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Abstract

We study several canonical decision problems arising from some well-known theorems from com-
binatorial geometry. Among others, we show that computing the minimum size of a Caratheodory

set and a Helly set and certain decision versions of the ham-sandwich cut problem are W[1]-hard
(and NP-hard) if the dimension is part of the input. This is done by fpt-reductions (which are
actually ptime-reductions) from the d-Sum problem. Our reductions also imply that the prob-
lems we consider cannot be solved in time no(d) (where n is the size of the input), unless the
Exponential-Time Hypothesis (ETH) is false.

The technique of embedding d-Sum into a geometric setting is conceptually much simpler than
direct fpt-reductions from purely combinatorial W[1]-hard problems (like the clique problem) and
has great potential to show (parameterized) hardness and (conditional) lower bounds for many
other problems.
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1 Introduction

Many theorems from combinatorial geometry are of the following type: If a set of n objects
has a certain property, then there is already a subset of size d + 1 that has this property.
Two examples of this are Caratheodory’s Theorem [6] and Helly’s Theorem [22].

Caratheodory’s Theorem states, in one of its several formulations, that whenever a point
p is contained in the convex hull of a point set in R

d, then it is already contained in the
convex hull of a subset of size at most d + 1. A minimal set containing p in the convex hull
is called a Caratheodory set for p. The canonical decision problem, that asks whether there
is an even smaller set, can be stated as follows:
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◮ Definition 1. (d-Caratheodory-Set) Given a point set in R
d, are there d points whose

convex hull contains the origin?

Stated in a dual setting, this gives another well known theorem: If n convex sets in
R

d have an empty intersection, then by Helly’s Theorem there are already d + 1 whose
intersection is empty. This leads to the following decision problem:

◮ Definition 2. (d-Helly-Set) Given n convex sets P1, . . . , Pn in R
d, do any d of them

have an empty intersection?

The canonical decision versions of Caratheodory’s and Helly’s Theorem have not explicitly
been considered in the literature so far. This is quite surprising, as they are interesting to
people from computational as well as discrete geometry. However, similar problems arise in
the context of Linear Programming, most notably the following:

◮ Definition 3. (d-Min-IIS) Given n inequalities in R
d, do any d of them have an empty

intersection?

The d-Min-IIS has been studied before, mainly because of its connection to the NP-
complete Maximum-Feasible-Subsystem problem, where one is given an infeasible linear
program and one has to find a feasible subsets of constraints of maximum size. Amaldi et
al. [2] show that d-Min-IIS is NP-hard by a (transitive) reduction from Dominating-Set.
However, the dimension depends on the size of the graph, so it does not reveal anything
with respect to this parameter d.

The Ham-Sandwich Theorem as a corollary of the Borsuk-Ulam Theorem (see, e.g.,
Matoušek [29]) states that for any d finite point sets in R

d there is a hyperplane that bisects
all of the sets at once, i.e., has at most half of the points on each side. Computing a
ham-sandwich cut efficiently is an important problem and has been studied extensively (see
Edelsbrunner and Waupotitsch [13], Matoušek et al. [27], Yu [36]). For general dimension,
the fastest known algorithm [27] runs in time roughly O

(

nd−1
)

.

The ham-sandwich problem is not a decision problem, as, given an instance, we know
that there always exists a solution, but still it is not known how to find it efficiently. Such
problems are captured by the complexity class PPAD, see Papadimitrou [33]. It is an
important open question whether computing a ham-sandwich cut is PPAD complete. In
this paper we show that a natural "incremental" approach for computing the ham-sandwich
cut will not work unless W [1] = P : One way to find a ham-sandwich cut incrementally
could be to take any point, decide whether there is some ham-sandwich cut through it, and
perform a dimension reduction until the hyperplane is determined. This gives rise to the
following decision problem:

◮ Definition 4. (d-Ham-Sandwich) Given d sets P1, . . . , Pd in R
d and a point a ∈ R

d, is
there a ham-sandwich cut that passes through a?

We show that d-Ham-Sandwich is W [1]-hard and therefore most likely no polynomial
algorithm (FPT or otherwise) exists for this problem.

The reductions presented in this paper use a new technique of embedding of d-Sum

into the d-dimensional space. Thereto, a d-Sum instance is encoded into sets of points (or
hyperplanes, respectively), and the property of d elements summing up to 0 is expressed by
an equivalent geometric property of the point set, e.g., allowing a ham-sandwich cut through
the origin.
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1.1 Overview

The main results of this paper presented in In Sec. 3, 4, and 5 are the following:

◮ Theorem 5. The problems d-Caratheodory-Set and d-Helly-Set are W[1]-hard with

respect to the parameter d and NP-hard.

All reductions are slight modifications of the hardness proof for the problem d-Affine-

Containment considered in Sec. 2.
Subsequently, two easy corollaries are derived from these theorems:

◮ Corollary 6. The problem d-Min-IIS is W[1]-hard with respect to the dimension.

Observe that this problem becomes polynomial-time solvable if we ask for d + 1 halfspaces
by first solving the corresponding linear program and afterwards applying Helly’s Theorem.

◮ Corollary 7. Deciding whether a point q is in general position1 with respect to P is W[1]-

hard with respect to d and NP-hard.

For the d-Ham-Sandwich problem, a little more work has to be done. By adding certain
balancing points to the previous construction, it is achieved that ham-sandwich cuts through
the origin correspond exactly to sets of d numbers that sum up to 0. From this construction,
the next result follows:

◮ Theorem 8. The d-Ham-Sandwich problem is W[1]-hard with respect to the dimension

and NP-hard.

Combining our reductions with a result of Pǎtraşcu and Williams [34], Theorems 5 and
8 immediately give:

◮ Corollary 9. The problems d-Caratheodory-Set, d-Helly-Set and d-Ham-Sandwich

cannot be solved in time no(d) (where n is the size of the input), unless the Exponential-Time

Hypothesis (ETH) is false2.

1.2 Related work

The study of computational variants of theorems from discrete geometry is not new. Several
problems that arise from theorems in discrete geometry have received a lot of attention, most
notably computation of (approximate) center- and Tverberg points in the plane as well as
in higher dimension. In the plane, surprisingly one can compute a centerpoint in linear time
[24]. In three dimensions, O(n2polylog n) deterministic algorithms are known ([31], [10]). If
the dimension is part of the input, the best (randomized) algorithm due to Chan [7] runs in
O(nd−1) time. The corresponding decision problem has also been considered, i.e., to decide
whether a given point is a center point. This problem has been shown to be co-NP complete
if d is part of the input by Teng [35]. See also Agarwal et al. [1] and Miller and Sheehy [30]
for recent progress.

A decision version of ham-sandwich problem in the plane has been studied by Chien and
Steiger [9]: decide whether there is more than one cut. They provide an Ω(n log n) lower

1 No hyperplane that contains d points from P also contains q.
2 The Exponential Time Hypothesis [23] conjectures that n-variable 3-CNFSAT cannot be solved in

2o(n)-time.

STACS’11
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bound, which shows that searching for an object can be easier than deciding whether an
object is unique.

Perhaps surprisingly, the computation of smallest sets arising from Caratheodory’s and
Helly’s Theorem has not been explicitly studied even though it has been studied under the
guise of IIS in the context of Linear Programming.

Even though the dimension of geometric problems is a natural parameter for studying
their parameterized complexity, only relatively few results of this type are known: Langer-
man and Morin [26] gave fpt-algorithms for the problem of covering points with hyperplanes,
while the problem of computing the volume of the union of axis parallel boxes has been shown
to be W[1]-hard by Chan [8]. Cabello et al. [5, 4] have developed a technique that has been
applied succesfully to show W[1]-hardness for a number of problems from various application
areas like shape matching [3], clustering [4, 19], and discrepancy-computation [20]. We refer
to Giannopoulos et al. [21] and Knauer [25] for surveys on other parameterized complexity
results for geometric problems.

For a general introduction to combinatorial geometry, we recommend Matoušek [28] and
Ziegler [37].

1.3 Parameterized complexity

Parameterized complexity theory provides a framework for the study of algorithmic problems
by measuring their complexity in terms of one or more parameters, explicitly or implicitly
given by their underlying structure, in addition to the problem input size. For an introduc-
tion to the field of parameterized complexity theory, we refer to the textbooks of Flum and
Grohe [17], Niedermeier [32] and Downey and Fellows [12].

The dimension d of geometric problems in R
d is a natural parameter for studying their

parameterized complexity. In terms of parameterized complexity theory the question is
whether these problems are fixed-parameter tractable with respect to d. Proving a problem
to be W[1]-hard with respect to d, gives a strong evidence that an fpt-algorithm (i.e., an
algorithm that runs in time O (f(d) · nc) for some fixed c and an arbitrary function f) does
not exist. W[1]-hardness is often established by fpt-reductions from the clique problem in
general graphs, which is known to be W[1]-complete [12]. Below we use a different approach
by giving conceptually much simpler fpt-reductions from the d-Sum problem [18, 15]:

◮ Definition 10. (d-Sum) Given n integers, are there d (not necessarily distinct) numbers
that sum up to 0?

This problem is NP-hard [15] and can be solved in (roughly) O(nd/2) time. It can be
shown to be W[1]-hard with respect to d from a simple reduction from the subset-sum
problem which was shown to be W[1]-hard by Downey and Koblitz [16]. Recently it has
been shown [34] (without using parameterized complexity explicitly) that, unless the ETH
fails, d-Sum cannot be solved in time no(d).

Reductions from 3-Sum seem somewhat more “natural” for computational geometers:
Gajentaan and Overmars [18] introduced the 3-Sum problem for the purpose of arguing that
certain problems in planar geometry “should” take Ω(n2) time; showing 3-Sum-hardness for
such problems is considered a routine task today. Knauer [25] has pointed out that the work
of Erickson [15] implicitly shows W[1]-hardness for two geometric problems parameterized
by the dimension (the affine degeneracy-detection problem and the convex hull simlicity-
detection problem) by giving reductions from the k-Sum problem. Surprisingly – apart
from Erickson’s work – this technique has not been used to show W[1]-hardness of more
geometric problems in R

d.
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1.4 Basic notation

For a hyperplane h and a point set P , let h+
P denote the set of points of P that lie strictly

on the positive side of h, and analogously h−
P . For a point p, by (p)i we denote the i–th

coordinate of p. Finally, for a number x as usual let

sign(x) :=

{

1 x ≥ 0

−1 x < 0.

2 Affine Containment

We start with a problem for which we think the hardness proof is the most straightforward.
This proof will subsequently be modified to show the main theorems.

◮ Definition 11. (d-Affine-Containment) Given a set of points P in R
d, is the origin

contained in the affine hull of any d points?

Recall that x ∈ affHull ({p1, . . . , pj}) iff there exist αi, 1 ≤ i ≤ j such that
∑

αi = 1 and
∑

αipi = x.
For a given set S = {s1, . . . , sn}, we will create a point-set in R

d+1 in which d + 1 points
span an affine plane through the origin if and only d of these numbers sum up to 0.

Let ei denote the i–th unit vector. Set

pj
i :=

1

si
· ej + ed+1 =

(

0, . . . ,
1

si
, . . . , 0, . . . , 1

)T

and q := −
∑d

i=1 ei.
The set P consists of all points pj

i , 1 ≤ j ≤ d, 1 ≤ i ≤ n and the point q. The size of the
point set is thus n · d + 1.

◮ Lemma 12. There are d elements that sum up to 0 iff there are d + 1 points in P whose

affine hull contains the origin3.

Proof. ⇒: Let
∑d

j=1 sij
= 0. We choose points xj = pj

ij
, 1 ≤ j ≤ d and xd+1 = q. Let

αj = sij
and αd+1 = 1. Then

d+1
∑

j=1

αjxj =
d

∑

j=1

sij
pj

ij
+ q =

d
∑

j=1

ej +





d
∑

j=1

sij



 ed+1 −
d

∑

j=1

ej = 0

and

d+1
∑

j=1

αj =
d

∑

j=1

sij
+ αd+1 = 1.

That means that 0 is in affHull
({

p1
i1

, . . . pd
id

, q
})

.

⇐: Let 0 ∈ affHull ({x1, . . . , xd}), i.e., let
∑d+1

j=1 αjxj = 0 and
∑

αj = 1. As all points
but q lie on the hyperplane xd+1 = 1, one of the points, without loss of generality xd+1, is q.

3 Recall that the dimension is also d + 1.

STACS’11
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Because of (q)d+1 = 0, and (x)d+1 = 1 for all x 6= q, by computing the (d + 1)-st coordinate
we get

0 =
d

∑

j=1

(αjxj)d+1 =
d

∑

j=1

αj(xj)d+1 =
d

∑

j=1

αj (1)

and thus αd+1 = 1 −
∑d

j=1 αj = 1.

Further, as
∑d+1

j=1 αjxj = 0, the other points satisfy

d
∑

j=1

αjxj = −αd+1q =
d

∑

j=1

ej .

Any xj is nonzero for only one other coordinate except the (d + 1)-st, and as (q)j = −1
for all j < d + 1, for each j there is at least one point that is nonzero at coordinate j (in
particular, also αj 6= 0). Thus, there are exactly d such points. Without loss of generality
assume that xj is the point that is nonzero in coordinate j, so (xj)j = 1

sij

for some ij . This

means that αj
1

sij

− 1 = 0, and thus αj = sij
∈ S, which implies (Eqn. 1) that we have d

elements in S summing up to 0. ◭

◮ Theorem 13. d-Affine-Containment is W[1]-hard with respect to the dimension and

NP-hard.

3 Caratheodory sets

In order to use the previous construction to prove the first part of Theorem 5, we have to
modify it such that all coefficients can be chosen positive. Observe that 0 ∈ conv(P ) iff
0 =

∑

p∈P αpp for any αp ≥ 0,
∑

αp > 0 (proof: divide by
∑

αp). To this end we now
define

pj
i =

1

|si|
· ej + sign(si) · ed+1

and q as above. The set P again consists of all the points pj
i , 1 ≤ j ≤ d, 1 ≤ i ≤ n and q.

◮ Lemma 14. There are d elements in S that sum up to 0 iff the origin lies in the convex

hull of d + 1 points of P .

Proof. ⇒: Let
∑d

j=1 sij
= 0. Setting αj = |sij

| > 0, xj = pj
ij

for 1 ≤ j ≤ d and αd+1 = 1,
xd+1 = q again yields

d+1
∑

j=1

αjxj =
d

∑

j=1

|sij
|pj

ij
+ q =

d
∑

j=1

ej +





d
∑

j=1

sign(sij
)|sij

|



 ed+1 −
d

∑

j=1

ej = 0.

⇐: Let
∑d+1

j=1 αjxj = 0, αj ≥ 0. As all points lie in the positive halfspace
∑d

e∗
j x > 0,

q is one of the points of the convex combination. We can assume xd+1 = q and αd+1 = 1.
Further, by the same argument as in Lemma 12, there are at least d other points for the
total sum to become 0. Again, without loss of generality let (xj)j 6= 0. As (q)j = −1 for all
1 ≤ j ≤ d, this means that αj

1
|sij

| = 1 for some ij , and thus αj = |sij
|. Further, because of

the (d + 1)-st coordinate, we get

0 =
d

∑

j=1

αjsign(sij
) =

d
∑

j=1

sign(sij
) ·

∣

∣sij

∣

∣ =
d

∑

j=1

sij
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and thus we have d elements summing up to 0. ◭

Thereby we have shown the first part of Theorem 5.

3.1 Remark

Observe that if we project all points onto the unit sphere, all the above properties still hold:
Clearly, 0 ∈ conv(P ) iff 0 ∈ conv (πSd−1(P )). Thus, we can even assume all points to lie in
convex position and thereby get a slightly stronger result:

◮ Theorem 15. The following problem is W[1]-hard and NP-hard: Given a V-polytope in

R
d, is the origin contained in the convex hull of any d vertices?

4 Helly sets

Starting from the result in the previous section, we will now show how to prove the hardness
for the d-Helly-Set problem. Using a duality transform, for a given set P in R

d, we will
construct a set of convex sets (that are actually half-spaces) such that d have an empty
intersection if and only if there are d points in P that contain the origin in their convex
hull. A similar construction (which is used to prove Caratheodory’s Theorem from Helly’s
Theorem) can be found in [14, Chapter 2.3].

Consider a set P of points p1, · · · , pn ∈ R
d whose convex hull contains the origin. For

each point p ∈ P set consider the halfspace

p∗ =
{

x | pT x ≥ 1
}

.

Define P ∗ to be the set of all these halfspaces corresponding to the points in P . We show that
any Caratheodory set of P (for the origin) corresponds to a Helly set (a set of halfspaces with
empty intersection) of P ∗ of the same size. Since checking if the minimum Caratheodory set
has cardinality at most d is W[1]-hard, it then follows that checking if the minimum Helly
set is of cardinality at most d is also W [1]-hard.

Let Q ⊆ P and let V be a d × |Q| matrix whose columns represent the vectors in Q.

Further, let cone(V ) denote the conic hull of the vectors, i.e., the set
{

∑

q∈Q αqq | αq ≥ 0
}

.

Using the fact that cone(V ) is pointed if and only if V T x ≤ 0 is a full-dimensional cone,
we can now show the main lemma of this section, which is a variant of Gordan’s Theorem,
see e.g. Dantzig and Thapa [11, Theorem. 2.13]:

◮ Lemma 16. Let Q ⊆ P and let V be a d×|Q| matrix whose columns represent the vectors

in Q. Then 0 ∈ conv(V ) if and only if the system of inequalities V T x ≥ 1 is infeasible.

Proof. ⇒: Suppose that V T x ≥ 1 is feasible. Then there exists a vector α ∈ R
d such that

V T α ≤ −1. That is, V T α < 0 and thus V T x ≤ 0 is a full-dimensional cone. Therefore,
cone(V ) is pointed. But this means that 0 /∈ conv(V ).

⇐: Now suppose 0 /∈ conv(V ), then cone(V ) is pointed and therefore V T x ≤ 0 is a
full-dimensional cone. Thus, there exists α ∈ R

d such that V T α < 0, and so for a large
enough λ > 0, V T (−λα) > 1 and hence V T x ≥ 1 is feasible. ◭

Thus, any set Q ⊆ P of points whose convex hull contains the origin corresponds to a
set Q∗ ⊆ P ∗ of convex set (inequalities) of the same size that has an empty intersection,
and vice versa. This finishes the proof of the second part of Theorem 5.

As the convex sets in this case are even halfspaces, we can derive the stronger result of
Corollary 6.

STACS’11
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5 Ham-Sandwich cuts

Using the construction from Sec. 2, we will now prove that the decision version of the
ham-sandwich problem is W[1]-hard.

A hyperplane h is said to bisect a set Q if |h+
Q| ≤

⌊

|Q|
2

⌋

and |h−
Q| ≤

⌊

|Q|
2

⌋

. A ham-

sandwich cut of d point sets P1, . . . , Pd in R
d is a hyperplane h that bisects each of the sets.

In particular, if the number of points in each set is odd, the hyperplane has to pass through
at least one of the points from each set.

Def. 4 asks whether there is a cut that goes through a given point a. Via translation we
can obviously assume a to be the origin. This will be called a linear ham-sandwich cut.

In order to show Theorem 8 we will create d + 1 sets P1, . . . , Pd+1. The set Pd+1 will
consist of the single point q =

∑d
j=1 ej (which is −q in the above notion). The sets Pj will

be the union of the two set Rj and Bj . Rj contains all points of the form pj
i , defined exactly

as in Sec. 2, i.e.,

Rj :=
{

pj
i | 1 ≤ i ≤ n

}

.

for pj
i = 1

si
ej + ed+1. If we choose a linear hyperplane through one of these points, the

number of points on each side will (most likely) not be the same. So in addition to these, for
each of these sets we need n − 1 balancing points Bj to ensure that any linear hyperplane
passing through any of these points has equally many points of Pj on both sides (c.f. Figure
1). Thus, the set P =

⋃

Pj is of size d (2n − 1) + 1.

5.1 Construction of the Balancing-set

The idea is to add a point set similar to the mirror image of the original set Rj . This way
any hyperplane that has many of the original points on, say, the positive side, will contain
few of the mirrored points on the positive side, and vice versa.

By making the total number of points in each set Pj odd, we will ensure that any ham-
sandwich cut must pass through one of the points from Pj . Further, by the construction
of the balancing set, it will not be possible to choose a linear cut through q that also goes
through any of these balancing points, thereby getting the correspondence between subsets
of S and linear cuts through q.

For this, we will choose the mirror-image of a set of n − 1 points that lie between two

successive points in Rj (recall that all points from Rj lie on a line; this is why we use the
construction from Sec. 2). Thereto, let S be in ascending order with respect to si ≺ sj iff
1/si < 1/sj (or, equivalently: 1/si < 1/sj for i < j).

Then, let εj = 1
2j and

bj
i := −

(

1

si − εj

)

· ej − ed+1.

This the mirror image of a point slightly to the right of pj
i , for 1 ≤ i < n; see Figure 1. Let

Bj consist of all balancing points of the form bj
i and set

Pj := Rj ∪ Bj .
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h

Rj

Bj

|h−Rj
| = 2 |h+Rj

| = 5

|h−Bj
| = 5 |h+Bj

| = 2

p
j
i

b
j
i

p
j
1 pjn

b
j
n−1 b

j
1

Figure 1 The set Pj : points and balancing points

5.2 The main lemma

Now we come to prove the main lemma, namely that the point set allows a linear ham-
sandwich cut if and only if there are d elements that sum up to 0, based on the following
two simple lemmas. The first one states that any (not necessarily linear) ham-sandwich cut
intersects exactly one point from each set Pj , whereas the second one guarantees that any
linear hyperplane that contains a point from Rj will bisect Pj .

◮ Lemma 17. Any linear ham-sandwich cut intersects exactly one point from each Pj,

1 ≤ j ≤ d + 1.

Proof. For Pd+1 = {q} this is trivial. We show that for any linear ham-sandwich cut
h = (h1, . . . , hd+1) we have hi 6= 0 for all i: First, if hd+1 were 0, because the cut must pass
through at least one point from each set, we would have hj = 0 for all j. Thus, hd+1 6= 0.
Further, as hj(pj)j = −hd+1(pj)j 6= 0 for some pj ∈ Pj , also hj 6= 0 for all j.

Thus, no cut can pass through more than one point of any set Pj : If

hj(p)j + hd+1(p)d+1 = h · p = 0 = h · p′ = hj(p′)j + hd+1(p′)d+1

for two points p, p′ ∈ Pj , then p = p′ or hj = 0, a contradiction.
◭

◮ Lemma 18. Any linear hyperplane intersecting a single point from Rj bisects the set Pj.

Proof. Let h · pj
i = 0 and without loss of generality h · pj

k < 0 for all 1 ≤ k < i. Then also
h ·−bj

k < 0 and thus h ·bj
k > 0 for all 1 ≤ k < i. Further, h ·pj

k > 0 for all k > i and h ·bj
k < 0

for k ≥ i. So

|h−
Pj

| = |h−
Rj

| + |h−
Bj

| = i − 1 + n − i =

⌊

|Pj |

2

⌋

= |h+
Pj

|.

◭

◮ Lemma 19. There are d elements in S that sum up to 0 if and only if there is a linear

ham-sandwich cut.
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Proof. ⇒: Let
∑d

j=1 sij
= 0. We have to find a linear hyperplane h · x = 0 such that for

each set Pj it holds that |h+
Pj

|, |h−
Pj

| ≤
⌊

|Pj |
2

⌋

. Choose hj = sij
for 1 ≤ j ≤ d and hd+1 = −1.

Because
∑d

sij
= 0, we have h · q =

∑d
sij

= 0 (so the one element set Pd+1 is bisected).
Further,

h · pj
ij

= hj · 1/sij
+ hd+1 · 1 = 1 − 1 = 0.

Because of Lemma 18, this means that all sets are bisected, and thus we have a linear
ham-sandwich cut.

⇐: Let h be a linear ham-sandwich cut. All hi are nonzero (Lemma 17), so we can
assume hd+1 = −1. For each j, we have h · pj = 0 for exactly one point pj ∈ Pj . This means
that

0 = h · pj = hj(pj)j + hd+1(pj)d+1 = hj(pj)j − 1(pj)d+1 = hj(pj)j − 1,

and so either hj = sij
or hj = sij

−εj for some ij . Because for any ∅ 6= J ⊂ {1, . . . , d} we
have 0 <

∑

j∈J εj < 1 and S is a set of integers, if one (or more) of the hj were of the latter
form, the total sum can never be an integer, and in particular not 0. But this is required
for q to lie on h.

Thus, hj = sij
∈ S for some ij , and as q also lies on the hyperplane, we get

0 = hq =
d

∑

j=1

hj =
d

∑

j=1

sij
,

i.e., there are d elements in S that sum up to 0. ◭

From this Theorem 8 follows.

5.3 Remarks

In the previous construction, the origin (i.e., the point for which we want to solve the decision
version) is not part of any of the sets. This is easily fixed: Set Pd+1 = {0, q/2, q}. Then any
ham-sandwich cut through 0 also has to go through the other two points (otherwise there
would be too many points on the one side). Thus it also contains q. On the other hand,
whenever there are no such d elements that sum up to 0, all ham-sandwich cuts are (truly)
affine hyperplanes through q/2. This gives a slightly stronger result:

◮ Corollary 20. The following problem is W[1]-hard with respect to the dimension and NP-

hard: Given d point sets in R
d and a point a ∈

⋃

Pi, is there a ham-sandwich cut through

a?

For a given family of d + 1 sets in R
d we are not guaranteed that there is a cut that

bisects all the sets simultaneously. By adding the origin as a single set, the previous shows
that deciding whether there is still such a cut is also a computationally hard question:

◮ Corollary 21. The following problems are W[1]-hard with respect to the dimension and

NP-hard:

(d-Strong-Ham-Sandwich) Given d + 1 point sets in R
d, is there a hyperplane that

bisects all sets?
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34 M. Pǎtraşcu and R. Williams. On the Possibility of Faster SAT Algorithms. Proc. 21st

ACM/SIAM Symposium on Discrete Algorithms (SODA), 2010.
35 D.-H. Teng. Points, spheres, and separators: A unified geometric approach to graph parti-

tioning. PhD thesis, School of Computer Science, Carnegie Mellon University, 1992.
36 F. Yu. On the Complexity of the Pancake Problem. Electron. Notes Theor. Comput. Sci.,

167:95–115, 2007.
37 G. M. Ziegler. Lectures on Polytopes. Springer, 1998.


	Introduction
	Overview
	Related work
	Parameterized complexity
	Basic notation

	Affine Containment
	Caratheodory sets
	Remark

	Helly sets
	Ham-Sandwich cuts
	Construction of the Balancing-set
	The main lemma
	Remarks


