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Luc Segoufin1 and Szymon Toruńczyk† 2

1 INRIA and ENS Cachan, LSV

2 University of Warsaw

Abstract

In this paper we work over linearly ordered data domains equipped with finitely many unary
predicates and constants. We consider nondeterministic automata processing words and storing
finitely many variables ranging over the domain. During a transition, these automata can compare
the data values of the current configuration with those of the previous configuration using the
linear order, the unary predicates and the constants.

We show that emptiness for such automata is decidable, both over finite and infinite words,
under reasonable computability assumptions on the linear order.

Finally, we show how our automata model can be used for verifying properties of workflow
specifications in the presence of an underlying database.
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1 Introduction

System verification often requires dealing with infinite state systems. There are many sources
of infinity, one of them being the presence of variables ranging over an infinite set of data
values and this is the focus of this paper.

There exist several decidable models of automata and logics that explicitly manipulate
data values and that can be used for verification. In order to achieve decidability there is
a necessary trade-off between the permitted operations on data and the allowed recursion.
For instance, many models consider only equality tests between data values [3, 10, 14], or
limit the recursion or the expressive power [4, 5, 8, 9], or only apply over specific data
domains [11, 7, 8, 9, 6, 1].

In terms of possible operation on data values, equality tests permit already a wide range
of recursion schemes and the corresponding decidability results can be used for modeling a
variety of applications. However it has been advocated in [11] that comparisons based on a
linear order over the data values could be useful in many scenarios, including data centric
applications built on top of a database. They propose a model for specifying “artifact centric
workflows” in the presence of a database and prove that temporal properties can be verified
in PSpace, if the data domain is the set of rational numbers.

In this paper, we consider automata over words which are equipped with a finite set of
variables, ranging over a linearly ordered structure. Transitions of the automaton are based
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82 Verification over linearly ordered data domains

on constraints on the variables using the vocabulary of the structure. We present a method
for analyzing emptiness of such automata over finite and infinite words, independently of
the linearly ordered structure. We derive from it several useful decidability results. Below
we describe these contributions in more details.
The setting. We consider arbitrary linearly ordered structures. Apart for a linearly ordered
set, the structure may be equipped with finitely many unary predicates and constants. Over
the integers, typical unary predicates might denote the set of primes or the set of numbers
divisible by a fixed constant.
Automata. We present a model of automata (either for finite or infinite words) over such
linearly ordered structures. A configuration of the automaton is a tuple of data values of a
fixed arity. A transition constrains the values of the next configuration relative to the values
of the current one by a Boolean combination of predicates in the vocabulary of the structure.
The initial and accepting configurations are also specified using similar constraints.
The potential. Our main contribution is a generic toolbox for the described model of
automata, which is applicable to all linearly ordered structures. It is based on the notions of
potential and saturation. Intuitively, saturation1 transforms a linearly ordered structure by
inserting finitely many new constants until all intervals between two consecutive constants
contain infinitely many or no points of a certain property. Once the structure is saturated,
it admits a potential. One can think of the potential as of a measure of how generic a
configuration is; the main property is that an automaton may choose the next configuration
to be sufficiently generic, provided the previous configuration was also generic. The rest of
the paper can be seen as applications of these notions.
Main results. As a first application of our toolbox, we show that over any linearly ordered
structure our automata can be simulated by finite state automata. This implies that empti-
ness for our automata model is decidable for finite and infinite runs, if the structure satisfies
reasonable complexity assumptions, typically being able to test for satisfiability of a set of
constraints expressed using the predicates of the structure. This yields PSpace decision
procedures for many linearly ordered structures, in particular integers and rationals.

We also present a variant of LTL, where Boolean predicates are replaced with constraints
using the predicates of the structure, and which works over words extended by tuples of
data values. This logic can be translated into our automata model. Combining this with
the emptiness test mentioned above, we obtain decidability results concerning this logic and
PSpace complexity in most important cases. As our automata are closed under intersection,
this allows to test LTL properties on the runs of a given automata.

Finally, our last result shows how our toolbox can be used for dealing with automata
that moreover have the possibility of consulting a finite database in order to constrain their
transitions. This method works for all linearly ordered structures, giving an alternative
proof of the result of [11] over rationals but also solving the case of integers, which was
posed as an open problem.
Related work. Our automata model is very close to the one used in [7] over integer data
values. Čerāns solved the decidability of the emptiness problem using Dickson’s lemma. The
obtained decision algorithm is therefore non-primitive recursive. That proof does not apply
to dense linear orders and it’s not clear how it can be extended to incorporate the presence
of an underlying database. These issues are solved in this paper.

Our model of automata generalizes the register automata studied in [6, 14] – indeed,

1 Our notion of saturation differs from the usual logical one in two important ways: it considers only
existential types and it is constructive.
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a configuration can be seen as a valuation of the registers and additionally of the current
datum of the input word. Our model is more expressive as we can compare data values
using a linear order and unary predicates. Our setting also generalizes the model of [1] for
verifying properties of programs working on arrays. Their model allows for linear tests but
is specific to integers and finite runs.

Our notion of potential uses a partitioning of the space into cells. Similar techniques were
developed for timed automata or over dense linearly ordered structures. See for instance [12].
Over dense linearly ordered structures, register automata generalize the notion of timed
automata in a sense explained in [13]. Our notion of potential hence generalizes these ideas
even for discrete linearly ordered structures.

The work of [11] considers specification and verification of workflows over finite databases
whose underlying domain is the set of rationals. In fact, over the rationals, our model of
automata can be viewed as a simplification of the elaborate formalism used in [11], necessary
for the specific application targeted therein. As is shown in that paper, LTL formulas can
be checked in PSpace assuming a fixed database schema, ExpSpace otherwise. We obtain
similar results but our proof also applies for other linearly ordered structures, in particular
over the integers, settling an open problem raised in [11].

There exist many extensions of LTL with several kinds of constraints over various data
domains. Decidable fragments can compare data values using their relative order or their
value modulo some constant. The complexity of satisfiability is shown to be PSpace-
complete, see [8] for a survey. This also follows from our results.

Due to space limitations many proofs are omitted or only sketched. They will appear in the
journal version of this paper. We thank the anonymous referees for the useful comments.

2 Preliminaries

Linearly ordered structures. By a linearly ordered structure we refer to a structure of the
form D = 〈D,<,P1, P2, . . . , Pl, c1, c2, . . . , cm〉, where D is the domain of the structure, < is
a linear order on D, P1, . . . , Pl are unary predicates denoting subsets of D and c1, . . . , cm are
constants. Typical examples are 〈Z, <, 0, 1〉, 〈Q, <, 0〉, 〈{a, b}∗, <lex, Pa, Pb, ǫ〉 where <lex is
the lexicographical order and Pa, Pb are unary predicates indicating the last letter of a word.
But we also consider more elaborate linear orders such as 〈Q, <, Peven, Podd, Pprime〉, where
the three predicates correspond to even integers, odd integers and prime integers.
Formulas and cells. We now assume a fixed linearly ordered structure D and dimension
k. We consider k-ary relations over the domain of D definable by a Boolean combination of
atoms built from the symbols of D using k variables. Each set of this form will be called a
region in Dk. A region that corresponds to a maximal consistent conjunction of atoms or
negated atoms is called a cell in Dk. Note that there are finitely many cells and any region
is a disjoint union of cells. For instance, over D = 〈Z, <, 0〉, x < y defines a region of D2

which is the disjoint union of 5 cells: x < y < 0, x < y = 0, x < 0 < y, x = 0 < y and
0 < x < y. A tuple x̄ ∈ Dk will be also called a point in Dk. For each such x̄ we denote by
〈x̄〉 the unique cell in Dk containing x̄.

We fix a finite alphabet A. A D-automaton A of dimension k is a tuple ((δa)a∈A, τI , τF )
described as follows. For each letter a∈A, δa is a region in Dk×Dk =D2k, representing the
allowed transitions of A when reading the letter a; τI and τF are regions in Dk denoting the
initial and accepting configurations of A.

The configurations of A are points in Dk. Let w = a1a2 . . . an be a finite word. A run

ρ of A on w is a sequence of configurations x̄0, x̄1, . . . , x̄n ∈ Dk such that x̄0 ∈ τI and

STACS’11
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for each i ∈ {1, . . . , n}, the pair (x̄i−1, x̄i) lies in the region δai
. The run ρ is accepting

if the sequence terminates in a configuration x̄n ∈ τF . The language recognized by the
D-automaton A is the set of words for which there is an accepting run. In Section 4 we will
consider automata over infinite words, but right now we focus on finite words. As usual, we
are mostly interested in determining emptiness of such automata.

◮ Example 1. We define a D-automaton A of dimension 2, where D = 〈Q, <, 0〉 or D =
〈N, <, 0〉 and A = {a, b}. The regions τI , τF are both described by x1 ≥ 0 ∧ x2 ≥ 0. The
region δb is the set of points (x1, x2, y1, y2) such that y2 = x2 ∧ x1 < y1 < x2 and δa is
specified by y2 = x2 ∧ y1 = 0. The language recognized by A is (b∗a)∗.

◮ Remark. It is often convenient to equip D-automata with states. This does not change
the expressive power as states can be simulated using extra dimensions.

◮ Remark. Since one can construct Cartesian products of D-automata, the languages they
recognize are closed under union and intersection.

◮ Remark. We could also use existential formulas for defining the transitions of the auto-
maton. This would not affect decidability nor expressiveness. However, if we allowed a
logic which can define the successor relation (such as first-order logic, when working over
the naturals), we would easily encode a Minsky machine into the model, resulting in an
undecidable emptiness problem.

Results. In the next section we develop a framework for manipulating D-automata based
on the notions of potential and saturation. We illustrate the use of these notions by proving
that for any linearly ordered structure D and D-automaton A, the language recognized by
A is regular by exhibiting an equivalent finite state automaton, yielding:

◮ Theorem 2. For any linearly ordered structure D, D-automata recognize precisely the

class of regular languages.

We will see in Section 3.4 that our proof is actually constructive assuming that a reasonable
amount of computation can be performed on D. Our construction brings a PSpace com-
plexity for the emptiness problem for all linearly ordered structures used in the literature.

An analogue of Theorem 2 for infinite words no longer holds. However, with further
computational assumptions, we will extend the decidability of emptiness to the infinite
setting in Section 4. In Section 5 we show how LTL formulas using constraints expressible
over D can be translated into D-automata. Finally in Section 6 we show how our framework
can also be used to solve the case where an underlying finite database is present.

3 Finite words

3.1 Cell automata

In this section we fix a linearly ordered structure D and a D-automaton A of dimension k,
described by the tuple ((δa)a∈A, τI , τF ). We construct a finite nondeterministic automaton
A′, called the cell automaton, targeted at simulating the runs of A.

The states of A′ are the cells of Dk. The automaton A′ has a transition from the state τ
to the state τ ′ labeled by the input letter a if and only if there exist x̄ ∈ τ and ȳ ∈ τ ′ such
that (x̄, ȳ) ∈ δa. The initial states of A′ are those cells τ for which τ ⊆ τI . The accepting
states are those cells τ for which τ ⊆ τF . The following proposition is rather immediate:

◮ Proposition 3. The language recognized by A is included in the language recognized by A′.
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The converse inclusion does not always hold, as shown in the following example.

◮ Example 4. Let D = 〈Z, <, 0, 3〉 and let A be the D-automaton of dimension 1 described
as follows. The region δa is the subset of D2 given by the condition 0 < x < y < 3; the initial
and final regions are defined by 0 < x < 3. A accepts {ǫ, a}. However, the cell automaton
A′ corresponding to A has a self-loop in the state corresponding to the cell 0 < x < 3 and
therefore recognizes the language a∗.

3.2 Potential

We can prove the correctness of the cell construction if Dk is equipped with a sort of inductive
measure called the potential which tells, roughly, given a point x̄ ∈ Dk, how long runs of the
cell automaton can be lifted to runs of the original automaton, starting from the point x̄.
Formally, a function E : Dk → N ∪ {∞} is called a potential for Dk if it satisfies the following
conditions.

1. Cells have unbounded potential: For any cell θ ⊆ Dk and any number s ≥ 0 there exists
a point x̄ ∈ θ such that E(x̄) ≥ s.

2. Transitions decrease the potential by at most 1 : Let τ, τ ′ ⊆ Dk, δ ⊆ D2k be cells such
that there exists (x̄0, ȳ0) ∈ δ with x̄0 ∈ τ and ȳ0 ∈ τ ′. Then, if x̄ ∈ τ is such that
E(x̄) ≥ s + 1 for some s ≥ 0, there exists a point ȳ ∈ τ ′ such that (x̄, ȳ) ∈ δ and
E(ȳ) ≥ s.

◮ Example 5. If D = 〈Q, <, 0, 3〉, the mapping constantly equal to ∞ is a potential for Dn,
for any n ∈ N. This follows easily from the fact that Q is a dense linear order.

On the other hand, if D = 〈Z, <, 0, 3〉 as in Example 4, then D1 cannot be equipped with
a potential. Indeed, the cell τ : 0 < x < 3 contains only two points, x̄0 = 1 and ȳ0 = 2.
By using the second axiom, it is not difficult to prove that both points in τ must have a
potential smaller than 2, contradicting the first axiom of the potential.

However, if D = 〈Z, <, 0, 1, 2, 3〉, there is a potential for D1 which assigns to a point
x the value ∞ if x ∈ {0, 1, 2, 3} and the distance from x to the “critical set” {0, 1, 2, 3}

otherwise. Intuitively, a cell in D2, seen as a transition, either sets the value of the variable
to some constant, or allows the variable to attain a value arbitrarily far from the critical set,
or requires the variable to get closer by at least one to the critical set. In any case, taking
a point x ∈ Z with potential at least s, we can follow any transition and guarantee to end
up in a point with potential at least s− 1.

Finally, consider D2, where D = 〈Z, <, 0, 1, 2, 3〉. Then D2 can also be equipped with a
potential which, roughly, to a given point (x, y) assigns a value which depends on how far
the variables x, y are from the constants 0, 1, 2, 3 and from each other. Such a potential is
constructed in the next section.

In the presence of a potential, runs of the cell automaton induce corresponding runs
of the original D-automaton. This is phrased in the following proposition, whose proof is
obtained from the definition by an easy induction.

◮ Proposition 6. Let Dk be equipped with a potential E, let A be a D-automaton of dimen-

sion k and let A′ be the cell automaton corresponding to A. Let τ0 → τ1 → · · · → τn be a

run of the cell automaton over a word a1a2 . . . an. Then, for all numbers s ≥ 0 and for all

points x̄0 ∈ τ0 such that E(x̄0) ≥ s+ n there exists a sequence of points x̄1, x̄2, . . . , x̄n ∈ Dk

such that x̄i ∈ τi, E(x̄i) ≥ s+ i and (xi−1, xi) ∈ δai
for all i = 1, . . . n.

STACS’11
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In the above proposition, accepting runs of A′ clearly induce accepting runs of A. There-
fore, we immediately obtain the following.

◮ Theorem 7. Assume that there is a potential E for Dk. Then, for any D-automaton of

dimension k, the corresponding cell automaton A′ recognizes the same language as A.

3.3 Constructing the potential and saturation

When D cannot be equipped with a potential, we show how to extend D to a structure
which is saturated. For such structures, we are always able to define a potential. Altogether,
this will prove Theorem 2. In Example 4 the saturation process will add the constants 1, 2
to the structure, allowing the new cell automaton to count up to 3.

Let D be a linear order. A virtual element of D is a subset S of D which is downward
closed (i.e. x ∈ S ∧ y ≤ x =⇒ y ∈ S), but is not of the form {y | y < x} or {y | y ≤ x} for
some x ∈ D. For an element x ∈ D and a virtual element S, we will write x < S if x ∈ S,
and x > S otherwise. Also, for two virtual elements S, S′ we can write S < S′ if S ( S′. We
denote by D̄ the set of elements and virtual elements of D, linearly ordered by < (known as
the Dedekind completion, modulo the elements ∅, D which are normally not considered in
D̄). Note that D̄ has a smallest and largest element, denoted c−∞ and c∞, respectively.

In a linearly ordered structure D we distinguish between two kinds of unary predicates.
We denote those that correspond to virtual elements, as they play a crucial role in our proofs,
as virtual constant and we treat them as constants. In particular we will use symbols c, d
for both virtual and real constants. As an example, consider the linearly ordered structure
〈Q, <, e〉 where e is a virtual constant corresponding to the set {x ∈ Q | x < 2.718 . . .}.

For a point x ∈ D, we define its type, denoted t(x) as the set of unary predicates
(including virtual constants) it satisfies and constants which it is equal to.

To simplify the following definitions, we will assume that c−∞ and c∞ are (possibly
virtual) constants of D. Let w = t1, . . . , tn be a sequence of types. We say that a sequence
of points x1 < . . . < xn realizes w if t(xi) = ti for all i. For an interval I, we say that w is
realizable in I if some sequence x1 < . . . < xn of elements of I realizes w.

We construct a function, called quasi-potential, qE : D∗ → N ∪ {∞}, defined on all tuples
of elements of D. It will give raise to a potential defined on Dk, for all k. Intuitively, x̄ has
high potential if long sequences of types can be realized in between any two coordinates of
x̄ or between a coordinate of x̄ and a constant. The precise definition is given below.

Let x̄ be a point in Dk. Let {u1, u2, . . . , us} be the union of the set of coordinates of x̄
and of the set of constants and virtual constants of D. We assume that u1 < u2 < . . . < us.
For x ∈ D̄ let c(x) be the largest (virtual) constant c such that c ≤ x and c(x) be the
smallest (virtual) constant c such that x ≤ c. For 1 ≤ i < s, let Ti be the set of types
occurring in ]c(ui), c(ui+1)[. For each 0 ≤ i < s, the capacity of the interval ]ui, ui+1[ is the
length of the shortest sequence of elements of Ti which is not realizable in ]ui, ui+1[ or as ∞

if all such sequences are realizable. Finally, we define

qE(x̄) = min{capacity of ]ui, ui+1[ | 1 ≤ i < s}.

In the case where k = 0, D0 contains only one element – the empty tuple ε. We say that
D is saturated if qE(ε) = ∞. In other words, for any two consecutive (virtual) constants
c, d, any sequence of types which occur between c and d is realizable between c and d. Any
linearly ordered structure can be transformed into a saturated one:

◮ Theorem 8. Let D be a linearly ordered structure. It is possible to expand D with a finite

set of constants and virtual constants to obtain a saturated structure D̂.
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Proof. We say that a linear order D is complete if any subset of D has its supremum, i.e.
a least upper bound (again, this deviates slightly from the standard notion of completeness
by the least and smallest elements). Examples of complete linear orders are N ∪ {∞},R ∪

{−∞,+∞} but not Q∪{−∞,+∞} nor R. The following lemma solves the case of complete
linear orders.

◮ Lemma 9. Let D be a complete linear order. Let a < b be two points in D and let

t : ]a, b[ → T be a function with |T | = n < ∞. Then there exist a = d0 < d1 < . . . < dm = b

such that for any interval I =]di, di+1[ and w ∈ (t(I))∗, the sequence w is realizable in I.

Proof. We prove the claim by induction on n. If n = |T | = 0 there is nothing to prove. Let
us assume that we have proved the proposition for all |T | < n. Let s denote the length of
the shortest sequence w ∈ T ∗ which is not realizable in the interval ]a, b[. We do a nested
induction on s. If s = 1, there is a u ∈ T which does not occur in ]a, b[, so we may reduce
the set T to T \ {u} with less than n elements. Let us assume that s ≥ 2.

Let w = t1, . . . , ts ∈ T ∗ be the sequence of length s which is not realizable in the interval
]a, b[. We will define an element c such that for both open intervals ]a, c[ and ]c, b[, there is
a non-realizable sequence of length smaller than s.

If s > 2 then the sequence t1, ts is realizable in ]a, b[, so let x < y realize it. Let c = x.
Then the sequence t1, t2, . . . , ts−1 is not realizable in the interval ]a, c[ and the sequence
t2, t3, . . . , ts is not realizable in the interval ]c, b[.

If s = 2, the sequence t1, t2 is not realizable in ]a, b[. Let us consider the supremum c of
all possible x with t(x) = t2. Then, t2 is not realizable in the interval ]c, b[. Moreover, t1 is
not realizable in the interval ]a, c[ — otherwise, t1, t2 would be realizable in ]a, b[.

We apply the inductive assumption to ]a, c[ and ]c, b[ obtaining sequences a = d0 < d1 <

. . . < dm = c and c = dm < dm+1 . . . < dm′ = b such that for any interval I =]di, di+1[ and
w ∈ (t(I))∗, the sequence w is realizable in I. This ends the inductive proof of the lemma. ◭

Let D = 〈D,<,P1, P2, . . . , Pl, c1, c2, . . . , cm〉 be an arbitrary linearly ordered structure.
It is well known that 〈D̄,<〉 is a complete linear order. Let us consider the structure

D̄ = 〈D̄,<, P0, P1, P2, . . . , Pl, c1, c2, . . . , cm〉,

where P0 is the unary predicate corresponding to the set D ⊆ D̄. Let t : D̄ → T be the
function which assigns to an element of D̄ its type, i.e. the set of unary predicates it satisfies
and constants equal to it. We apply Lemma 9 to D̄ and the points c−∞ < c∞. We obtain
a sequence of elements d0 < d1 < . . . < dm′ such that for any interval I =]di, di+1[ and w ∈

(t(I))∗, the sequence w is realizable in I. We define D̂ as the extension of D by the (possibly
virtual) elements d0, . . . , dm′ as constants. It is easy to verify that D̂ is saturated. ◭

◮ Example 10. We apply the procedure of Theorem 8 to D = 〈Z, <, 0, 3〉 of Example 4.
The only relevant interval is ]0, 3[. There is only one type t in ]0, 3[ and ttt is not realized.
Since tt is realized by 1 < 2, we are in the first case and the constant 1 is added to D. In the
next step, the relevant interval is ]1, 3[ and tt is not realized in it. Adding the supremum of
all elements of type t in ]1, 3[, i.e. the constant 2, yields a saturated structure.

To see why we might need to also add a virtual constant, consider the linearly ordered
structure D = 〈Q, <, 0, 3, P,Q〉 where P = {(1−1/n)n|n ∈ N} and Q = {(1+1/n)−n|n ∈ N}.
Consider the interval ]0, 3[. As P ∩ Q = ∅ there are three types occurring in this interval:
t1 = {P}, t2 = {Q}, t3 = ∅. Since t1t2 is not realized in ]0, 3[, the procedure of Theorem 8
introduces the supremum of all elements of type t2 in this interval, i.e. the virtual constant e.
The reader can verify that the resulting structure D̂ = 〈Q, <, 0, 3, e, P,Q〉 is saturated.

STACS’11



88 Verification over linearly ordered data domains

◮ Theorem 11. If D is a saturated linearly ordered structure and k ≥ 0 then there is a

potential E for Dk, given by E(x̄) = ⌊log3k (qE(x̄))⌋.

Proof sketch. First we show that if x̄ ∈ Dk has qE(x̄) ≥ s for some large s, then we can
extend it to a point (x̄, y1) laying in a prescribed cell τ1 in Dk+1, and with qE(x̄, y1) ≥ s′ for
some still large s′. We need to assume that τ1 is a “reasonable” cell – i.e. the projection of
τ1 onto the first k coordinates contains the point x̄. The cell then τ1 typically requires that
y1 lays in the interval between some two coordinates of x̄, and moreover is of some type t.
The idea is to choose y1 to lie “in the middle” of the prescribed interval, obtaining a point
with quasi-potential larger than a third of s. Iterating this process, we insert k coordinates,
getting a point (x̄, ȳ) which lays in a prescribed cell τ in D2k with qE(x̄, ȳ) ≥ s

3k . We conclude
that qE(ȳ) ≥ s

3k . By taking the appropriate logarithm, we construct the actual potential.
To show that qE is unbounded on all cells, we reuse the above reasoning: we start with the
empty tuple ε with qE(ε) ≥ s for all s by saturation, and insert coordinates one after the
other, preserving high qE-value, and finally obtaining a point in the desired cell. ◭

3.4 Computability and Complexity issues

We now turn to the complexity analysis. In practical applications, a base linearly ordered
structure D is fixed and new constants come with the description of the automaton. Here,
and in other sections, for a finite set C ⊆ D, we denote by D[C] the structure D extended
by the constants in C. The above motivation leads to the following decision problem, which
we call emptiness of D[C]-automata. Input: 1) A set C of elements of D, encoded in some
specified presentation 2) A description of a D[C]-automaton A. Decide: is A empty?

Our decision algorithm essentially works as follows: We first compute a saturated ex-
pansion D̂ of the structure D[C]. We then compute in D̂ the cell automaton A′ associated
to A and check its emptiness. The correctness of this algorithm follows from the results of
the previous sections. In order to decrease the complexity, we materialize neither D̂ nor A′

but compute them on the fly. For D̂ we need to know the new (virtual) constants that were
introduced together with their type. For A′ we essentially need to know the possible types
that may occur in the interval between any two successive (virtual) constants of D̂. We
therefore need to assume that D is equipped with an algorithm giving us this information.
This is formalized as follows.

A sequence s : t0T1t1T2 · · · tn−1Tntn where t0, t1, . . . , tn−1, tn are types and T1, T2, . . . , Tn

are sets of types of D is called a saturator. Given two elements x and y of D, we say that a
sequence c0 < c1 < . . . < cn of (possibly virtual) elements of D matches s in [x, y] if c0 = x,
cn = y, ci is of type ti and T ∗

i are precisely the sequences of types realizable in ]ci−1, ci[.

◮ Example 12. Over 〈Z, <, 0〉, the saturator t∅Tǫt0Tǫt∅Tǫt∅, where t∅ is the empty type, t0
is the type of 0 and Tǫ = {}, is matched in [−1, 2] by the sequence −1 < 0 < 1 < 2.

◮ Example 13. Over 〈Q, <, 0, P 〉, where P = {(1 + 1/n)n | n ∈ N+}, the sequence −100 <
0 < 2 < e < 100 matches the saturator t∅T∅t0T∅tPTP t∅T∅t∅ in [−100, 100] where tP is the
type P , TP = {t∅, tP }, T∅ = {t∅}, while t0 and t∅ are as before.

A saturator is realizable in [x, y] if there is a sequence which matches it in [x, y]. A linearly
ordered structure D is said to be computable if there is an algorithm that given any two
elements x, y of D replies the length of a saturator s realizable in [x, y], and afterwards, when
given a number i as input, returns the ith element of the sequence s. When this algorithm
works in PTime, we say that D is P-computable. Note that for integers or rationals, an
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obvious saturator algorithm runs in PTime, even if the numbers are coded in binary. By a
careful analysis of the proof of Theorem 2 we obtain the following.

◮ Theorem 14. If D is P-computable (respectively, computable) the emptiness problem of

D[C]-automata is in PSpace (respectively, decidable).

Sketch. Assume D is P-computable. Let A be a D[C]-automaton. For each pair of con-
secutive elements in C, we invoke the saturator algorithm. Let l be maximal of the lengths
of the saturators as returned by the saturator algorithm. Since l has polynomial size, each
(virtual) constant in the saturated expansion D̂ of D[C] for that interval has a polynomial
size presentation. Hence, in the end, each cell of D̂ has a polynomial size representation.
Given two cells, it can be checked in polynomial time whether there is a transition in the
cell automaton associated to A. This is because D̂ is saturated, so only local consistency
needs to be checked – namely, whether the type associated with each variable is indeed a
possible type in the interval where this variable must be realized – and this information is
also provided by the saturator algorithm. Decidability then follows by guessing on the fly
the appropriate sequence of cells. ◭

4 Infinite words

We now consider infinite words. Recall that a D-automaton A of dimension k consists of
the transition regions (δa)a∈A, an initial region τI ⊆ Dk and an accepting region τF ⊆ Dk.
A Büchi D-automaton is an automaton over infinite words, in which a run ρ is declared
accepting if it visits infinitely often the region2 τF .

The following example shows that Theorem 2 does not directly extend to infinite words.

◮ Example 15. An infinite sequence of numbers n1, n2, . . . induces an infinite word bn1abn2 . . .

Let L be the language of words which are induced by bounded sequences. Then L is recog-
nized by the Büchi D-automaton A described in Example 1, where D = 〈N, <, 0〉.

The language (b∗a)ω \ L does not contain any ultimately periodic word. In particular, L

cannot be ω-regular. We will see that also nonempty Büchi D-automata must accept some
ultimately periodic word, so we deduce that they are not closed under complementation.

Although Büchi D-automata are more expressive than Büchi automata, we show that
emptiness can be reduced to the finite case, under additional computability assumptions
concerning D. We need the following notions. For a type t, we say that a (virtual) element
x of D is a left t-limit if for every y ∈ D such that y < x, the type t occurs between y

and x. A right t-limit is defined dually. The ω-type of a point x ∈ D̄ is its type extended
by the specification, for all types t, whether it is a left or right t-limit or none. An ω-

saturator is a sequence of the form t0T1t1T2 · · ·Tntn where each ti is an ω-type and each
Ti is a set of ω-types. We extend the notion of matching to the case of ω-saturators in an
obvious way. Next, we define (P-)ω-computability analogously to (P-)computability, where,
for given x, y ∈ D the algorithm should calculate an ω-saturator realizable in [x, y] treated
as a subset of D̄. Note that the structures considered earlier are P-ω-computable.

◮ Theorem 16. For a P-ω-computable (resp. ω-computable) linearly ordered structure D,

emptiness of Büchi D[C]-automata is in PSpace (resp. decidable).

2 An acceptance condition requiring that ρ visits infinitely often a point x̄ ∈ τF yields a weaker model.
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It appears that D-automata are related with ωB-automata, a model defined in [2]. In-
formally, an ωB-automaton is a nondeterministic automaton equipped with counters which
can be incremented and reset, but not tested during the run. The acceptance condition of
the automaton, apart from a Büchi condition, requires that the counters remain bounded
when processing the infinite input word. We call a language recognized by a D-automaton
(resp. ωB-automaton) a D-regular (resp. ωB-regular) language.

◮ Theorem 17. If D = 〈Q, <, c1, c2, . . . , cm〉 then the classes of D-regular languages and

ω-regular languages coincide. If D = 〈N, <, c1, c2, . . . , cm〉 then the classes of D-regular

languages and ωB-regular languages coincide. Moreover, all translations are effective.

It appears that the above dichotomy is valid for all linearly ordered structures D, depending
on whether a discrete set is definable in D (this can be formalized). The general result will
appear in the journal version of this paper.

As a conclusion from the strong complementation result of [2], we obtain:

◮ Corollary 18. Let A be a finite alphabet and D be as in the above theorem. It is decidable

whether a Boolean combination of languages accepted by D-automata over A is empty.

5 Temporal logic

We fix a linearly ordered structure D. We consider a variant of LTL where each atomic
predicate is replaced by a proposition comparing the current configuration with the next
one. We denote this logic by LTL(D). Its syntax is given by the following grammar:

ϕ :: ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ | ψ

ψ :: ψ ∧ ψ | ψ ∨ ψ | ¬ψ | a | P (α) | α = α | α < α

α :: x | Xx | c

where x ∈ {x1, x2, . . .} are variables, a ∈ A letters, c ∈ D, and P unary predicates of D.
The semantics of a formula ϕ ∈ LTL(D) is defined on sequences of elements in A×Dk,

where k is the maximal number such that xk appears in ϕ. Let w = (a1, z̄1)(a2, z̄2) . . . be
such a sequence. Let ψ be a proposition as described by the grammar above and let n be a
position of w. We write (w, n) |= ψ if from ψ we obtain a sentence which is valid in D after
replacing the terms of the form xi by the ith coordinate of z̄n, and terms of the form Xxi by
the ith coordinate of z̄n+1. Using the classical semantics of LTL, we extend this notation to
all formulas ϕ of LTL(D), and say that w is accepted by ϕ if (w, 1) |= ϕ.

The following result can be established along the same lines as in the classical translation
of LTL formulas into automata. Cϕ denotes the set of values which appear in the formula ϕ.

◮ Theorem 19. For any LTL(D) formula ϕ there exists a D[Cϕ]-automaton Aϕ whose runs

are exactly the sequences accepted by ϕ.

◮ Remark. In [8] terms of the form X
jx were allowed, enabling to compare the data value

with one that will occur j steps later. This can be simulated by a formula of LTL(D) after
adding new dimensions used to guess in advance the values that will appear in the following
j steps. The consistency of the guesses can be enforced at each step by a formula of LTL(D).

◮ Remark. It is tempting to consider other temporal formalisms. One could define a vari-
ant of µ-calculus analogously to the extension LTL(D) described above, and our model of
automata still can simulate such formulas. However, as noticed by [7, 11, 8] over various
domains, CTL(D) is undecidable.
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6 Databases

Following [11] we apply in this section the results of the previous sections in the context
where a finite database is present. For this, we fix a relational schema σ and a linearly
ordered structure D. A database over σ is then, for each relation symbol of σ, a finite
relation of the appropriate arity over the domain of D.

A (D, σ)-automaton A of dimension k is described as follows. As before, the configura-
tions of A are points in the space Dk. We assume an initial region τI ⊆ Dk and an accepting
region τF ⊆ Dk. For each a ∈ A, the transition δa is a set of pairs of the form (τ, ϕ), where
τ is a region in Dk × Dk, while ϕ is a propositional formula over σ with 2k free variables.
Given a finite database M over the schema σ and two points x̄, ȳ ∈ Dk, we write x̄

a
→M ȳ

iff there is a pair (τ, ϕ) ∈ δa with (x̄, ȳ) ∈ τ and M |= ϕ(x̄, ȳ). A run ρ of A on w = a1a2 . . .

over M , is a sequence of configurations x̄0, x̄1, . . . ∈ Dk such that x̄0 ∈ τI and for each n > 0,
x̄n−1

an→M x̄n. Acceptance conditions are defined as before, for finite or infinite runs.

◮ Example 20. We fix D = 〈Q, <, 0〉 and σ = {P} where P is unary. Consider the (D, σ)-
automaton A of dimension 1, where τI , τF are both described by x = 0. The region τb

is the set of points (x, y) such that x < y and δb is the pair (τb, P (y)) while δa is just
specified by the region y = 0. Hence, the length of any sequence of b’s is bounded by the
size of the database, so the infinite words w for which there exists a database M and a run
of A consistent with w and M are exactly the bounded sequences of Example 15. Recall
from Theorem 17 that without the underlying database D-automata would only recognize
ω-regular languages.

Our goal is to decide whether, for a given (D, σ)-automaton A, there exists a finite database
M such that A has an accepting run over M .

◮ Remark. A more general setting would allow the database constraints ϕ to be existential
queries with 2k free variables. This setting can be easily reduced to the one above, by having
the automaton A guess the values for the quantified variables using extra dimensions.

It appears that adding the database does not influence the decidability results obtained
in Theorem 14 and Theorem 16 for finite and infinite words, respectively. We state the
result in the database setting.

◮ Theorem 21. Let D be a computable (resp. ω-computable) linearly ordered structure.

Given a (D[C], σ)-automaton A, it is decidable whether there exists a finite database M and

a finite (resp. infinite) word w such that there is an accepting run of A on w over M .

Moreover if D is P-computable (resp. P-ω-computable) then the complexity is PSpace for

a fixed schema, ExpSpace otherwise.

Sketch. We only sketch here the ideas for the case of finite words. The case of infinite runs
is done by a reduction to the finite one in a way similar to the proof of Theorem 16. We tem-
porarily treat A as a D[C]-automaton, for each a merging into one all regions appearing in
the transition δa. Let A′ be the corresponding cell automaton, over the saturated expansion
D̂ of D[C]. A run π′ of A′ is lifted to a run π of A inductively, assuring that in each step we
obtain a configuration with a big potential. The key observation is that the new configura-
tion can be chosen so that it does not use values which appeared in previous configurations,
unless it is explicitly required by the transition. Hence it is enough to guess the database
relations for the constants D̂ (this is exponential in the maximal arity of a relation in σ,
hence the complexity becomes ExpSpace unless this arity is fixed) and maintain locally, by
adding states to A′, the consistency of the database. Each time a new configuration reuses
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some data values, this is enforced by the transition and hence consistency can be tested by
A′ at the time of the transition. Otherwise, as we observed, fresh data values can always be
chosen and consistency with the previous constraints is immediate. ◭

Logic. The logic LTL(D) described in Section 5 can be extended to a logic LTL(D, σ) by
adding, for each symbol E in σ of arity k, a production ψ :: E(α, α, . . . , α), in which the right-
hand side has k arguments. Atoms of the form E(x,Xy), F (x, y,Xx) etc. represent database
queries. Just as before, the logic LTL(D, σ) can be transformed into (D, σ)-automata, and
thus can be effectively verified. We omit the details in this abstract.

7 Conclusions

We have introduced an automata model capable of storing values from a linearly ordered
set, additionally equipped with constants and unary predicates. We have shown how to
simulate runs of such automata by finite state automata. This translation is effective as
soon as the structure has some reasonable computational properties. This provides a uniform
presentation for results concerning specific data domains that were disseminated in various
papers. Moreover this sometimes decreases the known complexity or solves open questions.

It would be interesting to see whether our work can be extended to other structures. We
leave this for future work.
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