
HAL Id: hal-00573616
https://hal.science/hal-00573616

Submitted on 5 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Pathwidth to Connected Pathwidth
Dariusz Dereniowski

To cite this version:
Dariusz Dereniowski. From Pathwidth to Connected Pathwidth. Symposium on Theoretical Aspects
of Computer Science (STACS2011), Mar 2011, Dortmund, Germany. pp.416-427. �hal-00573616�

https://hal.science/hal-00573616
https://hal.archives-ouvertes.fr

From Pathwidth to Connected Pathwidth

Dariusz Dereniowski
∗1

1 Department of Algorithms and System Modeling, Gdańsk University of

Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

deren@eti.pg.gda.pl

Abstract

It is proven that the connected pathwidth of any graph G is at most 2 · pw(G) + 1, where

pw(G) is the pathwidth of G. The method is constructive, i.e. it yields an efficient algorithm

that for a given path decomposition of width k computes a connected path decomposition of

width at most 2k + 1. The running time of the algorithm is O(dk2), where d is the number of

‘bags’ in the input path decomposition.

The motivation for studying connected path decompositions comes from the connection

between the pathwidth and some graph searching games. One of the advantages of the above

bound for connected pathwidth is an inequality cs(G) ≤ 2s(G) + 3, where cs(G) is the connec-

ted search number of a graph G and s(G) is its search number, which holds for any graph G.

Moreover, the algorithm presented in this work can be used to convert efficiently a given search

strategy using k searchers into a connected one using 2k + 3 searchers and starting at arbitrary

homebase.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and

Problems

Keywords and phrases connected pathwidth, connected searching, fugitive search games, graph

searching, pathwidth

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.416

1 Introduction

The notions of pathwidth and treewidth are receiving increasing interest since the series of

Graph Minor articles by Robertson and Seymour. The importance of those parameters is

due to their numerous practical applications, connections with several graph parameters and

usefulness in designing graph algorithms. Informally speaking, the pathwidth of a graph G,

denoted by pw(G), says how closely G is related to a path. Moreover, a path decomposition

captures the linear path-like structure of G. (For a definition see Section 2.)

Here we briefly describe a graph searching game that is the main motivation for the

results presented in this paper. A team of k searchers is given and the goal is to find an

invisible and fast fugitive located in a given graph G. The fugitive has also the complete

knowledge about the graph and about the strategy used by the searchers, and therefore

he will avoid being captured as long as possible. The fugitive is captured when a searcher

reaches his location. In this setting the game is equivalent to the problem of clearing all

edges of a graph that is initially entirely contaminated. There are two main types of this

graph searching problem. In the node searching two moves are allowed: placing a searcher on

a vertex and removing a searcher from a vertex. An edge becomes clear whenever both of its

∗ Research partially supported by MNiSW grant N N206 379337 (2009-2011).

© Dariusz Dereniowski;
licensed under Creative Commons License NC-ND

28th Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr; pp. 416–427

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.416
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D. Dereniowski 417

endpoints are simultaneously occupied by searchers. In the edge searching we have, besides to

the two mentioned moves, a move of sliding a searcher along an edge. In this model an edge

{u, v} becomes clear if a searcher slides from u to v and either all the other edges incident

to u have been previously cleared or another searcher occupies u. In both cases the goal

is to find a search strategy (a sequence of moves of the searchers) that clears all the edges

of G. The node (edge) search number of G, denoted by ns(G) (s(G), respectively), equals

the minimum number of searchers sufficient to construct a node (edge, respectively) search

strategy. An important property is that pw(G) = ns(G) − 1 for any graph G [13, 14, 15, 18].

The edge searching problem is closely related to node searching, i.e. |s(G) − ns(G)| ≤ 1 [4],

and consequently to pathwidth, pw(G) ≤ s(G) ≤ pw(G) + 2.

In this work we are interested in special types of path decompositions called connected

path decompositions. The motivation comes from the need of creating connected search

strategies. An edge search strategy is connected if the subgraph of G that is clear is always

connected. The minimum number of searchers that guarantees the capture of the fugitive

by a connected (edge) search strategy, denoted by cs(G), is the connected search number

of G. This model of graph searching receives recently a growing interest, because in many

applications the connectedness is an requirement.

Related work. There are several results that give a relation between the connected

and the ‘classical’ search numbers of a graph. Fomin et al. proved in [7] that the connected

search number of an n-node graph of branchwidth b is bounded by O(b log n) and this bound

is tight. One of the implications of this result is that cs(G) = O(log n)pw(G). Nisse proved

in [19] that cs(G) ≤ (tw(G)+2)(2s(G)−1) for any chordal graph G. Barrière et al. obtained

in [2] a constant upper bound for trees, namely for each tree T , cs(T)/s(T) ≤ 2. On the

other hand, there exists an infinite family of graphs Gk such that cs(Gk)/s(Gk) approaches

2 when k goes to infinity [3].

Fraigniaud and Nisse presented in [9] a O(nk3)-time algorithm that takes a width k tree

decomposition of a graph and returns a connected tree decomposition of the same width. (For

definition of treewidth see e.g. [5, 21].) Therefore, tw(G) = ctw(G) for any graph G. This

method cannot be applied for proving the same result for connected path decompositions,

because the decomposition that the algorithm in [9] constructs is not, in general, a path

decomposition even when a path decomposition is given as an input. That result also yields

an upper bound of cs(G) ≤ (log n + 1)s(G) for any graph G. The problems of computing the

pathwidth (the search number) and the connected pathwidth (the connected search number)

are NP-hard, also for several special classes of graphs, see e.g. [6, 11, 12, 16, 17, 20].

This work. This paper presents an efficient algorithm that takes a (connected) graph

G and its path decomposition P = (X1, . . . , Xd) of width k as an input and finds in time

O(dk2) a connected path decomposition C = (Z1, . . . , Zm) of width at most 2k + 1, where

m ≤ kd. This solves an open problem stated in several papers, e.g. in [1, 2, 3, 7, 8, 9, 10, 22],

since it implies that for any graph G, cpw(G) ≤ 2pw(G) + 1, and improves previously known

estimations [7, 19]. The path decomposition C can be turned into a monotone connected search

strategy using at most 2k + 3 searchers. Thus, in terms of the graph searching terminology,

the bound immediately implies that mcs(G) ≤ cpw(G) + 2 ≤ 2pw(G) + 3 ≤ 2s(G) + 3, where

mcs(G) is the monotone connected search number of G. (A search strategy is monotone if the

fugitive cannot reach a previously cleared edge.) Since cs(G) ≤ mcs(G), the bound can be

restated for the connected search number of a graph, cs(G) ≤ 2s(G)+3. Moreover, the factor

2 in the bound is tight [3]. The bound finds also applications in designing approximation

algorithms, for it implies that the pathwidth and the connected pathwidth (the search

STACS’11

418 From Pathwidth to Connected Pathwidth

number, the connected search number, and some other search numbers not mentioned here,

e.g. the internal search number) are within a constant factor of each other.

2 Preliminaries and basic definitions

Given a simple graph G = (V (G), E(G)) and its subset of vertices X ⊆ V (G), the subgraph

of G induced by X is G[X] = (X, {{u, v} ∈ E(G) : u, v ∈ X}). For a simple (not necessary

connected) graph G, H is its connected component if H is connected, that is, there exists a

path in H between each pair of vertices, and each proper supergraph of H is not a subgraph

of G. For X ⊆ V (G) let NG(X) = {u ∈ V (G) \ X : {u, x} ∈ E(G) for some x ∈ X}.

◮ Definition 1. A path decomposition of a simple graph G = (V (G), E(G)) is a sequence

P = (X1, . . . , Xd), where Xi ⊆ V (G) for each i = 1, . . . , d, and

◦
⋃

i=1,...,d Xi = V (G),

◦ for each {u, v} ∈ E(G) there exists i ∈ {1, . . . , d} such that u, v ∈ Xi,

◦ for each i, j, k, 1 ≤ i ≤ j ≤ k ≤ d it holds Xi ∩ Xk ⊆ Xj .

The width of the path decomposition P is width(P) = maxi=1,...,d |Xi| − 1. The pathwidth of

G, pw(G), is the minimum width over all path decompositions of G.

A path decomposition P is connected if G[X1 ∪ · · · ∪ Xi] is connected for each i = 1, . . . , d.

Then, cpw(G) denotes the minimum width over all connected path decompositions of G.

◮ Definition 2. Given a graph G and its path decomposition P = (X1, . . . , Xd), a node-

weighted graph G = (V (G), E(G), ω) derived from G and P is the graph with vertex set V (G) =

V1 ∪ · · · ∪ Vd, where Vi = {vi(H) : H is a connected component of G[Xi]}, i = 1, . . . , d,

and edge set E(G) = {{vi(H), vi+1(H ′)} : vi(H) ∈ Vi, vi+1(H ′) ∈ Vi+1, i ∈ {1, . . . , d −

1}, and V (H) ∩ V (H ′) 6= ∅}. The weight of a vertex vi(H) ∈ V (G), i ∈ {1, . . . , d}, is

ω(vi(H)) = |V (H)|. The width of G, denoted by width(G), equals width(P) + 1.

In the following we omit a subgraph H of G and the index i ∈ {1, . . . , d} whenever they are

not important when referring to a vertex of G and we write v instead of vi(H). For brevity,

ω(X) =
∑

x∈X ω(x) for any subset X ⊆ V (G).

Figures 1(a) and 1(b) present a graph G and its path decomposition P , respectively, where

the subgraph structure in each bag Xi is also given. Figure 1(c) depicts the derived graph G.

Note that P is not connected: the subgraphs G[X1 ∪· · ·∪Xi] are not connected for i = 2, 3, 4.

Let C ⊆ V (G). The border δ(C) of the set C is its subset consisting of all the vertices v ∈ C

such that there exists u ∈ V (G) \ C adjacent to v in G, i.e. δ(C) = NG(V (G) \ C).

Given a set X ⊆ V (G), X 6= ∅, we define the left (right) extremity of X as l(X) =

min{i : Vi ∩ X 6= ∅} (r(X) = max{i : Vi ∩ X 6= ∅}, respectively).

A path P in G is progressive if |V (P) ∩ Vi| ≤ 1 for each i = 1, . . . , d.

◮ Definition 3. Given G, C ⊆ V (G) and X ⊆ δ(C), a left (right) branch BL(C, X, i), where

1 ≤ i ≤ r(X) (respectively BR(C, X, i), where l(X) ≤ i ≤ d) is the subgraph of G induced by

the vertices in X and by the vertices of all progressive paths contained in (V (G) \ C) ∪ X

and connecting x ∈ X ∩ Vj and v ∈ Vk \ C, where i ≤ k ≤ j (j ≤ k ≤ i, respectively).

We sometimes write B to refer to a branch whenever its ‘direction’ or C, X, i are clear from

the context. A branch B = BL(C, X, i), i ≤ r(X), (B = BR(C, X, i), i ≥ l(X)) is continuous

if Vj ∩ V (B) 6= ∅ for each j = i, . . . , r(X) (j = l(X), . . . , i, respectively). A vertex v of B

is external if NG(v) * C ∪ V (B). The branch B is proper if it has no external vertices in

D. Dereniowski 419

V9V8V7V6
V5

4V
V3V2

V1

X9

b3

b4

b2b1

b

a
1

a
2

a
4

a
3

a

X1

e1

e2

e

ca

X2

ca

e3

e4
e

X4
X6

c2

c3ca X8
b

ca

e

ca

X3
X5 7X

e4

e5

a
1

a
4

a
3

e1

e2

e5

e3

e4

c4

c5

c3

c1

a
2

a

b3

b4

b2b1

b

c2

e

c4c3

c5

ca

c1
c2

ca

e

v G e ([{ }])
3

 ([{ }])v G a,c3

e5e43
 ([{ }])v G ,

(c)

5354
2

3

2

1

2

3

25

(a)

(b)

c

5

Figure 1 (a) a graph G; (b) a path decomposition P of G; (c) the graph G derived from G and P

Vi+1 ∪ · · · ∪ Vr(X)−1 (Vl(X)+1 ∪ · · · ∪ Vi−1, respectively), while B is maximal if it is continuous,

proper and BL(C, X, i − 1) (BR(C, X, i + 1), respectively) is not a proper branch. An integer

j is a cut of the branch B if i ≤ j ≤ r(X) (l(X) ≤ j ≤ i, respectively). The weight of the

cut j of B is ω((V (B) ∩ Vj) ∪ (X ∩ Y)), where Y = Vl(X) ∪ · · · ∪ Vj−1 for a left branch, and

Y = Vi+1 ∪ · · · ∪ Vr(X) for a right branch. A cut of minimum weight is a bottleneck of B.

Figure 2 illustrates the above definitions. (In all cases the branch is distinguished by the

dark area.) Let X = {x1, x2, x3} be a subset of δ(C). Figure 2(a) gives BL(C, X, i2) and

this branch is continuous and proper, but not maximal for each i2, i3 < i2 ≤ i1. The branch

BL(C, X, i3) (see Figure 2(b)) is maximal (thus continuous and proper), which follows from

the fact that any branch BL(C, X, i4), where i4 < i3 is not proper, because it contains an

external vertex u2, as shown in Figure 2(c). Note that the vertices of G1 and G2 (except

for u1 and u2) do not belong to any branch BL(C, X, i), because they are not connected

by progressive paths to x2 or x3. Figure 2(d) depicts a branch BL(C, X, i7) that is not

continuous for any i7 < i5, because Vi5−1 ∩ V (BL(C, X, i7)) = ∅. In our algorithm we ensure

that each branch we use is continuous and proper.

Given C, X and i, a left (respectively right) branch B can be calculated efficiently as

follows. Initially B satisfies V (B) = X. We start with j = r(X) (j = l(X), resp.) and we

add to the vertex set of the branch all vertices in Vj−1 \ C (Vj+1 \ C, resp.) that have a

neighbor in Vj ∩ V (B). Then, we decrement (increment, resp.) j and repeat this step. The

computation stops when j < i (j > i, respectively).

3 The algorithm

The algorithm CP (Connected Pathwidth) for finding a connected path decomposition of a

graph G takes G, a vertex v of G, and a path decomposition P of G as an input. The vertex

v is guaranteed to belong to the first bag of the resulting connected path decomposition.

This flexibility is provided due to the potential application of this algorithm: in graph

searching games the bags of path decompositions correspond to the vertices occupied by the

searchers while the search proceeds; in this way the selected vertex v can be the first one

that becomes guarded in a connected search strategy and it is called the homebase. The

first step performed by CP is the construction of the derived graph G and in the subsequent

STACS’11

420 From Pathwidth to Connected Pathwidth

(a) (b)

(c) (d)

x1

x3

C
x2

u1

i1i2i3i4i5i6i7

x1

x3

C
x2

u1

i1i2i3i4i5i6i7

x1

x3

C
x2

u1

i1i2i3i4i5i6i7

x1

x3

C
x2

u1

i1i2i3i4i5i6i7

BL(C, X, i3)

G1 G1

G1 G1

G2

G2 G2

G2

u2

u2 u2

u2

BL(C, X, i2)

BL(C, X, i4) BL(C, X, i7)

Figure 2 G with distinguished vertex sets X = {x1, x2, x3} and C, and the corresponding branches

that are: (a) continuous and proper but not maximal; (b) maximal; (c) continuous but not proper

(thus not maximal); (d) not continuous nor proper (thus not maximal)

steps the algorithm works on G. (Also, most parts of our analysis use G rather than G.)

The algorithm computes a sequence of sets Cj ⊆ V (G), j = 1, . . . , m, called expansions.

The expansion C1 consists of v and one of its neighbors, and Cm = V (G) at the end of the

execution of CP. Moreover, Cj ⊆ Cj+1 for each j = 1, . . . , m − 1. Informally speaking, Cj+1

is obtained from Cj by adding to Cj some vertices from NG(Cj). This guarantees that the

final path decomposition obtained from δ(C1), . . . , δ(Cm) is valid and is connected, as proved

in Lemma 7. On the other hand, the particular vertices in NG(Cj), used to obtain Cj+1, are

selected in a way to guarantee that ω(δ(Cj)) is bounded by 2 ·width(G) for each j = 1, . . . , m.

By construction, ω(δ(Cj)) is the size of the corresponding jth bag in the resulting connected

path decomposition.

In this section we give the statement of the algorithm and we prove that it computes a

connected path decomposition C. Then, in Section 4 we analyze the width of C. Due to the

space limitations, the proofs of several results (marked with △) are omitted.

The algorithm computes for each expansion Cj two sets called the left and right borders of

Cj , denoted by δL(Cj) and δR(Cj), respectively. It is guaranteed that δL(Cj)∪δR(Cj) = δ(Cj)

for each j = 1, . . . , m (see Lemma 6). As it is proven later, the left and right borders are

special types of partitions of δ(Cj). In particular, there exists an integer i ∈ {1, . . . , d} such

that the left border δL(Cj) is contained in V1 ∪ · · · Vi and the right border δR(Cj) is a subset

of Vi+1 ∪ · · · ∪ Vd. For brevity let in the following l(δL(Cj)) = r(δL(Cj)) = 0 if δL(Cj) = ∅

and l(δR(Cj)) = r(δR(Cj)) = d if δR(Cj) = ∅, where Cj is any expansion.

We start by describing a subroutine EE (Extend Expansion) that is used by the main

procedure CP given below. The input to EE consists of two integers i and k, i, k ∈ {1, . . . , d}.

Informally speaking, the procedure adds, in its subsequent iterations, to the current expansion

Cm each vertex in Vj that is connected by a progressive path to a vertex in Vj′ ∩ δ(Cm) for

each j = i to k and for some j′, i ≤ j′ ≤ j if i < k, and for each j = i down to k, j ≤ j′ ≤ i

if i > k, which we formally prove in Lemma 4 below. All the ‘intermediate’ expansions are

recorded as they will give us the corresponding bags in the final path decomposition. The

procedures EE(i, k) and CP(G, P) are as follows.

D. Dereniowski 421

Procedure EE (Extend Expansion)

Input: integers i and k. (G, m, Cm are used as global variables)

while k 6= i do

if k < i then
EL: Increment m, decrement i and set:

Cm = Cm−1 ∪ (Vi ∩ NG(Cm−1)),

δL(Cm) = (δL(Cm−1) ∪ Vi) ∩ δ(Cm),

δR(Cm) = δR(Cm−1) ∩ δ(Cm).
else (k > i)

ER: Increment m, increment i and set:

Cm = Cm−1 ∪ (Vi ∩ NG(Cm−1)),

δR(Cm) = (δR(Cm−1) ∪ Vi) ∩ δ(Cm),

δL(Cm) = δL(Cm−1) ∩ δ(Cm).
end if

end while.

end procedure EE.

Algorithm CP (Connected Pathwidth)

Input: a simple graph G, a path decomposition P of G, and a vertex v ∈ V (G).

Output: a connected path decomposition C of G.

(Initialization.)

I.1: Use G and P to calculate the derived graph G. Let v be any vertex of G. Let

C1 = {x, y}, where v ∈ C1, x, y are adjacent in G, and x ∈ Vi, y ∈ Vi+1 for

some i ∈ {1, . . . , d − 1}. Let m = 1.

I.2: If x ∈ δ(C1), then set δL(C1) = {x}, compute the maximal left branch

BL(C1, δL(C1), a0) with a bottleneck a′
0 (a′

0 ≥ a0) and with no external vertices

in Vi and call EE(i, a′
0); otherwise δL(C1) = ∅.

I.3: If y ∈ δ(C1), then set δR(C1) = {y}, compute the maximal right branch

BR(C1, δR(C1), b0) with a bottleneck b′
0 (b′

0 ≤ b0) and with no external vertices

in Vi+1 and call EE(i + 1, b′
0); otherwise δR(C1) = ∅.

(Main loop.)

while Cm 6= V (G) do

if ω(δL(Cm)) > ω(δR(Cm)) then

L.1: Compute the maximal left branch B1 = BL(Cm, δL(Cm), k1). If B1

has no external vertex in Vi, i = r(δL(Cm)), then call EE(r(δL(Cm)), k1),

otherwise let k1 = r(δL(Cm)).

L.2: Compute the maximal right branch B2 = BR(Cm, δR(Cm) ∪ (Vk1
∩

δL(Cm)), k2). Let k′
2 be its minimum weight cut such that k′

2 > k1. Call

EE(k1, k′
2).

L.3: If r(δL(Cm)) = k1, then compute the maximal left branch B3 =

BL(Cm, δL(Cm), k3) with bottleneck k′
3 and call EE(k1, k′

3).

else (ω(δL(Cm)) ≤ ω(δR(Cm)))

R.1: Compute the maximal right branch B1 = BR(Cm, δR(Cm), k1). If B1

has no external vertex in Vi, i = l(δR(Cm)), then call EE(l(δR(Cm)), k1),

otherwise let k1 = l(δR(Cm)).

STACS’11

422 From Pathwidth to Connected Pathwidth

R.2: Compute the maximal left branch B2 = BL(Cm, δL(Cm) ∪ (Vk1
∩

δR(Cm)), k2). Let k′
2 be its minimum weight cut such that k′

2 < k1.

Call EE(k1, k′
2).

R.3: If l(δR(Cm)) = k1, then compute the maximal right branch B3 =

BR(Cm, δR(Cm), k3) with bottleneck k′
3 and call EE(k1, k′

3).

end if

end while.

Let Zj =
⋃

vk(H)∈δ(Cj) V (H) for each j = 1, . . . , m. Return C = (Z1, . . . , Zm).

end procedure CP.

First we briefly discuss the initialization stage of CP. In Step I.1 an expansion C1 is

constructed in such a way that it contains any two adjacent vertices (the adjacency guarantees

the connectedness of the final path decomposition) such that one of them is the input vertex

v. (W.l.o.g. v has a neighbor in G, because otherwise G contains a single vertex and therefore

P is connected.) Steps I.2 and I.3 are symmetric. In Step I.2 (I.3) the algorithm finds the

maximal left (right) branch ‘emanating’ from x (resp. y) provided that the vertex belongs to

the border of C1, otherwise the left (right, respectively) border is empty.

In the following, one iteration of CP or EE means one iteration of the ‘while’ loop in

the corresponding procedure. Thus, in the case of CP, one iteration reduces to executing

Steps L.1-L.3 or R.1-R.3 within the ‘if’ statement, while in the procedure EE one iteration

results in executing the instructions in Step EL or in Step ER. We use the symbols B1, B2, B3,

a0, a′
0, b0, b′

0, ki, k′
i to refer to the variables used in CP, where in the case of k1 we refer

to its value at the end of Step L.1 or Step R.1. In what follows we denote for brevity

B′
2 = BR(Cm, δR(Cm)∪(Vk1

∩δL(Cm)), k′
2) and B′

3 = BL(Cm, δL(Cm), k′
3) if Steps L.1-L.3 have

been executed in this particular iteration of CP, and B′
2 = BL(Cm, δL(Cm)∪(Vk1

∩δR(Cm)), k′
2),

B′
3 = BR(Cm, δL(Cm), k′

3) otherwise (i.e. in Steps R.1-R.3). Informally speaking, B′
2 and B′

3

are the branches B2 and B3, respectively, restricted to the vertices up to the corresponding

cut k′
2 or k′

3. The vertex v selected to be in C1 is called the starting vertex.

The branches are used in the subsequent iterations of the algorithm in the way presented

in Figure 3, where Csi
refers to the expansion obtained at the end of Step L.i of an iteration

of CP, i = 1, 2, 3 (the execution of Steps R.1-R.3 is symmetric), and Cs0
is the expansion from

the beginning of the iteration. First, a branch B1 is used to obtain Cs1
from Cs0

(during the

execution of Step L.1 of CP). It holds in particular Cs1
= Cs0

∪ V (B1), as stated in Lemma 5

below. It is guaranteed that r(δL(Cs1
)) ≤ k1. The (external) vertices in V (B1) ∩ Vk1

have

some neighbors in Vk1+1 \ Cs1
and the algorithm calculates the right branch B′

2 (‘emanating’

from k1) in Step L.2. Its right extremity, k′
2, may by strictly less than the left extremity

of the new right border δR(Cs2
) if B′

2 has no external vertices in Vk′

2
. Finally, a branch B′

3

is calculated in a symmetric way (this step is omitted if the vertices in Cs1
∩ Vk1

have no

neighbors in Vk1−1 \ Cs1
, and in such case δL(Cs3

) ⊆ δL(Cs0
)).

The following lemmas are used to prove that the computation stops and they also

demonstrate how the expansions change between the subsequent calls of EE.

◮ Lemma 4. Given an expansion Cj and X ⊆ δ(Cj), after the execution of the ith iteration

of the procedure EE(r(X), k), where k ≤ r(X) (respectively EE(l(X), k), where k ≥ l(X)) it

holds Cj+i = Cj ∪ V (BL(Cj , X, r(X) − i)) (Cj+i = Cj ∪V (BR(Cj , X, l(X) + i)), respectively),

i ≥ 1. △

◮ Lemma 5. Let Cs0
be an expansion from the beginning of an iteration of CP, and let Csi

,

i = 1, 2, 3, be the expansions obtained at the end of Steps L.1, L.2 and L.3 or R.1, R.2

D. Dereniowski 423

Step L.1

Step L.3

Step L.2

r(δL(Cs3
)) l(δR(Cs3

))

k′

3 k1 k′

2

Cs0

B′

2

B1

B′

3

r(δL(Cs0
))

Figure 3 The expansion Cs3
obtained from Cs0

by including three branches B1, B′

2 and B′

3

calculated in Steps L.1,L.2 and L.3 of CP, respectively

and R.3 in this iteration, respectively. Then, Cs1
= Cs0

∪ V (B1), Cs2
= Cs1

∪ V (B′
2) and

Cs3
= Cs2

∪ V (B′
3). Moreover, Cs3

6= Cs0
. △

Figure 4 gives an example of the execution of CP. In all cases (including the following

figures) ♦ and � are used to denote the vertices of the right and left borders, respectively. In

particular Figure 4(a) presents a graph G and C2 (this is the expansion obtained at the end

of initialization of CP, where the starting vertex and its neighbor in C1 are among the three

vertices in C2). Figures 4(b)-(d) depict the state of the algorithm at the end of the first three

iterations. (The fourth iteration executes the Steps L.1-L.3, which ends the computation.)

k =1

k =1k’=3 k =1k’=2 2k3k =

2k k’2

2k k’2 3k’ k3

3k’ k3

2 3 1 3 2 2

9
3

3

9
2

2

2

5

5

5
4

7 2

1

57

9 2 3 3

34

55

3

8

2 3 1 3 2 2

9

3

9
2

2

2

5

5

5
5

4

7 2

1

5

9 2 3 3

34

55

3

8

3

4 4

55
8 8

2 3 1 3 2 2

9

9
2

2

2

5

5

54

7 2

1

57

9 2 3 3

4

55

3

8

3

4

8

2 3 1 3 2 2

9

3

9
2

2

2

5

5

5
5

4

7 2

1

57

9 2 3 3

34

55

3

8

3

4

5
8

5
6

6 6

6 6

6 6
5 3

L.1

3 L.2

L.3

R.2 R.3

R.3
R.1

6
7

R.2

5

7

41 77=

 (=4<5=)

 (=5<6=) (=8<9=)

(a) (b)

(c) (d)

(=9<10=)

Figure 4 a graph G (the integers are vertex weights) with distinguished vertices in Cm representing

the state of CP after: (a) the initialization; (b) first iteration with Steps R.1-R.3 executed; (c) second

iteration with Steps L.1-L.3 executed; (c) third iteration with Steps R.1-R.3 executed

The lemma below follows directly from the instructions in procedure EE.

◮ Lemma 6. δ(Cj) = δL(Cj) ∪ δR(Cj) for each j = 1, . . . , m. △

The connectedness of C is due to the fact that G[Cj] is connected for each j = 1, . . . , m,

while the fact that C is a path decomposition follows from the definition of G.

◮ Lemma 7. Given a simple graph G and its path decomposition P = (X1, . . . , Xd), CP

returns a connected path decomposition C = (Z1, . . . , Zm) of G. △

4 The approximation guarantee of the algorithm

In this section we analyze the width of the path decomposition C calculated by CP for the

given G and P. First we introduce the concept of a nested expansion, which, informally

STACS’11

424 From Pathwidth to Connected Pathwidth

speaking, is as follows. The first condition for C to be nested states that the weight of Vi ∩ C

for any i ‘between’ the right extremity of the left border and the left extremity of the right

border (by Lemma 9 the former is less than the latter) is greater than or equal to the weight

of the left or the right border of C. The remaining conditions refer to the situation ‘inside’

borders and are analogous in both cases. The condition (ii) for the left border requires

that the weight of Vi ∩ C, where i ≤ r(δL(C)), is not less than the weight of the left border

restricted to the vertices in V1 ∪ · · · ∪ Vi. Finally, condition (iii) gives a ‘local’ minimality,

that is, if we take a left branch BL(C, δL(C), i) (where i by the definition is ≤ r(δL(C))) and

we include several vertices of the branch, as it is done in procedure EE, then we ‘arrive’ at

some cut of this branch, and (iii) for C guarantees that the weight of the left border of the

new expansion is greater than or equal to the weight of the left border of C.

We say that an expansion C is nested if it satisfies the following conditions:

(i) for each i = r(δL(C)), . . . , l(δR(C)), min{ω(δL(C)), ω(δR(C))} ≤ ω(Vi ∩ C),

(ii) for each i ≤ r(δL(C)), ω(Vi ∩ C) ≥
∑

j≤i ω(Vj ∩ δL(C)), and for each i ≥ l(δR(C)),

ω(Vi ∩ C) ≥
∑

j≥i ω(Vj ∩ δR(C)),

(iii) r(δL(C)) (l(δR(C))) is a bottleneck of each branch BL(C, δL(C), i) (respectively,

BR(C, δR(C), i)).

Figure 5 presents a subgraph of G on the vertices that belong to an expansion C. For

this expansion to be nested it holds in particular: (ii) implies ω(Vi+1 ∩ C) ≥ ω({x1, x2, x3}),

ω(Vi+3 ∩ C) ≥ ω({x1, x2, x3}); (i) implies ω(Vi+6 ∩ C) ≥ min{ω(δL(C)), ω(δR(C))} =

min{ω({x1, . . . , x4}), ω({y1, . . . , y4})}.

...

...

... ...
...

...

...

x2

y4

i + 3 i + 11i i + 5 i + 8i + 6

y3

x4x3

x1

y1 y2

l(δL(C)) r(δR(C))r(δL(C)) l(δR(C))

Vi+1 ∩ C

Vi+3 ∩ C
... Vi+6 ∩ C

Figure 5 A nested expansion with left and right borders distinguished

Not all expansions computed by CP are nested, but we prove that all of them satisfy (ii)

(Lemmas 10-12). The fact that the expansions obtained in Steps I.1-I.3 of CP satisfy (ii)

follows from the observation that both the left and right border or each such expansion is a

subset of a single set Vi. For this reason we focus on analyzing the subsequent iterations of

CP, and we proceed with an assumption that an expansion from the beginning of an iteration

(i.e. obtained at the end of the previous iteration, or at the end of Step I.3) is nested. We

justify this assumption in Lemma 12.

First we introduce the following concept of moving the borders of an expansion. We

say that Cj moves the right (left) border of Cj−1 if l(δR(Cj)) > l(δR(Cj−1)) (r(δL(Cj)) <

r(δL(Cj−1)), respectively). The following lemma states that in each iteration of CP at most

one expansion may be computed that does not move the left or right border of its predecessor.

Moreover, this is the first expansion calculated in Step L.2 or in Step R.2, depending on the

condition checked in the ‘if’ statement in the main loop of CP.

◮ Lemma 8. If Cj , j ∈ {2, . . . , m}, is any expansion calculated in Step EL (Step ER) of EE

invoked in an iteration of CP, except for an expansion obtained in the first iteration of EE

executed in Step L.2 or in Step R.2 of CP, then Cj moves the left (right, resp.) border of

Cj−1. △

D. Dereniowski 425

Lemma 6 states that δ(Cj) = δL(Cj) ∪ δR(Cj) for each expansion obtained in CP, while the

following lemma implies that the left and right borders of any expansion obtained during the

execution of CP are disjoint.

◮ Lemma 9. r(δL(Cj)) < l(δR(Cj)) for each j = 1, . . . , m. △

Provided that an expansion from the beginning of an iteration of CP is nested, the following,

together with Lemma 8, implies that if the first expansion computed in Step L.2 or R.2 of

CP satisfies (ii), then all expansions from the iteration satisfy (ii).

◮ Lemma 10. Let j ∈ {2, . . . , m}. If Cj−1 satisfies (ii) and Cj moves the right or the left

border of Cj−1, then Cj satisfies (ii). △

Due to the above, we analyze the first expansion obtained in Step L.2 or R.2 of CP. Let

Cs0
be the expansion from the beginning of an iteration of CP and let Cs1

be the expansion

obtained at the end of Step L.1 or Step R.1 of this iteration. We obtain that if Cs0
is nested,

then Cs1
satisfies (i) (the proof is omitted due to lack of space). This allows us to prove

that the first expansion obtained in Step L.2 or R.2 of CP also satisfies (ii). Thus, due to

Lemmas 8 and 10 we obtain that each expansion in an iteration of CP satisfies (ii), when the

expansion from the beginning of the iteration is nested.

◮ Lemma 11. If an expansion Cs0
from the beginning of an iteration of CP is nested, then

each expansion computed by CP in this iteration satisfies (ii). △

Finally, we finish our argument that each expansion calculated by CP satisfies (ii), by

proving the following.

◮ Lemma 12. Let Cs0
and Cs3

be the expansions from the beginning of two consecutive

iterations of CP. If Cs0
is nested, then Cs3

is nested. △

Therefore, an induction on the number of iterations of CP allows us to prove the claim that

each expansion computed by CP satisfies (ii), as shown in Lemma 14. Lemma 13 below,

together with Lemma 6, gives an upper bound for ω(δ(Cj)) for each j = 1, . . . , m.

◮ Lemma 13. If an expansion C satisfies (ii), then ω(δL(C)) ≤ width(G) and ω(δR(C)) ≤

width(G).

Proof. Suppose w.l.o.g. that ω(δR(C)) ≥ ω(δL(C)). Then, it is enough to argue that

ω(δR(C)) ≤ width(G). To that end observe that by (ii), where i = l(δR(C)), ω(Vi ∩ C) ≥
∑

k≥i ω(δR(C)∩Vk) = ω(δR(C)). Since ω(Vi ∩C) ≤ ω(Vi) ≤ width(G), the thesis follows. ◭

◮ Lemma 14. If C = (Z1, . . . , Zm) is a path decomposition calculated by CP for the given G

and P, then width(C) ≤ 2 · width(P) + 1.

Proof. The expansion obtained at the end of Step I.3 of CP is nested. Indeed, (i) and

(iii) follow from the fact that a′
0 and b′

0 are the bottlenecks of the corresponding branches

used in Steps I.2 and I.3, respectively, while (ii) trivially holds, for both the left and right

border is contained in a single set Vi. Using an induction (on the number of iterations

of CP) we obtain by Lemma 12 that any expansion from the beginning of an iteration

of CP is nested. Note that for each expansion Cj obtained in Steps I.1-I.3 of CP it holds

δL(Cj) ⊆ Vi and δR(Cj) ⊆ Vi′ for some i, i′ ∈ {1, . . . , d}, which implies (ii) for Cj . This,

together with Lemma 11, implies that Cj satisfies (ii) for each j = 1, . . . , m. By Lemmas 6

and 9, ω(δ(Cj)) = ω(δL(Cj)) + ω(δR(Cj)) for each j = 1, . . . , m. By Lemma 13, ω(δ(Cj)) ≤

2 · width(G). By the definition, width(C) = max{ω(δ(Cj)) : j = 1, . . . , m} − 1. Thus, by the

definition, width(C) ≤ 2 · width(G) − 1 = 2 · width(P) + 1. ◭

STACS’11

426 From Pathwidth to Connected Pathwidth

◮ Lemma 15. Let G be a simple connected graph and let P = (X1, . . . , Xd) be its path

decomposition of width k. The running time of CP executed for G and P is O(dk2).

Proof. Since each edge of G is contained in one of the bags of P, |E(G)| ≤ dk. The number

of vertices and edges in G is O(kd) and O(dk2), respectively. Thus, the complexity of

constructing G is O(dk2).

If a branch is given, then the weights of all its cuts can be calculated in time linear in

the number of edges and vertices of the branch. The time of finding any branch B in an

iteration of CP is O(|E(B)|). The complexity of calculating the weight of all cuts of B, and

thus finding its bottleneck, is O(|E(B)|). Whenever two branches overlap, we do not have to

repeat the computation. Therefore, the time complexity of determining all branches and

their bottlenecks is O(dk2). This includes the complexity of all executions of the procedure

EE, because, by Lemma 5, the procedure ‘follows’ the previously calculated branches by

including their vertices into the expansions Cj . It holds that m ≤ kd, because (by Lemmas 4

and 5) Cj ⊆ Cj+1 and Cj 6= Cj+1 for each j = 1, . . . , m−1. By Lemma 14, ω(Cj) = O(k) for

each j = 1, . . . , m. Thus,
∑

1≤j≤m |Zj | = O(dk2). Thus, the complexity of CP is O(dk2). ◭

◮ Theorem 16. There exists a O(dk2)-time algorithm that for given connected graph G and

its path decomposition P = (X1, . . . , Xd) of width k returns a connected path decomposition

C = (Z1, . . . , Zm) such that width(C) ≤ 2 · width(P) + 1 and m ≤ kd.

Proof. The correctness of CP is due to Lemma 7. The inequality width(C) ≤ 2width(P) + 1

follows from Lemma 14, and the complexity of CP is due to Lemma 15. As argued in the

proof of Lemma 15, m ≤ kd. ◭

◮ Theorem 17. For each connected graph G, cpw(G) ≤ 2 · pw(G) + 1. ◭

The inequalities pw(G) ≤ s(G) ≤ pw(G) + 2 and cpw(G) ≤ cs(G) ≤ cpw(G) + 2 [4] and

Theorem 17 give the following

◮ Corollary 18. For each graph G it holds cs(G) ≤ 2 · s(G) + 3. ◭

5 Conclusions

The advances in graph theory presented in this paper are three-fold:

◦ A bound for connected pathwidth is given, cpw(G) ≤ 2pw(G) + 1, where G is any

graph, which bounds the connected search number of a graph by its search number,

cs(G) ≤ 2s(G) + 3. Moreover, the input vertex v that belongs to the first bag in the

resulting connected path decomposition is selected arbitrarily, which implies a stronger

fact, namely a connected (2s(G) + 3)-search strategy can be constructed with any vertex

of G playing the role of the homebase. This provides an efficient algorithm for converting

a search strategy into a connected one with an arbitrary homebase.

◦ An efficient method is given for calculating a connected pathwidth of width at most

2k + 1, provided that a graph G and its path decomposition of width k are given.

◦ It is a strong assumption that the algorithm requires a path decomposition to be given,

because calculating pw(G) is a hard problem in general. However, this algorithm can

be used to approximate the connected pathwidth for the classes of graphs for which the

approximate algorithms for pathwidth exist.

D. Dereniowski 427

References

1 L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by mobile

agents. In SPAA ’02: Proceedings of the fourteenth annual ACM symposium on parallel

algorithms and architectures, pages 200–209, New York, NY, USA, 2002. ACM.

2 L. Barrière, P. Fraigniaud, N. Santoro, and D.M. Thilikos. Connected and internal graph

searching. Technical report, Technical Report, UPC Barcelona, 2002.

3 L. Barrière, P. Fraigniaud, N. Santoro, and D.M. Thilikos. Searching is not jumping. In

WG ’03: Proceedings of the 29th International Workshop on Graph-Theoretic Concepts in

Computer Science, pages 34–45, 2003.

4 D. Bienstock. Graph searching, path-width, tree-width and related problems (a survey).

DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 5:33–49, 1991.

5 H.L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–22, 1993.

6 D. Dereniowski. Connected searching of weighted trees. In MFCS, 2010. (to appear).

7 Fedor V. Fomin, Pierre Fraigniaud, and Dimitrios M. Thilikos. The price of connectedness

in expansions. Technical report, Technical Report, UPC Barcelona, 2004.

8 F.V. Fomin and D.M. Thilikos. An annotated bibliography on guaranteed graph searching.

Theor. Comput. Sci., 399(3):236–245, 2008.

9 P. Fraigniaud and N. Nisse. Connected treewidth and connected graph searching. In Proc. of

the 7th Latin American Symposium on Theoretical Informatics (LATIN’06), LNCS, volume

3887, pages 479–490, Valdivia, Chile, 2006.

10 P. Fraigniaud and N. Nisse. Monotony properties of connected visible graph searching. Inf.

Comput., 206(12):1383–1393, 2008.

11 J. Gustedt. On the pathwidth of chordal graphs. Discrete Appl. Math., 45(3):233–248,

1993.

12 T. Kashiwabara and T. Fujisawa. Np-completeness of the problem of finding a minimum-

clique-number interval graph containing a given graph as a subgraph. In Proc. IEEE Inter.

Symp. Circuits and Systems, pages 657–660, 1979.

13 N.G. Kinnersley. The vertex separation number of a graph equals its path-width. Inf.

Process. Lett., 42(6):345–350, 1992.

14 L.M. Kirousis and C.H. Papadimitriou. Interval graphs and searching. Discrete App. Math.,

55:181–184, 1985.

15 L.M. Kirousis and C.H. Papadimitriou. Searching and pebbling. Theor. Comput. Sci.,

47(2):205–218, 1986.

16 N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, and C.H. Papadimitriou. The com-

plexity of searching a graph. J. ACM, 35(1):18–44, 1988.

17 R. Mihai and I. Todinca. Pathwidth is NP-hard for weighted trees. In FAW ’09: Proceedings

of the 3d International Workshop on Frontiers in Algorithmics, pages 181–195, Berlin,

Heidelberg, 2009. Springer-Verlag.

18 R. Möhring. Graph problems related to gate matrix layout and PLA folding. In E. Mayr,

H. Noltemeier, and M. Syslo eds, Computational Graph Theory, Computing Supplementum,

volume 7, pages 17–51, 1990.

19 N. Nisse. Connected graph searching in chordal graphs. Discrete Applied Math.,

157(12):2603–2610, 2008.

20 S.L. Peng, M.T. Ko, C.W. Ho, T.S. Hsu, and C.Y. Tang. Graph searching on chordal

graphs. In ISAAC ’96: Proceedings of the 7th International Symposium on Algorithms and

Computation, pages 156–165, London, UK, 1996. Springer-Verlag.

21 N. Robertson and P.D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.

Algorithms, 7(3):309–322, 1986.

22 B. Yang, D. Dyer, and B. Alspach. Sweeping graphs with large clique number. Discrete

Mathematics, 309(18):5770–5780, 2009.

STACS’11

	Introduction
	Preliminaries and basic definitions
	The algorithm
	The approximation guarantee of the algorithm
	Conclusions

