Cvx

.

Then, Cvx+2
= Cvy

and every vertex in Cvx+1
is an ear.

Proof. We start by observing that for all vi ∈ V with visvisvi
(2)(−2) = vi we have visvi

(2) =

vi+2 and thus vi+1 is an ear. For the sake of contradiction assume visvisvi
(2)(−2) = vi but
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Figure 2 Visualisation of the “zig-zag” sequence Z. As Z does not self-intersect, there is a point

l0 from which on Z’s entries do not change anymore. There are two cases how this point is reached:

either u(l0−1) is distinct from u(l0) (left) or both are the same (right).

visvi
(2) 6= vi+2. Consider the subpolygon induced by chain(vi, visvi

(2)). This subpolygon has

at least four vertices as visvi
(2) /∈ {vi+1, vi+2}. In the visibility graph of the subpolygon, vi

and visvi
(2) are neighbors on the boundary and both have degree two, which is a contradiction

to the fact that every polygon must admit a triangulation. Therefore visvi
(2) = vi+2 and

vi+1 is an ear as its neighbors on the boundary see each other.

Because of the above observation, it is sufficient to show that for every v ∈ Cvx
we have

visvisv(2)(−2) = v. For the sake of contradiction assume in the following that there is a vertex

u(0) ∈ Cvx
with visvis

u(0) (2)(−2) 6= u(0).

We define an infinite sequence Z =
(

u(0), v(1), u(1), v(2), . . .
)

by v(l) := visu(l−1)(2) and

u(l) := visv(l)(−2) for all l > 0. Obviously u(l) ∈ Cvx
, v(l) ∈ Cvy

for all l ≥ 0. Intuitively, Z is

the zig-zag line obtained by alternatingly travelling along the first and the last non-boundary

arc in ccw order, starting at u(0). It is immediate to see that for any fixed index l′ ≥ 0 we

have u(l), v(l) ∈ chain(u(l′), v(l′)) for all l ≥ l′. Hence the part of the boundary in which these

vertices lie becomes smaller and smaller and from some index l0 ≥ 0 on we have u(l) = u(l0)

and v(l) = v(l0) for all l ≥ l0 (we set l0 to be the smallest such index). Let 0 ≤ i, j < n such

that vi = u(l0), vj = v(l0). We then have visvi
(2) = vj and visvisvi

(2)(−2) = vi. Thus by the

above observation, vi+1 is an ear and vj = vi+2. As vi ∈ Cvx
and vj ∈ Cvy

, this implies

Cvx+2 = Cvy
. It remains to show that every vertex in Cvx+1 is an ear.

We have to consider two cases. Either u(l0−1) is distinct from u(l0) or it is the same vertex

(cf. Fig. 2). We assume u(l0−1) 6= u(l0) and omit the discussion of the second case which is

essentially analogous. Let 0 ≤ k < n such that vk = u(l0−1). As visvk
(2) = vi+2, we have

that vk does not see any vertex in chain(vk+2, vi+1) (note that this chain is not empty as

vk 6= vi) and thus as vk+1 ∈ Cvx+1
is in the same class as (the ear) vi+1, the interior angle of

the polygon at vk+1 is strictly smaller than π. For geometrical reasons (cf. Fig. 3) no vertex

in chain(vi+3, vk) can see any vertex in chain(vk+2, vi+1). Let X ⊂ Cvx
be the set of vertices

of Cvx
in chain(vi+3, vk) and let Y ⊂ Cvy

be the set of vertices of Cvy
in chain(vi+3, vk).

As |V ⋆| > 2, Cvx
, Cvx+1 , Cvx+2 are all different and thus X and Y are disjoint. Note that

because B is periodical with period |V ⋆| (Lemma 13) we have |X| = |Y | + 1.

We define the (undirected) bipartite graph Bxy =
(

Cvx
∪ Cvy

, Exy

)

with the edge-set

Exy =
{

{u, v} ∈ Cvx
× Cvy

| (u, v) ∈ E
}

. In Bxy all vertices need to have the same degree d

as |Cvx
| =

∣

∣Cvy

∣

∣ and all vertices in either class have the same degree. We have |X| = |Y | + 1,

we have that vertices in X can only have edges to vertices in Y ∪ {vi+2} and that vertices

in Y can only have edges to vertices in X. For all vertices to have the same degree, vi+2

cannot have any edges leading to Cvx
\X. This is a contradiction to the fact that vi+2 sees

vi which is not in chain(vi+3, vk) and thus not in X. ◭

STACS’11



162 Telling convex from reflex allows to map a polygon

Figure 3 No vertex in chain(vi+3, vk) can see any vertex in chain(vk+2, vi+1).

We can now consider arbitrary values of |V ⋆| and prove Lemma 2.

Proof of Lemma 2. In the following we let vi ∈ V be an ear and show that all vertices in

Cvi
are ears.

First consider the case |V ⋆| > 2. As (vi−1, vi+1) ∈ E, we have visvi−1
(2) = vi+1 and

visi+1(−2) = vi−1, and thus Cvi−1
(2) = Cvi+1

and Cvi+1
(−2) = Cvi−1

. By Lemma 15 all

vertices in Cvi
are ears. Now consider the case |V ⋆| = 1. In that case as vi is convex, so are

all vertices in Cvi
, as convexity is encoded in the arc-labeling. As |V ⋆| = 1, this means that

the polygon is convex and thus all vertices are ears.

It remains to consider the case |V ⋆| = 2. Let Cvj
6= Cvi

be the second class in Gvis.

Again, vi is convex and thus all vertices in Cvi
are. For the sake of contradiction assume that

there is a vertex vx ∈ Cvi
which is not an ear. Then vx−1 and vx+1 do not see each other,

and by Lemma 13, vx−1, vx+1 ∈ Cvj
. Let p be the shortest path in P between vx−1 and

vx+1. By Theorem 14, all vertices on p are reflex. This means that all vertices on p must be

from Cvj
and thus all vertices of Cvj

must be reflex. Moreover, every vertex u in Cvj
has two

neighbors u′, u′′ in Cvj
such that the angle between (u, u′) and (u, u′′) is reflex. If we cut off

vi from P , we do not affect this property (every vertex u in Cvj
still has two neighbors from

Cvj
forming a reflex angle) and we thus obtain a new polygon in which all vertices in Cvj

are still reflex. We can continue to obtain smaller and smaller subpolygons by selecting ears

and cutting them off, maintaining the property that all vertices in Cvj
are reflex. Thus, in

this process, we never cut off a vertex of Cvj
. This is a contradiction, as every polygon has

at least one ear and thus the above process has to cut off all vertices eventually. ◭

Lemma 2 allows us to employ the following procedure repeatedly until only one class C⋆

remains: In step i, select the class C(i) which is smallest w.r.t. the order O among all classes

of ears. We remove C(i) from the polygon by deleting the corresponding vertex from G⋆
vis

and updating the arc labels of its neighborhood accordingly. Removing class C(i) in that way

produces a (not necessarily minimum) base graph of the visibility graph of the subpolygon

obtained by cutting off all ears in C(i). In the next step we effectively consider this new

polygon which again has to have at least one ear, and we are guaranteed to again have at

least one class that contains only ears. Note that the above procedure does not require the

base graph on which it operates in each step to be minimum. We start with the minimum

base graph G⋆
vis because it is the only base graph of Gvis the robot can infer at all.

If we repeat our procedure |V ⋆| − 1 times, we are left with a single class C(|V ⋆|) = C⋆ and

a sequence
(

C(1), C(2), . . . , C(|V ⋆|−1)
)

which is fixed by our order relation O. As C⋆ again

corresponds to a subpolygon and thus must contain at least one ear, every vertex in C⋆ must

be an ear. Therefore the corresponding subpolygon is convex and C⋆ forms a clique in Gvis.

This proves Theorem 3.



J. Chalopin, S. Das, Y. Disser, M. Mihalák, and P. Widmayer 163

The existence of a clique gives us a way of computing n from n̄ using G⋆
vis. By Lemma 13

we have n = |V ⋆| · |C|, where C is any class of Gvis. If we inspect the number of self-loops of

every vertex of G⋆
vis, we are sure to encounter at least one clique, and thus |C| is equal to

the maximum number of self-loops plus one.

By Theorem 1, a robot can determine G⋆ in finite time. It thus can execute the above

procedure and we obtain

◮ Theorem 16. A robot in P can determine the sequence C =
(

C(1), C(2), . . . , C(|V ⋆|)
)

, where

C is the lexicographically smallest sequence such that for every 1 ≤ i ≤ |V ⋆|, all vertices in

C(i) are ears in the subpolygon obtained by removing all vertices in
⋃i−1

j=1 C(j) from P.

6 Reconstructing the visibility graph

In the following, we assume that the robot has already determined G⋆
vis and the sequence

C =
(

C(1), C(2), . . . , C(|V ⋆|−1), C(|V ⋆|)
)

from Theorem 16. For all 1 ≤ i ≤ |V ⋆| we denote

by G
(i)
vis =

(

V (i), E(i)
)

the subgraph of Gvis induced by
⋃|V ⋆|

j=i C(j). By definition of C, G
(i)
vis

is the visibility graph of a subpolygon of P, and we denote this subpolygon by P(i). As

C(|V ⋆|) = C⋆, by Lemma 13 we have that G
(|V ⋆|)
vis is the complete graph on n/|V ⋆| vertices.

Together with the following lemma, this suggests a way of reconstructing Gvis = G
(1)
vis .

◮ Lemma 17. Let 1 ≤ i < |V ⋆|. It is possible to determine G
(i)
vis from G

(i+1)
vis .

Proof. The set of vertices V (i) of G
(i)
vis is given by V (i) = C(i) ∪ V (i+1). It remains to show

how to construct E(i). Let A be the set of arcs in Gvis between vertices of C(i) and V (i+1),

and B be the set of arcs between vertices of C(i). We will first show how to construct A using

the information contained in G
(i+1)
vis and G⋆

vis. After having determined A, we can apply the

same approach in order to obtain B. This completes the proof as E(i) = E(i+1) ∪ A ∪ B.

Note that every arc in Gvis has a counterpart of opposite orientation. In order to construct

A it is thus sufficient to consider e ∈ V (i+1) × C(i) and show how to decide whether e ∈ A or

e /∈ A. Deciding which elements of C(i) × V (i+1) are in A is then immediate. Equivalently,

we can consider vj ∈ V (i+1) with degree d in G
(i)
vis and 1 ≤ k ≤ d such that visvj

(k) ∈ C(i),

and show how to “identify” visvj
(k), i.e. how to find x with vx = visvj

(k). If k = 1, we

have x = j + 1 and if k = d, we have x = j − 1 because vj sees its two neighbors on the

boundary. Now assume 1 < k < d. We will show that vy := visvj
(k − 1) /∈ C(i). For the

sake of contradiction assume that vy ∈ C(i). In P(i) all vertices of C(i) are ears and thus

convex. By Lemma 13 and i < |V ⋆|, there is more than one class and thus there is a vertex

vz ∈ chain(vy+1, vx−1) which is not visible to vj . The shortest path in P from vj to vz must

visit vx or vy, which is a contradiction to both vertices being convex (Theorem 14). We

can deduce that vy /∈ C(i) and thus (vj , vy) ∈ E(i+1) is part of G
(i+1)
vis and has already been

identified, i.e. the index y is known. Because of Lemma 13, it is sufficient to know how

many vertices of C(i) are in chain(vy+1, vx−1) in order to find x itself. From the labeling

of G⋆
vis we can deduce how many vertices of C(i) are in chainvy

(vy+1, vx−1) (recall that

chainvy
(vy+1, vx−1) only contains vertices visible to vy): As vx is convex and thus cannot lie

on a shortest path in P from vj to another vertex of C(i), the first arc in ccw order from vy to

a vertex of C(i) that forms a convex angle with (vy, vj) must be (vy, vx) as the target of the

arc must be visible to vj . It is thus sufficient to count the number of arcs from vy to vertices

of C(i) before (vy, vx) in ccw order. We say the corresponding vertices are hidden from vj by

vy. We still need a way to find the number of vertices of C(i) in chain(vy+1, vx−1) that are

not visible to vy. We can find this number by repeating our counting method recursively.
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For every vertex vl ∈ chainvy
(vy+1, vx−1) \C(i) (in G

(i)
vis), we count all vertices of C(i) hidden

from vy by vl. As the vertices in C(i) are convex, they cannot hide any vertices from vy.

The sum of all these counts finally gives the number of vertices of C(i) in chain(vy+1, vx−1).

Together with Lemma 13 this number immediately yields the index x. The recursive counting

method described above was first introduced in a similar setting where robots are allowed to

retrace their movements [3]. Refer to [3] for a detailed proof of its correctness.

Using the fact that the arcs in A have already been identified, we can apply the exact

same approach to construct B. ◭

Theorem 5 follows directly from Theorem 16, Lemma 17 and the fact that G(|V ⋆|) is the

complete graph on n/|V ⋆| vertices.
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