
HAL Id: hal-00573617
https://hal.science/hal-00573617

Submitted on 5 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Exact and Approximation Algorithms for the Star
Packing Problem in Undirected Graphs

Maxim Babenko, Alexey Gusakov

To cite this version:
Maxim Babenko, Alexey Gusakov. New Exact and Approximation Algorithms for the Star Pack-
ing Problem in Undirected Graphs. Symposium on Theoretical Aspects of Computer Science
(STACS2011), Mar 2011, Dortmund, Germany. pp.519-530. �hal-00573617�

https://hal.science/hal-00573617
https://hal.archives-ouvertes.fr

New Exact and Approximation Algorithms for the

Star Packing Problem in Undirected Graphs

Maxim Babenko1 and Alexey Gusakov2

1 Moscow State University, Yandex

maxim.babenko@gmail.com

2 Moscow State University, Google

agusakov@gmail.com

Abstract

By a T -star we mean a complete bipartite graph K1,t for some t ≤ T . For an undirected

graph G, a T -star packing is a collection of node-disjoint T -stars in G. For example, we get

ordinary matchings for T = 1 and packings of paths of length 1 and 2 for T = 2. Hereinafter we

assume that T ≥ 2.

Hell and Kirkpatrick devised an ad-hoc augmenting algorithm that finds a T -star packing

covering the maximum number of nodes. The latter algorithm also yields a min-max formula.

We show that T -star packings are reducible to network flows, hence the above problem is

solvable in O(m
√

n) time (hereinafter n denotes the number of nodes in G, and m — the number

of edges).

For the edge-weighted case (in which weights may be assumed positive) finding a maximum

T -packing is NP-hard. A novel 9
4

T
T +1 -factor approximation algorithm is presented.

For non-negative node weights the problem reduces to a special case of a max-cost flow. We

develop a divide-and-conquer approach that solves it in O(m
√

n log n) time. The node-weighted

problem with arbitrary weights is more difficult. We prove that it is NP-hard for T ≥ 3 and is

solvable in strongly-polynomial time for T = 2.

1998 ACM Subject Classification G.2.2 Graph algorithms, G.1.2 Minimax approximation and

algorithms

Keywords and phrases graph algorithms, approximation algorithms, generalized matchings,

flows, weighted packings.

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.519

1 Introduction

1.1 Preliminaries

Recall the classical maximum matching problem: given an undirected graph G the goal is

to find a collection M (called a matching) of node-disjoint edges covering as many nodes

as possible. Motivated by this definition, one may consider an arbitrary (possibly infinite)

collection of undirected graphs G, called allowed, and ask for a collection M of node-disjoint

subgraphs of G (not necessarily spanning) such that every member of M is isomorphic to

some graph in G. Let the size of M be the total number of nodes covered by the elements

of M. The generalized matching problem [8] asks for a G-matching of maximum size.

Clearly, the tractability of the generalized problem depends solely on the choice of G.

The case when all graphs in G are bipartite was investigated by Hell and Kirkpatrick [8].

Roughly speaking, in this case the maximum G-matching problem is NP-hard unless G =

© Maxim Babenko, Alexey Gusakov;
licensed under Creative Commons License NC-ND

28th Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr; pp. 519–530

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.519
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

520 New Exact and Approximation Algorithms for the Star Packing Problem

{K1,1, . . . , K1,T } for some T ≥ 1. (For a precise statement, see [8, Sec. 4].) This is exactly

the case we study throughout the paper.

◮ Definition 1. A T -star is a graph K1,t for some 1 ≤ t ≤ T . For an undirected graph G, a

T -star packing in G is a collection of node-disjoint subgraphs in G (not necessary spanning)

that are isomorphic to some T -stars.

Since 1-star packings are just ordinary matchings and are already extensively studied

(see, e.g., [14]), we restrict our attention to the case T ≥ 2.

The max-size T -star packing problem was addressed in [13, 1, 8] and others. An O(mn)-

time ad-hoc augmenting path algorithm (hereinafter n := |V G|, m := |EG|) and a min-max

formula are known. In [8] it is noted that a faster O(m
√

n)-time algorithm can be derived

using the blocking augmentation strategy (see [2, 9]), but we are not aware of any publicly

available exposition. A more restrictive variant of the problem, where the stars are required

to be node-induced subgraphs, is presented in [12]. An extension to node capacities is given

in [15].

1.2 Our Contribution

This paper presents an alternative treatment of T -star packings that is based on network

flows. In Section 2 we show how the max-size T -star packing problem reduces to finding a

max-value flow in a digraph with O(n) nodes and O(m) arcs. This immediately implies an

O(m
√

n)-time algorithm for the max-size T -star packing problem.

The above reduction serves two purposes. Firstly, it mitigates the need for ad-hoc tricks

and fits star packings into a widely studied field of network flows. Secondly, this reduction

provides interesting opportunities for attacking other optimization problems that are related

to T -star packings.

Let G be an edge-weighted graph and the goal is to find a T -star packing such that the

sum of weights of edges belonging to stars is maximum. This problem is NP-hard and in

Section 3 we present a 9
4

T
T +1 -factor approximation algorithm, which is based on max-cost

flows.

Finally let G be a node-weighted graph and the objective function is the sum of weights of

nodes covered by stars. This case is studied in Section 4. For non-negative weights, a divide-

and-conquer approach yields a nice O(m
√

n log n)-time algorithm. For general weights, the

complexity of the resulting problem depends on T . For T = 2, we give a strongly-polynomial

algorithm that employs bidirected network flows. If T ≥ 3, the problem is NP-hard.

2 Reduction to Network Flows

2.1 Auxiliary Digraphs

In this section we explain the core of our approach that relates star packings to network

flows. We employ some standard graph-theoretic notation throughout the paper. For an

undirected graph G we denote its sets of nodes and edges by V G and EG, respectively. For

a directed graph we speak of arcs rather than edges and denote the arc set of G by AG. A

similar notation is used for paths, trees, and etc.

For U ⊆ V G, the set of arcs entering (respectively leaving) U is denoted by δin
G (U) and

δout
G (U). Also, γG(U) denotes the set of arcs (or edges) with both endpoints in U and G[U]

denotes the subgraph of G induced by U , i.e. G[U] = (U, γG(U)). When the (di-)graph is

Maxim Babenko and Alexey Gusakov 521

clear from the context, it is omitted from notation. Also for a function ϕ : U → R and a

subset U ′ ⊆ U , let ϕ(U ′) denote
∑

u∈U ′ ϕ(u).

Let, as earlier, G be an undirected graph and T ≥ 2 be an integer. Replace each edge

in G by a pair of oppositely directed arcs and denote the resulting digraph by
−→
G . The

following definition is crucial:

◮ Definition 2. A subset of arcs F ⊆ A
−→
G is called T -feasible if for each node v ∈ V G at

most T arcs in F leave v and at most one arc in F enters v.

The above T -feasible arc sets are equivalent to T -star packings in the following sense:

◮ Theorem 3. The maximum size of a T -feasible arc set in G is equal to the maximum size

of a T -star packing. Moreover, given a T -feasible arc set F one can turn it in linear time

into a T -star packing of size at least |F |.

Before presenting the proof of Theorem 3, let us explain how a max-size T -feasible arc

set size can be found. To this aim, split each node v ∈ V
−→
G into two copies, say v1 and v2.

Each arc (u, v) ∈ A
−→
G is transformed into an arc (u1, v2). Two auxiliary nodes are added:

a source s that is connected to every node v1, v ∈ V
−→
G , by arcs (s, v1), and a sink t that

is connected to every node v2, v ∈ V
−→
G , by arcs (v2, t). We endow each arc (s, v1) with

capacity equal to T , each arc (v2, t) with unit capacity, and the remaining arcs with infinite

capacities. The resulting digraph is denoted by H.

We briefly remind the basic terminology and notation on network flows (see, e.g., [5, 18]

and [16, Ch. 10]). Let Γ be a digraph with a distinguished source node s and a sink node t.

The nodes in V Γ − {s, t} are called inner. Let u : AΓ → Z+ be integer arc capacities.

◮ Definition 4. An integer u-feasible flow (or just feasible flow if capacities are clear from

the context) is a function f : AΓ → Z+ such that: (i) f(a) ≤ u(a) for each a ∈ AΓ; and

(ii) divf (v) = 0 for each inner node v.

Here divf (v) := f(δout(v)) − f(δin(v)) denotes the divergence of f at v. The value of f is

val(f) := divf (s). A max-value feasible integer flow can be found in strongly polynomial

time (see [18] and [16, Ch. 10]).

Let f is a feasible integer flow in H (regarded as a network with a source s, a sink t, and

capacities u). Then f(u1, v2) ∈ {0, 1} for each (u, v) ∈ A
−→
G , since at most one unit of flow

may leave v2. (Hereinafter we abbreviate f((u, v)) to f(u, v).) Define

F :=
{

(u, v) ∈ A
−→
G | f(u1, v2) = 1

}

.

Then the u-feasibility of f implies the T -feasibility of F . Moreover, this correspondence

between u-feasible integer flows f and T -feasible arc sets F is one-to-one.

The augmenting path algorithm of Ford and Fulkerson [5] computes a max-value flow

in H in O(mn) time. Applying blocking augmentations [9, 2], the latter bound can be

improved to O(m
√

n). (In fact for networks of the above “bipartite” type, one can prove

the bound of O(m
√

∆). Here ∆ := min(∆s, ∆t), ∆s is the sum of capacities of arcs leaving

s, and ∆t is the sum of capacities of arcs entering t.)

Therefore by Theorem 3, a maximum T -star packing can be found in O(m
√

n) time.

(The clique compression technique [4] implies a somewhat better time bound; however, the

speedup is only sublogarithmic.)

STACS’11

522 New Exact and Approximation Algorithms for the Star Packing Problem

2.2 Proof of Theorem 3

The proof consists of two parts. For the easy one, let P be a T -star packing in G. To

construct a T -feasible arc set F , take every star S ∈ P. Let v be its central node (i.e. a

node of maximum degree) and u1, . . . , ut be its leafs (i.e. the remaining nodes). For S = K1,1

the notion of a central node is ambiguous but any choice will do. Add arcs (v, u1), . . . , (v, ut)

and also (u1, v) to F . Clearly F is T -feasible and its size coincides with the number of nodes

covered by P.

The reverse reduction is more involved. Consider a T -feasible arc set F . Then F decom-

poses into a collection of node-disjoint weakly connected components. We deal with each of

these components separately and construct a T -star packing P of size at least |F |. Let Q

be one of the above components. One can easily see that two cases are possible:

Case I: Q forms a directed out-tree T where each node has at most T children and the

arcs are directed towards leafs. The following pruning is applied iteratively to T . Pick an

arbitrary leaf u1 in T of maximum depth, let v be the parent of u1 and u2, . . . , ut be the

siblings of u1. Clearly t ≤ T . Remove nodes v, u1, . . . , ut together with incident arcs from

T and add to P a copy of K1,t, where v is its center and u1, . . . , ut are the leafs. Repeat the

process until T is empty or consists of a single node (the root r). Each time a star covering

t + 1 nodes is added to P, either t + 1 (if u 6= r) or t (if u = r) arcs are removed from T . At

the end one gets a T -star packing of size at least |AQ| nodes, as required.

Case II: Q consists of a directed cycle Ω and a number (possibly zero) of directed out-

trees attached to it (see Fig. 1(a) for an example). Let g0, . . . , gl−1 be the nodes of Ω (in the

order of their appearance on the cycle). For i = 0, . . . , l − 1, let Ti be the directed out-tree

rooted at gi in Q. (If no tree is attached to gi, then we regard Ti as consisting solely of its

root node gi.) Each node in the latter trees has at most T children, and the roots of these

trees have at most T −1 children. We process the trees T0, . . . , Tl−1 like in Case I and obtain

a partial packing P. Our final task is to modify P to satisfy the following condition: each

node v ∈ V Q that has an incoming arc in F is covered by a star in P. So far, the above

condition is only violated for nodes in Ω that are not covered by P.

Two subcases are possible. First, suppose that all nodes of Ω are not covered. Then one

can cover Ω by a collection of node-disjoint (and also disjoint from P) paths of lengths 1

and 2. Adding these paths to P finishes the job. (Note that this is exactly where we use

the condition T ≥ 2.)

Second, suppose that Ω contains both covered and not covered nodes. Let gi, . . . , gj be

a maximal consecutive segment of uncovered nodes, i.e. gi−1 and gj+1 are covered (indices

are taken modulo l). If j − i is odd, then adding (j − i+1)/2 disjoint copies of K1,1 covering

gi, . . . , gj completes the proof. Otherwise let j − i be even. Recall that gi−1 is covered by

some star S ∈ P and gi−1 is its central node. Since the degree of gi−1 in S is at most T − 1,

one can augment S by adding a new leaf gi. This way gi gets covered and the case reduces

to the previous one. An example is depicted in Fig. 1(b).

Clearly F can be converted into P in linear time. ◭

3 Edge-Weighted Packings

3.1 Hardness

Consider arbitrary edge weights w : EG → Q and let the edge weight w(S) of a star S be

the sum of weights of its edges. In this section we focus on finding a T -star packing P that

maximizes w(P) :=
∑

S∈P
w(S). Allowing negative edge weights is redundant since such

Maxim Babenko and Alexey Gusakov 523

(a) Set F . (b) Packing P.

Figure 1 Transforming F into P (T = 2).

edges may be removed from G without changing the optimum. Therefore we assume that

edge weights are non-negative.

◮ Theorem 5. The problem of deciding, for given G, T , w, and λ ∈ Q+, if G contains a

T -star packing of edge weight at least λ, is NP-hard even in the all-unit weight case.

Proof. It is known (see, e.g. [8]) that deciding if G admits a perfect (i.e. covering all the

nodes) G-matching is NP-hard for G = {K1,T }. We reduce the latter to the edge-weighted

T -star packing problem as follows. If |V G| is not divisible by |T | + 1, then the answer is

negative. Otherwise set w(e) := 1 for all e ∈ EG. A T -star packing P obeys w(P) = nT
T +1

if and only if all stars in P are isomorphic to K1,T . Hence solving the edge-weighted T -star

packing problem enables to check if G has a perfect G-matching. ◭

3.2 Approximation

We show how to compute, in strongly-polynomial time, a T -star packing P such that w(P) ≥
OPT · 4

9
T +1

T
, where OPT denotes the maximum weight of a T -star packing in G. Let us

extend the weights from G to
−→
G , i.e. define w(u, v) := w(v, u) := w(e) for e = {u, v} ∈ EG.

Let OPT′ be the maximum weight of a T -feasible arc set in
−→
G .

◮ Lemma 6. OPT′ ≥ OPT · T +1
T

.

Proof. Fix a max-weight packing of T -stars POPT. Consider a star S ∈ POPT, and let

e1 = {u, v1}, . . . , et = {u, vt} be the edges forming S (t ≤ T). We may assume that e1 is a

maximum-weight edge (among e1, . . . , et).

Consider the arc set {(u, v1), (v1, u), (u, v2), (u, v3), . . . , (u, vt)} (i.e. e1 generates a pair

of opposite arcs while the other edges — just a single one). Taking the union of all these

arc sets one gets a T -feasible arc set F obeying w(F) ≥ ∑

S∈P

T +1
T

w(S) = OPT · T +1
T

, as

claimed. ◭

Applying the correspondence between feasible integer flows in H and T -feasible arc sets

and regarding arc weights as costs, a max-weight T -feasible arc set F can be found by

a max-cost flow algorithm in strongly-polynomial time, see [18, Sec. 8.4]. (For arc costs

c : AH → Q and a flow f in H, the cost of f is c(f) :=
∑

a c(a)f(a).)

We turn F into a T -star packing P obeying w(P) ≥ 4
9 w(F) as follows. Consider the

weakly-connected components of F and perform a case splitting similar to that in the proof

STACS’11

524 New Exact and Approximation Algorithms for the Star Packing Problem

of Theorem 3. For each component Q, we extract a T -star packing PQ covering some nodes

of Q such that w(PQ) ≥ 4
9 w(Q) and then take the union P :=

⋃

Q PQ.

Case I: Q is a directed out-tree T rooted at a node r. Call an arc (u, v) in T even

(respectively odd) if the length of the r–u path in T is even (respectively odd). Let E0

(respectively E1) denote the set of edges (in G) corresponding to even (respectively odd)

arcs of T . Sets E0 and E1 generate T -star packings P0 and P1 in G. Choose from these a

packing with the largest weight and denote it by PQ. Then w(PQ) ≥ 1
2

(

w(P0) + w(P1)
)

=
1
2 w(Q) ≥ 4

9 w(Q).

Case II: Q is a directed cycle Ω with a number of out-trees attached to it. Let g0, . . . , gl−1

be the nodes of Ω (numbered in the order of their appearance) and T0, . . . , Tl−1 be the

corresponding trees (Ti is rooted at gi, i = 0, . . . , l − 1).

Subcase II.1: l is even. Choose an arbitrary node r on Ω and label the arcs of Q as

even and odd as in Case I. (Note that for any node v in Q, there is a unique simple r–v path

in Q.) This way, a T -star packing PQ obeying w(PQ) ≥ 1
2 w(Q) ≥ 4

9 w(Q) is constructed.

Subcase II.2: l is odd. We construct a collection of 3l packings (each covering a subset

of nodes of Q) of total weight at least 3l−1
2 w(Q). To this aim, label the arcs of T0, . . . , Tl−1

as even and odd like in Case I (starting from their roots). For i = 0, . . . , l − 1, let E0
i

(respectively E1
i) be the set of edges (in G) corresponding to even (respectively odd) arcs

of Ti. Also let ei = {gi, gi+1} be the i-th edge of Ω (hereinafter indices are taken modulo l).

Consider the (edge sets of the) following l packings (taking i = 0, . . . , l − 1):

{ei, ei+1} ∪ {ei+3, ei+5, . . . , ei+l−2} ∪
(E1

i ∪ E1
i+1 ∪ E1

i+2) ∪ (E0
i+3 ∪ E1

i+4) ∪ (E0
i+5 ∪ E1

i+6) ∪ . . . ∪ (E0
i+l−2 ∪ E1

i+l−1).

Also consider the (edge sets of the) following 2l packings (taking each value i = 0, . . . , l − 1

twice):

{ei+1, ei+3, ei+5, . . . , ei+l−2} ∪
E0

i ∪ (E0
i+1 ∪ E1

i+2) ∪ (E0
i+3 ∪ E1

i+4) ∪ . . . ∪ (E0
i+l−2 ∪ E1

i+l−1).

By a straightforward calculation, one can see that the total weight of these 3l packings is

3l − 1

2

l
∑

i=0

w(ei) +
3l − 1

2

l
∑

i=0

w(E0
i) +

3l + 1

2

l
∑

i=0

w(E1
i) ≥

3l − 1

2

(

l
∑

i=0

w(ei) +

l
∑

i=0

w(E0
i) +

l
∑

i=0

w(E1
i)

)

=
3l − 1

2
w(Q).

Choosing a max-weight packing PQ among these 3l instances, one gets w(PQ) ≥ 1
3l

·
3l−1

2 w(Q) ≥ 4
9 w(Q) (since l ≥ 3), as claimed.

The above postprocessing converting F into P can be done in strongly-polynomial time.

Together with Lemma 6 this proves the following:

◮ Theorem 7. A 9
4

T
T +1 -factor approximation to the edge-weighted T -star packing problem

can be found in strongly polynomial time.

4 Node-Weighted Packings

4.1 General Weights

Now consider a node-weighted counterpart of the problem. Let w : V G → Q be node weights,

and let the weight of a T -star packing P be the sum of weights of nodes covered by P.

Maxim Babenko and Alexey Gusakov 525

Now one cannot freely assume that weights are non-negative. Indeed, removing a node

with a negative weight may change the optimum (consider G = K1,T , where the weight of

the central node is negative while the weights of the others are positive). In fact, for T ≥ 3

and arbitrary w, we get an NP-hard problem:

◮ Theorem 8. The problem of deciding, for given G, T ≥ 3, w, and λ ∈ Q, if G contains

a T -star packing of node weight at least λ, is NP-hard.

Proof. Recall (see [11] and [14, Sec.12.3]) that the following perfect 3-uniform hypergraph

matching problem is NP-hard: given a nonempty finite domain V , a collection of subsets

E ⊆ 2V , where each element X ∈ E is of size 3, and an integer µ, decide if V can be covered

by at exactly µ := |V | /3 elements of E .

We reduce this problem to node-weighted 3-star packings as follows. Construct a bipar-

tite graph G taking V as the left part. For each X = {v1, v2, v3} ∈ E add a node X to the

right part and connect it to nodes v1, v2, v3 in the left part. The weights of nodes in the left

part are set to M , where M is a sufficiently large positive integer; the weights of nodes in

the right part are −1.

Each subcollection E ′ ⊆ E obeying
⋃ E ′ = V generates a packing P of 3-stars (with

centers located in the right part and leafs — in the left one). Clearly w(P) = M · |V | − |E ′|.
Vice versa, consider a max-weight packing P of 3-stars. Assuming

⋃ E = V , P must

cover all nodes in the left part of G (since M is large enough). Let E ′ be the set of nodes

in the right part of G that are covered by P. Then
⋃ E ′ = V and w(P) = M · |V | − |E ′|.

Therefore V can be covered by µ elements of E if and only if G admits a 3-star packing of

weight at least λ := M · |V | − µ. The reduction is complete. ◭

4.2 Non-Negative Weights

If node weights are non-negative then the problem is tractable. Recall the construction of

the auxiliary network H and assign non-negative arc costs c : AH → Q as follows: c(v2, t) :=

w(v) for all v ∈ V G and c(a) := 0 for the other arcs a. Then by Theorem 3 computing a

max-cost flow in H also solves the maximum weight T -star packing problem. The max-cost

flow problem is solvable in strongly-polynomial time (see [6, 7] and also [16, Ch.12] for a

survey) but using a general method here is an overkill. Note that the costs are non-zero

only on arcs incident to the sink. This makes the problem essentially lexicographic.

In what follows, we employ an equivalent treatment, which involves multi-terminal net-

works. Namely, let Γ be a digraph endowed with arbitrary arc capacities u. Consider a set

of sources S and a sink t (S ⊆ V Γ, t ∈ V Γ, t /∈ S). Nodes in V Γ − S − {t} are called

inner. The notion of feasible flows (see Definition 4) extends to multi-terminal networks.

Sometimes we use the term S–t flow to emphasize that f is a multi-source flow.

The value of an S–t flow f is val(f) :=
∑

s∈S divf (s). Also let w : S → Q+ be weights

of sources. The weight of f is defined as w(f) :=
∑

s∈S w(s) divf (s). The goal is to find a

feasible S–t flow f of maximum weight w(f). When S = {s} and w(s) = 1, this coincides

with the usual max-value flow problem.

Clearly this problem is equivalent to its multi-sink counterpart (where weights are as-

signed to sinks rather than sources). Consider the digraph H constructed in Section 2.

Splitting the sink t into n copies (one for each node in V G) and assigning weights to these

new sinks appropriately, one reduces the node-weighted star packing problem to the max-

weight multi-sink flow problem.

In what follows, we deal with the max-weight multi-source flow problem in Γ. To solve the

STACS’11

526 New Exact and Approximation Algorithms for the Star Packing Problem

latter, we present a divide-and-conquer algorithm, which is inspired by [17]. Our flow-based

approach, however, is more general and is also much simpler to explain.

For S′, T ′ ⊆ V Γ, S′ ∩ T ′ = ∅, a subset X ⊆ V Γ such that S′ ⊆ X, T ′ ∩ X = ∅, is called

an S′–T ′ cut. When S′ or T ′ is singleton the notation is abbreviated accordingly. A cut X

is called minimum (among all S′–T ′ cuts) if c(δout(X)) is minimum. A u-feasible flow f is

said to saturate X if f(a) = u(a) for all a ∈ δout(X) and f(a) = 0 for all a ∈ δin(X). In

other words, f(δout(X)) = u(δout(X)) and f(δin(X)) = 0.

Recall that for a u-feasible flow f in a digraph Γ, the residual graph Γf = (V Γf :=

V Γ, AΓf) contains forward arcs a = (u, v) ∈ AΓ, where f(a) < u(a) (endowed with the

residual capacity uf (a) := u(a) − f(a)), and also backward arcs a−1 = (v, u), where a =

(u, v) ∈ AΓ, f(a) > 0 (endowed with the residual capacity uf (a−1) := f(a)). For a u-feasible

flow f is Γ and a uf -feasible flow g in Γf the sum f ⊕ g is a u-feasible flow in Γ defined

by (f ⊕ g)(a) := f(a) + g(a) − g(a−1) (where terms corresponding to non-existent arcs are

assumed to be zero).

W.l.o.g. no arc enters a source and no arc leaves a sink in Γ. Sort the sources in

the order of decreasing weight: w(s1) ≥ w(s2) ≥ . . . ≥ w(sk). For i = 1, . . . , k, define

Si := {s1, . . . , si}. We find a feasible S–t flow f and a collection of cuts X1, . . . , Xk such

that:

(1) (i) X1 ⊆ X2 ⊆ . . . ⊆ Xk;

(ii) for i = 1, . . . , k, Xi ∩ S = Si, t /∈ Xi, and f saturates Xi.

◮ Lemma 9. If (1) holds, then f is both a max-weight and a max-value flow.

Proof. Let di := w(si)−w(si+1) for i = 1, . . . , k−1 and dk := w(sk). For i = 1, . . . , k, define

vi := divf (s1)+. . .+divf (si). Applying Abel transformation, one gets w(f) = d1v1+. . . dkvk.

Fix i = 1, . . . , k and describe f as a sum f ′ + f ′′, where f ′ is a feasible {s1, . . . , si}–t

flow and f ′′ is a feasible {si+1, . . . , sk}–t flow (such f ′, f ′′ exist due to flow decomposition

theorems, see [5]). Clearly val(f ′) = vi, therefore vi ≤ c(δout(Xi)). Summing over i =

1, . . . , k, we get w(f) ≤ d1c(δout(X1)) + . . . + dkc(δout(Xk)). By (1)(ii), the above inequality

holds with equality, hence f is a max-weight flow. Also taking i = k in (1)(ii), we see that

Xk is an S–t cut saturated by f . Therefore f is a max-value flow. ◭

It remains to explain how one can find f and Xi obeying (1). Consider an instance

I = (Γ, S = {s1, . . . , sk} , t) (the capacities u and the weights w remain fixed during the

whole computation and are omitted from notation). If k = 1, then solving I reduces to

finding a max-value s1–t flow f and a minimum s1–t cut X1.

Otherwise define l := ⌊k/2⌋, S1 := {s1, . . . , sl}, and S2 := {sl+1, sl+2, . . . , sk}. Compute

a max-value S1–t flow h and the corresponding minimum S1–t cut Z, which is saturated

by h. Since no arc enters a source, we may assume that Z ∩ S = S1. To proceed with

recursion, construct a pair of problem instances as follows. First, contract Z := V Γ − Z in

Γ into a new sink t1 and denote the resulting instance by I1 := (Γ1 := Γ/Z, S1, t1). Second,

remove the subset Z in Γh (together with the incident arcs) and denote the resulting instance

by I2 := (Γ2 := Γh − Z, S2, t).

Let f1 and f2 be optimal solutions to I1 and I2, respectively, which are found recursively

and satisfy (1) (for f := f1, S := S1 and for f := f2, S := S2). Construct an optimal

solution to I as follows. First, Z is a minimum S1–t1 cut in Γ1 (since Z is a minimum S1–t

cut in Γ) and by Lemma 9, f1 is a max-value flow. Hence f1 saturates Z. Second, f2 may

be regarded as an S2–t flow in Γh. The sum h ⊕ f2 forms a u-feasible S–t flow in Γ that

Maxim Babenko and Alexey Gusakov 527

also saturates Z. “Glue” f1 and h ⊕ f2 along δin(Z), δout(Z) and construct an S–t flow f

in Γ as follows:

f(a) :=























f1(a) for a ∈ γ(Z),

(h ⊕ f2)(a) for a ∈ γ(Z),

u(a) for a ∈ δout(Z),

0 for a ∈ δin(Z).

Let X1
1 , X1

2 , . . . , X1
l and X2

l+1, X2
l+2, . . . , X2

k be the sequence of nested cuts (as in (1)) for f1

and f2 (respectively). Then clearly X1
1 , X1

2 , . . . , X1
l , Z ∪ X2

l+1, Z ∪ X2
l+2, . . . , Z ∪ X2

k and f

obey (1). The description of the algorithm is complete.

Let Φ(n′, m′) denote the complexity of a max-flow computation in a network with n′

nodes and m′ arcs. Let the above recursive algorithm be applied to a network with n nodes,

m arcs, and k sources. Then its running time T (n, m, k) obeys the recurrence

T (n, m, k) = Φ(n, m) + T (n1, m1, ⌊k/2⌋) + T (n2, m2, ⌈k/2⌉) + O(n + m),

where n1 +n2 = n+1, m1 +m2 = m. For a “natural” time bound Φ this yields T (n, m, k) =

O(Φ(n, m) · log k) (see [10, Sec. 2.3]).

◮ Theorem 10. In a network with n nodes, m arcs, and k sources a max-weight flow can

be found in O(Φ(n, m) · log k) time.

For node-weighted star packings, Φ(n, m) = O(m
√

n) for the max-flow problems arising

during the recursive process (due to results of [2, 9]).

◮ Corollary 11. The node-weighted T -star packing problem with non-negative weights is

solvable in O(m
√

n log n) time.

4.3 Node-Weighted Packings of 2-Stars

We still have a case where neither a polynomial algorithm nor a hardness result are estab-

lished. Let T = 2 and node weights be arbitrary. Hence T -stars are just paths of length 1

and 2. This case is tractable but the needed machinery is of a bit different nature.

Recall the proof of Theorem 8. The latter fails for T = 2 because it shows a reduction

from a version of the set cover problem where all subsets are restricted to be of size 1 and 2.

The latter set cover problem is equivalent to finding a minimum cardinality edge cover in

a general (i.e. not necessarily bipartite) graph. Both cardinality and weighted problems

regarding edge covers are polynomially solvable (see [16, Ch.27]), so no hardness result can

be obtained this way. However, this gives a clue on what techniques may apply here.

We employ the concept of bidirected graphs, which was introduced by Edmonds and

Johnson [3] (more about bidirected graphs can be found in, e.g., [16, Ch. 36].) Recall that

in a bidirected graph edges of three types are allowed: a usual directed edge, or an arc, that

leaves one node and enters another one; an edge directed from both of its ends; and an edge

directed to both of its ends. When both ends of an edge coincide, the edge becomes a loop.

The notion of a flow is extended to bidirected graphs in a natural fashion. Namely, let

Γ is a bidirected graph whose edges are endowed with integer capacities u : EΓ → Z+ and

let s be a distinguished node (a terminal). Nodes in V Γ − {s} are called inner.

◮ Definition 12. A u-feasible (or just feasible) integer bidirected flow f is a function

f : EΓ → Z+ such that: (i) f(e) ≤ u(e) for each e ∈ EΓ; and (ii) divf (v) = 0 for each

inner node v.

STACS’11

528 New Exact and Approximation Algorithms for the Star Packing Problem

a

b

c

d

e

V+ V
−

(a) Graph G.

a
1

b
1

c
1

a
2

b
2

c
2

d

e

s

(b) Graph H.

Figure 2 Reduction to a bidirected graph.

Here, as usual, divf (v) := f(δout(v)) − f(δin(v)), where δin(v) denotes the set of edges

entering v and δout(v) denotes the set of edges leaving v. It is important to note that a

loop e entering (respectively leaving) a node v is counted two times in δin(v) (respectively

in δout(v)) and hence contributes ±2f(e) to divf (v). Similar to flows in digraphs, f({u, v})

is abbreviated to f(u, v).

Consider an undirected graph G endowed with arbitrary node weights w : V G → Q. We

reduce the node-weighed 2-star packing problem in G to finding a feasible max-cost integer

bidirected flow in an auxiliary bidirected graph. The latter is solvable in strongly polynomial

time [16, Ch. 36].

To construct the desired bidirected graph H, denote V+ := {v ∈ V G | w(v) ≥ 0} and

V− := V G \ V+, Like in Section 2, consider two disjoint copies of V+ and denote them by

V 1
+ and V 2

+. Also add a terminal s and define V H := V 1
+ ∪ V 2

+ ∪ V− ∪ {s}.

One may assume that no two nodes in V− are connected by an edge since these edges may

be removed without changing the optimum. For an edge {u, v} ∈ EG, u, v ∈ V+, construct

edges
{

u1, v2
}

(leaving u1 and entering v2) and
{

v1, u2
}

(leaving v1 and entering u2). For an

edge {u, v} ∈ EG, u ∈ V−, v ∈ V+, construct an edge
{

u, v2
}

(leaving u1 and entering v2).

All these bidirected edges are endowed with infinite capacities and zero costs.

For each node v ∈ V+, add an edge
{

s, v1
}

(entering v1) of capacity 2 and zero cost,

and an edge
{

v2, s
}

(leaving v2) of capacity 1 and cost w(v). For each node v ∈ V+, add a

loop {v, v} (entering v twice) of capacity 1 and cost w(v) and an edge {v, s} (leaving v) of

infinite capacity and zero cost. (Since s is a terminal, directions of edges at s are irrelevant.)

An example is depicted in Fig. 2.

◮ Theorem 13. The maximum cost of a feasible integer bidirected flow in H coincides with

the maximum weight of a 2-star packing in G.

Proof. We first show how to turn a max-weight 2-star packing P in G into a feasible integer

bidirected flow f in H of cost w(P). Start with f := 0. Let S be a star in P. The following

cases are possible.

Case I: S covers two nodes, say p and q, and {p, q} is the edge of S.

Subcase I.1: p, q ∈ V+. Increase f by one along the paths (s, p1, q2, s) and (s, q1, p2, s).

This preserves zero divergences at inner nodes and adds w(p) + w(q) = w(S) to c(f).

Maxim Babenko and Alexey Gusakov 529

Subcase I.2: p ∈ V+, q ∈ V−. Increase f by one along the path (s, p2, q, q, s) (where

the q, q fragment denotes the loop at q). Divergences at inner nodes are preserved, c(f) is

increased by w(p) + w(q) = w(S).

Case II: S covers three nodes, say p, q, and r, and {p, q} , {q, r} are the edges of S.

Subcase II.1: p, q, r ∈ V+. Increase f by one along the paths (s, q1, p2, s), (s, q1, r2, s),

and (s, p1, q2, s). Divergences at inner nodes are preserved, c(f) is increased by w(p)+w(q)+

w(r) = w(S).

Subcase II.2: p, r ∈ V+ and q ∈ V−. Increase f by one along the path (s, p2, q, q, r2, s)

(as above, the q, q fragment is the loop at q). Divergences at inner nodes are preserved, c(f)

is increased by w(p) + w(q) + w(r) = w(S).

Since P is optimal, the other cases are impossible. Applying the above to all S ∈ P one

gets a feasible integer bidirected flow of cost w(P), as claimed.

For the opposite direction, consider a feasible max-cost integer bidirected flow f in H

and construct a 2-star packing P obeying w(P) ≥ c(f) as follows. Define

F+ :=
{

(u, v) | u, v ∈ V+, f(u1, v2) > 0
}

,

F− :=
{

(u, v) | u ∈ V−, v ∈ V+, f(u, v2) > 0
}

.

Then F := F+ ∪ F− is a 2-feasible arc set in
−→
G . (Recall that

−→
G is obtained from G by

replacing each edge with a pair of opposite arcs.) Indeed, every arc in F leaving a node

u ∈ V+ corresponds to a unit of flow along the edge
{

s, u1
}

and the capacity of the latter

is 2. Every arc in F leaving a node u ∈ V− corresponds to a unit of flow along the edge
{

u, v2
}

, v ∈ V+, and since the capacity of the loop {v, v, } is 1, there can be at most 2 such

arcs. Next, if an arc in F enters a node v ∈ V+ then this arc adds a unit of flow along the

edge
{

v2, s
}

(whose capacity is 1). Finally, no arc in F enters a node in V−.

By Theorem 3, F generates a packing of 2-stars P in G. We claim that w(P) ≥ c(f).

We show that each edge e ∈ EH with c(e) > 0 and f(e) = 1 corresponds to a node ve ∈ V G

covered by P such that c(e) = w(ve). Also each node v ∈ V− covered by P corresponds

to an edge ev ∈ EH with f(ev) = 1 such that c(ev) = w(v). (The mappings e 7→ ve and

v 7→ ev are injective.) These observations complete the proof of Theorem 13.

For the first part, consider an edge e =
{

v2, s
}

, where f(e) = 1 and v ∈ V+. Then v is

entered by an arc in F , hence P covers ve := v. For the second part, consider a node v ∈ V−

covered by P. Then v must be an endpoint of an arc a ∈ F . No arc in F can enter v (by

the construction of F), hence a = (v, u) for u ∈ V+. Therefore a ∈ F− corresponds to the

edge
{

v, u2
}

. Since f(v, u2) > 0 one has f(ev) = 1, where ev := {v, v} is the loop at v. ◭

Acknowledgements

We thank anonymous referees for useful suggestions.

References

1 A. Amahashi and M. Kano. On factors with given components. Discrete Math., 42(1):1–6,

1982.

2 E. Dinic. Algorithm for solution of a problem of maximum flow in networks with power

estimation. Soviet Math. Dokl., 11:1277–1280, 1970.

3 J. Edmonds and E. L. Johnson. Matching, a well-solved class of integer linear programs.

In Proc. Calgary Int. Conf. on Comb. Structures and Their Appl., pages 89–92, NY, 1970.

Gordon and Breach.

STACS’11

530 New Exact and Approximation Algorithms for the Star Packing Problem

4 T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up algo-

rithms. J. Comput. Syst. Sci., 51:261–272, October 1995.

5 L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press, 1962.

6 A. Goldberg and R. Tarjan. Solving minimum-cost flow problems by successive approx-

imation. In Proc. 18th Annual ACM Conference on Theory of Computing, pages 7–18,

1987.

7 A. Goldberg and R. Tarjan. Finding minimum-cost circulations by canceling negative

cycles. J. ACM, 36(4):873–886, 1989.

8 P. Hell and D. Kirkpatrick. Packings by complete bipartite graphs. SIAM J. Algebraic

Discrete Methods, 7(2):199–209, 1986.

9 J. Hopcroft and R. Karp. An n
5

2 algorithm for maximum matchings in bipartite graphs.

SIAM J. Comput., 2(4):225–231, 1973.

10 T. Ibaraki, A. Karzanov, and H. Nagamochi. A fast algorithm for finding a maximum free

multiflow in an inner eulerian network and some generalizations. Combinatorica, 18(1):61–

83, 1998.

11 R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors,

Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

12 A. Kelmans. Optimal packing of induced stars in a graph. Discrete Math., 173(1-3):97–127,

1997.

13 M. Las Vergnas. An extension of Tutte’s 1-factor theorem. Discrete Math., 23:241–255,

1978.

14 L. Lovász and M. D. Plummer. Matching Theory. North-Holland, NY, 1986.

15 Q. Ning. On the star packing problem. In Proc. 1st China-USA International Graph Theory

Conference, volume 576, pages 411–416, 1989.

16 A. Schrijver. Combinatorial Optimization. Springer, Berlin, 2003.

17 T. Spencer and E. Mayr. Node weighted matching. In Proc. 11th Colloquium on Automata,

Languages and Programming, pages 454–464, London, UK, 1984. Springer-Verlag.

18 R. Tarjan. Data structures and network algorithms. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 1983.

	Introduction
	Preliminaries
	Our Contribution

	Reduction to Network Flows
	Auxiliary Digraphs
	Proof of Theorem 3

	Edge-Weighted Packings
	Hardness
	Approximation

	Node-Weighted Packings
	General Weights
	Non-Negative Weights
	Node-Weighted Packings of 2-Stars

