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Abstract

Temporal synthesis is the automated construction of a system from its temporal specification. It is by

now realized that requiring the synthesized system to satisfy the specifications against all possible envir-

onments may be too demanding, and, dually, allowing all systems may be not demanding enough. In this

work we study bounded temporal synthesis, in which bounds on the sizes of the state space of the system

and the environment are additional parameters to the synthesis problem. This study is motivated by the

fact that such bounds may indeed change the answer to the synthesis problem, as well as the theoretical

and computational aspects of the synthesis problem. In particular, a finer analysis of synthesis, which

takes system and environment sizes into account, yields deeper insight into the quantificational structure

of the synthesis problem and the relationship between strong synthesis – there exists a system such that for

all environments, the specification holds, and weak synthesis – for all environments there exists a system

such that the specification holds.

We first show that unlike the unbounded setting, where determinacy of regular games implies that

strong and weak synthesis coincide, these notions do not coincide in the bounded setting. We then turn to

study the complexity of deciding strong and weak synthesis. We show that bounding the size of the system

or both the system and the environment, turns the synthesis problem into a search problem, and one cannot

expect to do better than brute-force search. In particular, the synthesis problem for bounded systems

and environment is ΣP
2 -complete (in terms of the bounds, for a specification given by a deterministic

automaton). We also show that while bounding the environment may lead to the synthesis of specifications

that are otherwise unrealizable, such relaxation of the problem comes at a high price from a complexity-

theoretic point of view.

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.615

1 Introduction

Temporal synthesis is the automated construction of a system from its temporal specification. The

basic idea is simple and appealing: instead of developing a system and verifying that it satisfies its

specification, we would like to have an automated procedure that, given a specification, constructs a

system that is correct by construction. The first formulation of synthesis goes back to Church [4]; the

modern approach was initiated by Pnueli and Rosner, who introduced LTL (linear temporal logic)

synthesis [22]. The LTL synthesis problem receives as input a specification given by means of an

LTL formula and outputs a reactive system modeled by a finite-state transducer satisfying the given

specification — if such exists.

In the specification to the system, it is important to distinguish between output signals, controlled

by the system, and input signals, controlled by the environment. A system should satisfy its specifica-

tion against all possible environments. Therefore, the quantification structure on input and output
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signals is different. Output signals are existentially quantified while input signals are universally

quantified [22]. It is by now realized that requiring the synthesized system to satisfy the specification

against all possible environments is often too demanding. Dually, allowing all possible systems is

perhaps not demanding enough. This issue is traditionally approached by adding assumptions on the

system and/or the environment, which are modeled as part of the specification (c.f., [3]). 1

In this work we study bounded temporal synthesis, in which assumptions on the system and its

environment are given by means of bounds on the sizes of their state space. Thus, in addition to

a specification ψ, the input to the bounded synthesis problem contains two parameters n,m ≥ 1,

and a specification ψ is (n,m)-realizable, if there is a transducer T with n states such that for all

transducers T ′ with m states, the computation T ‖T ′ – generated by the interaction of T with T ′,

satisfies ψ. Note that traditional synthesis corresponds to the case n = m = ∞. 2 Also note that

by setting only one of n or m to ∞, we can consider a setting in which only one of the components

is bounded. In particular, [25] studies the setting in which only the system is bounded. We note

that the need to bound the environment is of interest in several other paradigms in computer science.

For example, in cryptography, one studies the security of a given cryptosystem with respect to

attackers with bounded (typically polynomial) computational power [18], and in the analysis of

on-line algorithms one sometimes care for the competitive ratio of a given on-line algorithm with

respect to requests issued by a bounded adversary [1]. Even closer to the work here is the study of

bounded rationality in games, where bounds are placed on the power of the players. In particular,

having the players be automata with a bounded number of states is a natural way of doing this. As

shown in [20], such bounds affect the kind of equilibria one gets, and gives in fact a way of getting

around some of the problematic cases of equilibria, (e.g., in the Prisoner’s Dilemma [24]).

It is not hard to see that bounding the size of the system or its environment may indeed change

the answer to the synthesis problem. Clearly, already in a setting with no interaction, bounding the

size of a system may prevent it from satisfying some specifications. In the presence of interaction,

bounding the size of the environment both restricts the possible behaviors of the environment and

enables the system to “learn” the environment. For example, knowing that the environment has a

single state implies that the input to the system is fixed, thus a specification like “if p holds in the

present, then p holds always", for an input signal p, is realizable against environments with a single

state, while it is clearly not realizable in general.

Traditional temporal synthesis is determined, in the sense that for every specification ψ, either

there is a system that realizes ψ, or there is an environment that realizes ¬ψ. Note that not having a

system that realizes ψ only means that for every system T , there is an environment T ′ such that the

computation T ‖T ′ does not satisfy ψ. This by itself does not imply that there is an environment T ′

such that for all systems T , the computation T ‖T ′ satisfies ¬ψ. However, by determinacy of Borel

games [17], we know that the lack of T that realizes ψ does imply the existence of T ′ that realizes

¬ψ. We show that determinacy no longer holds in the bounded setting. In particular, for every k ≥ 1

there is a specification ψk such that ψk cannot be realized against environments of size k, nor can

¬ψk be realized by an environment of size k.

The observation about determinacy, which uses the theory of checking sequences for transducers

[16], yields deeper insight into the quantificational structure of the synthesis problem and the re-

lationship between two possible definitions of synthesis in the bounded setting: strong synthesis,

where there is a system T such that for all environments T ′, the computation T ‖T ′ satisfies the

1 A different, more conceptual, way to restrict the range of environments with respect to which the system has to
satisfy the specification is to assume that the environment has objectives of its own, and is therefore rational, rather
than hostile [9].

2 In fact, by the small model property, already to the case n and m are doubly exponential in the length of |ψ| [7, 22].
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specification, and weak synthesis, where for all environments T ′ there exists a system T such that the

computation T ‖T ′ satisfies the specification. In contrast, in the unbounded setting, strong and weak

synthesis coincide.

We study the complexity of strong and weak synthesis. Recall that LTL synthesis is 2EXPTIME-

complete [22]. This high complexity, along with technical challenges in the implementation of

synthesis algorithms [12, 30], have led researchers to develop synthesis algorithms for fragments

of LTL or alternative specification formalisms [15, 21]. A different approach for coping with the

complexity of LTL synthesis, tightly related to our work here, is to restrict attention to systems

of a bounded size [25]. As argued in [25], bounding the size of the system enables a reduction

of the synthesis problem to the SAT problem, and also leads to the decidability of synthesis of

distributed systems. For the bounded setting, researchers were also able to come up with a symbolic

implementation [6, 8]. 3

Recall that the bounded synthesis problem has three parameters: ψ, n, and m. We would like

to study the complexity in terms of each of n and m. One standard way to analyze the complexity

in terms of one parameter is to fix the other parameters. This standard way does not work in our

setting, as fixing ψ implies fixing also n and m. Indeed, by [7, 22], if ψ is realizable, then it is also

realizable by a transducer with doubly-exponentially many states. Also, by determinacy, ψ is not

realizable if the environment can realize ¬ψ by a transducer that is doubly-exponential in the length

of ψ. Accordingly, we have to neutralize the dominance of ψ in the complexity analysis in a different

way. We do so by assuming that the temporal specification is given, instead of as an LTL formula, as a

deterministic Büchi automaton. For such specifications, the unbounded realizability problem amounts

to checking the nonemptiness of a deterministic Büchi automaton, and can therefore be solved in

quadratic time [28]. In Section 4, we justify the choice of deterministic Büchi automata further.

We first show that bounding the size of the system enables an easy reduction from the synthesis

problem to the model-checking problem. At the same time, one cannot expect to do better than

brute-force search in synthesizing bounded-size systems. Formally, we show that deciding whether a

specification A givens by means of a deterministic Büchi automaton is realizable by a system with

n states is NP-complete, for n given in unary. The proof of NP-hardness is technically easy and

is similar to known NP-hardness proofs in the context of formal methods [5, 13]. Still, it justifies

the reduction to SAT given in [25] without a lower bound, and it sets the stage to the much more

challenging lower bound, for the case both the system and the environment are bounded: we show

that deciding whether a specification A is realizable by a system with n states against all environment

with m states is ΣP
2 -complete, for n and m given in unary. Thus, brute-force search is the best we can

do also here, and one cannot expect to do better than model checking the interaction of all systems

with n states with all environments with m states.

We also show that while bounding the environment may indeed lead to the synthesis of specifica-

tions that are otherwise unrealizable, such relaxation of the problem comes at a high price from a

complexity-theoretic point of view. As pointed above, synthesis with respect to specifications given

by deterministic Büchi automata is quadratic. Adding a bound on the size of the environment seems

to add a cost that is doubly exponential in that size. In fact, we show that even model checking against

bounded environments is apparently harder than standard model checking. Finally, we formalize the

intuition of the system being able to learn the bounded environment by showing that for absolute

liveness properties, which are insensitive to additions of prefixes [26], weak and strong realizability

3 As mentioned above, [25] also studies synthesis of bounded systems. The contributions here and in [25] are, however,
different. In [25], the focus is on practical algorithm for the setting of a bounded system. Here, the focus is on the
theoretical aspects of the problem and its complexity, and rather than studying bounded systems, we consider bounds
on the system, the environment, and both.
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coincide, and the complexity of the problem is only exponential in the bound for the environment.

Due to the lack of space, some proofs are omitted, and can be found in the full version in the

authors’ home pages.

2 Preliminaries

Consider finite sets I and O of input and output signals, respectively. We model finite-state reactive

systems with inputs in I and outputs in O by transducers (I/O-transducers, when I and O are not

clear from the context). A transducer is a finite graph with a designated start state, where the edges

are labeled by letters in 2I and the states are labeled by letters in 2O. Formally, a transducer is a tuple

T = 〈I,O, S, sin, η, L〉, where I and O are the sets of input and output signals, S is a finite set of

states, sin ∈ S is an initial state, η : S×2I → S is a deterministic transition function, andL : S → 2O

is a labeling function. We extend η to words in (2I)∗ in the straightforward way. Thus, η : (2I)∗ → S

is such that η(ε) = sin, and for x ∈ (2I)∗ and i ∈ 2I , we have η(x · i) = η(η(x), i). Each transducer

T induces a strategy fT : (2I)∗ → 2O where for all w ∈ (2I)∗, we have fT (w) = τ(L(w)). Thus,

fT (w) is the letter that T outputs after reading the sequence w of input letters. A transducer with at

most k states is referred to as a k-transducer.

Consider an infinite sequence w = i0, i1, i2, i3, . . . ∈ (2I)ω of input letters. The computation of

T on w, denoted T (w), is ρ = (o0 ∪ i0), (o1 ∪ i1), (o2 ∪ i2), . . . ∈ (2I∪O)ω such that for all j ≥ 0,

we have oj = fT (i0 · i1 · · · ij−1). Note that, in particular, o0 = fT (ǫ). Thus, the mode of interaction

we assume is that the transducer initiates the interaction with the environment by outputting fT (ǫ),

the environment then responds with i0 (making fT (ǫ) ∪ i0 the set of signals that are valid in the first

time unit), then the transducer responds with fT (i0), the environment with i1, and so on. In order to

emphasize the fact that the transducer moves first, we sometimes refer to ρ as a 1-computation of T .

Also, we sometimes refer to ρ as w/y, for y = o0, o1, o2 . . ..

One could also consider a dual type of interaction, in which the environment moves first. Then,

a 2-computation of T is ρ = (o0 ∪ i0), (o1 ∪ i1), (o2 ∪ i2), . . . where for all j ≥ 0, we have

oj = fT (i0 · i1 · · · ij). In particular, o0 = fT (i0). Note that when two transducers interact with each

other, one of them initiates the interaction and moves first, thus its computations are 1-computations,

and the second moves second, and its computations are 2-computations. We say that ρ ∈ (2I∪O)ω is

a computation of T if there is w ∈ (2I)ω such that ρ = T (w). Finally, we sometimes refer also to

finite sequences of input letters and the finite computations of T on them.

We specify on-going behaviors of I/O-transducers by means of LTL formulas over the set I ∪O

of atomic propositions, or automata on infinite words over the alphabet 2I∪O. For a specification

ψ over I ∪ O and a “who moves first" flag b ∈ {1, 2}, we use realI,O,b(ψ) to indicate that there is

an I/O transducer T such that all the b-computations of T satisfy ψ. Given a specification ψ over

the sets I and O of input and output signals, the realizability problem for ψ is to decide whether

realI,O,1(ψ) [22]. For b ∈ {1, 2} let b̃ dualize b (that is, b̃ = 3 − b). By determinacy of Borel games

[17], we have the following (see also [10]).

◮ Theorem 1. For every specification ψ, precisely one of realI,O,b(ψ) or realO,I,b̃(¬ψ) holds.

3 Strong and Weak realizability

The traditional definition of realizability requires ψ to be satisfied in all the computations of T ,

ignoring the ability of the environment to feasibly generate the sequences of input letters that induce

these computations. In this work, we are interested in realizability with components of a bounded size.

In order to define this setting, let us first formalize the interaction between two transducers. For an

I/O-transducer T that induces a strategy fT : (2I)∗ → 2O and an O/I-transducer T ′ that induces a
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strategy fT ′ : (2O)∗ → 2I , the single 1-computation of T ‖T ′ is ρ = (o0 ∪i0), (o1 ∪i1), (o2 ∪i2), . . .

where for all j ≥ 0, we have oj = fT (i0 · i1 · · · ij−1) and ij = fT ′(o0 · o1 · · · oj). The single 2-

computation of T ‖T ′ is ρ = (o0 ∪ i0), (o1 ∪ i1), (o2 ∪ i2), . . . where for all j ≥ 0, we have

ij = fT ′(o0 · o1 · · · oj−1) and oj = fT (i0 · i1 · · · ij).

Recall that a specification ψ is realizable if there is an I/O-transducer T such that all the 1-

computations of T satisfy ψ. It is known that if a transducer T does have a computation that violates

ψ, then T also has a computation that violates ψ and is induced by an input sequence that is generated

by a transducer [2]. Accordingly, ψ is realizable iff there is an I/O-transducer T such that for allO/I

transducers T ′, the 1-computation of T ‖T ′ satisfies ψ. In Definition 2 below, we call this “strong

realizability” and introduce also a weaker type of realizability.

◮ Definition 2. [Strong and Weak Realizability] Consider a specification ψ over I ∪O, a first-move

flag b ∈ {1, 2}, and m,n ∈ N ∪ {∞}.

We say that ψ is strongly (I,O, b)-realizable with respect to systems with n states and environ-

ments with m states, denoted s_realI,O,b(ψ, n,m), if there is an I/O-transducer T with at most

n states such that for every O/I-transducer T ′ with at most m states, the b-computation of T ‖T ′

satisfies ψ.

We say that ψ is weakly (I,O, b)-realizable with respect to systems with n states and environments

with m states, denoted w_realI,O,b(ψ, n,m), if for every O/I-transducer T ′ with at most m

states, there is an I/O-transducer T with at most n states such that the b-computation of T ‖T ′

satisfies ψ.

Strong realizability means that the system can defeat all environment’s strategies under consideration.

Weak realizability means that the environment does not have a strategy to defeat all the strategies of

the system. When strong realizability is impossible, a designer may settle for a weak one. Also, weak

realizability of ¬ψ by the environment explains why ψ is not realizable by the system. Formally, we

have the following.

◮ Lemma 3. w_realI,O,b(ψ, n,m) iff not s_realO,I,b̃(¬ψ,m, n).

As discussed above, realI,O,b(ψ) iff s_realI,O,b(ψ,∞,∞). In fact, as we state below, weak and

strong realizability coincide in the unbounded setting.

◮ Theorem 4. For every specification ψ, we have that w_realI,O,b(ψ,∞,∞) iff s_realI,O,b(ψ,∞,

∞).

Proof. By definition, s_realI,O,b(ψ,∞,∞) implies w_realI,O,b(ψ,∞,∞). For the other dir-

ection, assume that s_realI,O,b(ψ,∞,∞) does not hold. Then, by Theorem 1, we have that

s_realO,I,b̃(¬ψ,∞,∞). Thus, by Lemma 3, we have that w_realI,O,b(ψ,∞,∞) does not hold,

and we are done. ◭

◮ Example 5. Let I = {p}, O = {q}, and ψ = G(q ↔ Xp). Note that the specification requires

the next value of the input signal p to depend on the current value of the output signal q. Since the

system has no control on the input signals, we have that not s_realI,O,1(ψ,∞,∞), and in fact even not

s_realI,O,1(ψ,∞, 1). To formally prove this, we use Lemma 3 and show that w_realO,I,2(¬ψ, 1,∞).

Note that ¬ψ = F ((q ∧X¬p) ∨ (¬q ∧Xp)). Now, for every I/O-transducer T , if T outputs q in its

initial state, the O/I-1-transducer T ′ that always outputs ¬p is such that the unique 2-computation of

T ′‖T satisfies ¬ψ. Similarly, if T outputs ¬q in its initial state, the corresponding O/I-1-transducer

T ′ always outputs p.

On the other hand, w_realI,O,1(ψ,∞, 1). Indeed, there are two possible O/I-1-transducers: T ′
1

that always outputs p, and T ′
2 that always outputs ¬p. For T ′

1 , the I/O-transducer T that always

outputs q is such that the unique 1-computation of T ‖T ′
2 is {p, q}ω. For T ′

2 , the I/O-transducer T

that always outputs ¬q is such that the unique 1-computation of T ‖T ′
2 is ∅ω . Since both satisfy ψ, we

are done.

STACS’11



620 Temporal Synthesis for Bounded Systems and Environments

Example 5 shows that strong and weak realizability do not coincide in the bounded setting. We

now generalize the example to all bounds, and show that it implies that the games that correspond to

bounded synthesis are not determined. We first need some notations.

For two I/O-transducers T1 and T2, we say that T1 and T2 are equivalent, denoted T1 ≡ T2, if

T1(w) = T2(w) for every word w ∈ (2I)∗; otherwise, T1 and T2 are inequivalent. If T is a transducer

and s an state of T , then denote by T /s the transducer that is the same as T except that it has s as

the start state. We say that T is minimized if there is no transducer T ′ such that T ≡ T ′ and T ′ has

strictly fewer states than T . We say that two transducers T1, T2 are structurally equivalent, denoted

T1 ∼ T2, if (i) for every state s1 of T1 there is a state s2 of T2 such that T1/s1 ≡ T2/s2, and (ii)

conversely, for every state s2 of T2 there is a state s1 of T1 such that T1/s1 ≡ T2/s2. Note that two

minimized transducers are structurally equivalent iff they are isomorphic (but their start states do not

need to map to each other in the isomorphism) [16].

Consider an I/O-transducer T with k states. A checking sequence for T is a word w ∈ (2I)∗

such that for all transducers T ′ with at most k states, if T ′(w) = T (w) then T ′ ∼ T . A transducer is

strongly connected if every state can reach every other state. It is known that every strongly connected

k-state transducer T has a checking sequence (of length at most exponential in k), and furthermore, if

T is minimized, then it has one of length polynomial in k; see [16] for background and an overview

on checking and other test sequences of transducers.

For a word w ∈ (2I)∗, let θ(w) be an LTL formula over I that holds in exactly all computations

in (2I∪O)ω whose prefix agrees with w on the signals in I . Thus, if w = i0, i1, . . . , il, then

θ(w) =
∧

0≤j≤l X
j((∧x∈ij

x) ∧ (∧x6∈ij
¬x)). We define θ(y) similarly, for y ∈ (2O)∗.

We now use checking sequences in order to show that bounding the sizes of the components,

strong and weak synthesis no longer coincide, and determinacy fails.

◮ Theorem 6. For every k ≥ 1 there is an LTL formula ψk such that w_realI,O,1(ψk,∞, k) but

not s_realI,O,1(ψk,∞, k); equivalently, neither s_realI,O,1(ψk,∞, k) nor s_realI,O,2(¬ψk, k,∞).

Proof. We give first a high level idea of the approach. We construct an LTL formula ψk that is weakly

realizable, and is “almost strongly realizable", in the sense that the system can succeed in ensuring

the formula by using one of two strategies (transducers): the first strategy works for all environment

k-transducers except for those that are isomorphic to a specific one T ′
1 , and the second strategy

works for all environment k-transducers except for those isomorphic to a second one T ′
2 . However,

no system strategy works for both T ′
1 , T

′
2 , and thus if the system does not know the environment

transducer, then it cannot ensure ψk, i.e. ψk is not strongly realizable. In our construction, we pick

suitable transducers T ′
1 and T ′

2 and construct from them a formula ψk that has the desired properties.

Note that the presence of a bound on the size of the transducers is critical for this to be possible (and

is obviously essential for the construction), i.e. there is no such formula ψ∞, since weak and strong

realizability coincide in the unbounded case.

We proceed now with the details of the construction. For an O/I transducer T ′
i with k states that

is minimized and strongly connected, let yi ∈ (2O)∗ be a checking sequence for T ′
i , let yi/wi be the

2-computation of T ′
i on yi, and let ϕi = θ(yi) ∧ ¬θ(wi). Note that s_realI,O,1(ϕi,∞, k − 1). To

see why, consider an I/O-transducer T that ignores the input and outputs yi. Since yi is a checking

sequence for T ′
i , and T ′

i has k states and is minimized, the sequence yi/wi cannot be generated in an

interaction with an O/I-transducer with at most k states that is not isomorphic with T ′
i . Hence, for

every transducer T ′ with k − 1 states, the 1-computation of T ‖T ′ satisfies both θ(yi) and ¬θ(wi).

On the other hand, note also that ¬s_realI,O,1(ϕi,∞, k) and even ¬w_realI,O,1(ϕi,∞, k). Indeed,

the O/I-transducer T ′
i is such that for all I/O-transducers T , if the 1-computation of T ‖T ′

i satisfies

θ(yi), then it also satisfies θ(wi).

We would like to use ϕi in order to construct a specification ψk as required. Let T ′
1 and T ′

2 be

two nonisomorphic minimized strongly connected O/I transducers with k states; thus T ′
1 , T ′

2 are not
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structurally equivalent (since they are minimized). Let o1 and o2 be two different letters in 2O, let s1

be the state that T ′
1 reaches when it reads o1 from its initial state, and let s2 be the state that T ′

2 reaches

when it reads o2 from its initial state. Finally, let y1 be a checking sequence for the transducer T ′
1/s1

(i.e., T ′
1 with initial state s1) with corresponding output w1, and let y2 be a checking sequence for

T ′
2/s2 with corresponding output w2. We define ψk = (o1 ∧X(θ(y1) ∧ ¬θ(w1))) ∨ (o2 ∧X(θ(y2) ∧

¬θ(w2))). In the full version we prove that w_realI,O,1(ψk,∞, k) but ¬s_realI,O,1(ψk,∞, k).

◭

4 Bounded Systems

We start by studying the strong-realizability problem for bounded systems. This problem is first

studied in [25]. The motivation there is to deal with the computational complexity of temporal

synthesis: the complexity of deciding whether realI,O,b(ψ) holds is known to be 2EXPTIME-

complete [22]. Furthermore, for each n > 0 one can construct an LTL formula ϕn of length O(n)

such that the smallest transducer T realizing ϕn has at least 22n

states [23]. In practice, therefore,

we may want to bound the size of the systems under consideration, motivating us to ask whether

s_realI,O,b(ψ, k,∞) holds, instead of asking whether realI,O,b(ψ) holds.

Note that the strong realizability problem for bounded systems has two parameters: a specification

ψ and a bound k. Here we would like to understand the complexity with respect to k. Thus, we would

like to “neutralize” here the effect of ψ on the complexity of checking whether s_realI,O,b(ψ, k,∞)

holds. Fixing ψ would not help us, as, by the small model property, it induces a fixed bound on the

size of a realizing transducer for ψ, if one exists. The complexity of the unbounded synthesis problem

for LTL follows from the need to translate the LTL specification to a deterministic automaton on

infinite words. Such a translation involves a doubly exponential blow-up [14], and is the source of the

complexity of the synthesis problem. Indeed, for specifications given by means of nondeterministic

or deterministic Büchi automata, the synthesis problem is complete in EXPTIME and PTIME,

respectively [28].

Accordingly, we neutralize the dominance of the specification ψ by considering, instead of a

specification given by an LTL formula, a specification given by a deterministic Büchi automaton A

over the alphabet 2I∪O. We denote classes of automata by acronyms in {D,N} × {F,B} × {W,T}.

The first letter stands for the branching mode of the automaton (deterministic or nondeterministic);

the second letter stands for the acceptance-condition type (finite words or Büchi); the third letter

stands for the object over which the automaton runs (words or trees). For example, NFW stands for

nondeterministic automata on finite words, and DBT stands for deterministic Büchi tree automata.

We note that while DBWs are less expressive than NBWs, we still work with DBW rather than, say,

deterministic parity word automata. The reason is that the nonemptiness problem for deterministic

parity tree automata is not known to be polynomial, and we want to emphasize the fact that the

hardness results we are going to prove are not due to the automaton and are due to k; the upper

bounds we are going to present for DBWs are valid also for specifications given by a deterministic

parity word automata.

Working with specifications that are automata, it is convenient to talk about alphabets ΣI and ΣO,

where the transducers are ΣI/ΣO-transducers, in which the transitions are labeled by letters in ΣI

and the states are labeled by letters in ΣO (or dually, are ΣO/ΣI -transducers). The alphabet of the

specification DBW is then ΣO × ΣI when we specify 1-computations, and is ΣI × ΣO when we

specify 2-computations.

◮ Theorem 7. Deciding s_realΣI ,ΣO,b(A, k,∞), for b ∈ {1, 2}, is NP-complete.

The proof of Theorem 7 is given in the full version. The lower bound is by a simple reduction

from the Vertex Cover problem: the states of the system correspond to the cover, and whenever the
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environment gives an edge of the graph to the system, the system should respond with the vertex that

covers it.

By Lemma 3, we have that w_realΣI ,ΣO,b(A,∞, k) iff not s_realΣO,ΣI ,b̃(A, k,∞). Theorem 7

then immediately implies the following.

◮ Corollary 8. Deciding w_realΣI ,ΣO,b(A,∞, k), for b ∈ {1, 2}, is co-NP-complete.

The implication of Theorem 7 and Corollary 8 is that deciding strong realizability with bounded

systems (resp., weak realizability of bounded environments) amounts to search for a bounded system

(resp., environment) that satisfies (resp., falsifies) the specification. Thus, what we have is essentially

exhaustive search combined with model checking. The (co)-NP lower bounds tell us that there is no

way of getting around the need to do an exhaustive search. Note that Corollary 8 already refers to the

setting in which the environment is bounded, and it studies weak realizability there. In Section 5

below we study strong realizability in this setting.

5 Bounded Environments

We now turn to study the case of strong realizability in a setting of bounded environments (or,

dually, weak realizability in a setting of bounded systems). In fact, bounding the environment is of

interest already in the context of model-checking. For a system modeled by an I/O-transducer T , a

specification A given by a DBW, and k ≥ 1, we say that T satisfies A with respect to k-environments

if for all O/I-k-transducers T ′, the computation T ‖T ′ satisfies A.

◮ Theorem 9. Given an I/O-transducer T , a DBW A over the alphabet 2I∪O, and k ≥ 1, the

problem of deciding whether T satisfies A with respect to k-environments is co-NP-complete.

The proof of Theorem 9 is given in the full version. The lower bound is by a reduction from the

complement of the Hamiltonian Circle Problem [11].

We now turn to study the strong realizability problem when both the system and the environment

are bounded.

◮ Theorem 10. Deciding s_realΣI ,ΣO,1(A, n,m) and s_realΣI ,ΣO,2(A, n,m), for a given DBW

A over alphabets ΣI ,ΣO, and positive integers n,m in unary, is ΣP
2 -complete.

Proof. We prove the claim for b = 1. The argument for b = 2 is analogous. The strong realizability

property s_realΣI ,ΣO,1(A, n,m) holds iff there exists a ΣI/ΣO transducer T with at most n states

such that for every ΣO/ΣI transducer T ′ with at most m states, the 1-execution of T ‖T ′ satisfies the

DBW specification A. Membership in ΣP
2 follows from the fact that the sizes of the existentially and

universally quantified transducers T and T ′ respectively are polynomially bounded in the size of the

input, and the fact that we can check in polynomial time whether the 1-execution of T ‖T ′ satisfies A

for given T , T ′, and A [27].

To prove the hardness we reduce from the problem of deciding the truth of a formula of the

form ∃x∀yΦ(x, y), where x and y are vectors of Boolean variables and Φ is a formula in disjunctive

normal form [11]. Let x = (x1, . . . , xk), y = (y1, . . . yk) (we assume without loss of generality that

x, y have the same number k of variables), and let Φ = C1 ∨ C2 ∨ . . . ∨ Cp, where each term Ci is a

conjunction of literals (variables in x or y or their negations). We construct an instance (A, n,m) of

the strong realizability problem such that s_realΣI ,ΣO,1(A, n,m) iff ∃x∀yΦ(x, y).

We describe the reduction in detail in the full version. Here we describe the general idea. The

integers n,m are both set to 2p+ 1 + k. The input and output alphabets have size 2p+ 1 + 2k: The

input alphabet is ΣI = {d0} ∪ {di, d
′
i|1 ≤ i ≤ p} ∪ {yj , ȳj |1 ≤ j ≤ k}, and the output alphabet is

ΣO = {c0} ∪ {ci, c
′
i|1 ≤ i ≤ p} ∪ {xj , x̄j |1 ≤ j ≤ k}.
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Recall that the alphabet of the DBW A is ΣO × ΣI and it specifies the expected behavior of the

system with respect to all input sequences. Thus, A should not limit the behavior of the environment.

Since, however, the interaction between the system and the environment would be of interest only for

some behaviors of the environment, we are going to describe how A prescribe an expected format of

interaction for both the system and the environment, and we assume that if, during the interaction, the

system deviates from this format then A moves to rejecting sink, and if the system follows the format

but the environment deviates, then A accepts.

The DBW A prescribes the expected format in two phases. The goal of Phase 1 is to force the

system and the environment to commit to a truth assignments for the variables in x and y, respectively,

and to set aside states that output c1, c
′
1, . . . , cp, c

′
p, and d1, d

′
1, . . . , dp, d

′
p, respectively. Thus, if the

system follows the prescribed format in Phase 1, then it outputs 2p+ 1 + k different symbols during

this phase: c0, ci, c
′
i for i = 1, . . . , p, and either xj or x̄j for j = 1, . . . , k. Since the bound n on its

number of states is 2p+1+k, this implies that each state of the system has as output one of the letters

above. In particular, this means that for each variable xj , the system has exactly one corresponding

state that outputs xj or x̄j , which corresponds to assigning value true or false, respectively, to the

variable xj . Similarly, if the environment follows the prescribed format in Phase 1, and then it has

exactly 2p + 1 + k states, corresponding to the n letters generated d0, di, d
′
i for i = 1, . . . , p, and

either yj or ȳj for j = 1, . . . , k, and they induce a truth assignment for the y variables.

During Phase 2, the DBW A checks that the assignment to which the system and environment

commit in Phase 1 satisfies Φ. Phase 2 consists of p stages, one for each term Ci of Φ. In the stage

for Ci, the DBW A goes over the 2k variables and checks whether the assignment for them satisfies

Ci. Recall that Ci is a conjunction. When A detects that the assignment contradicts a requirement

imposed by Ci, it moves to the phase for Ci+1, or rejects, if i = p. When A concludes that the

assignment satisfies Ci, it accepts. ◭

We can now turn to the problem of synthesis with bounded environments. We first need some

definitions. For a word w/y ∈ (ΣI × ΣO)∗ and k ≥ 1, we say that w/y is k-generable if there is a

ΣI/ΣO-transducer T with at most k states such that T (w) = w/y. Let Lk ⊆ (ΣI × ΣO)∗ be the set

of k-generable words.

◮ Lemma 11. There is a DFW with 2kO(k)

states that recognizes Lk.

Proof. We prove that there is an NFW with kO(k) states that recognizes Lk. The NFW guesses a

ΣI/ΣO-transducer T with at most k states and then simulates it, checking that the y track is indeed

the output of the w track. The number of ΣI/ΣO-transducers T with exactly k states is k|ΣO|kkk|ΣI |,

and the number of transducers with at most k states, is no more than k times this expression. ◭

We can now solve the strong realizability problem for bounded environments.

◮ Theorem 12. Deciding s_realΣI ,ΣO,b(A,∞, k), for b ∈ {1, 2} is in 2EXPTIME.

Proof. We prove the claim for b = 1. The argument for b = 2 is analogous.

We recall first how ones decides s_realΣI ,ΣO,1(A,∞,∞). The key idea is to consider the

following game between two players, called System and Environment. In each round, System first

chooses a letter in ΣI and Environment then chooses a letter in ΣO. System wins if the play, which is

the infinite word in (ΣI × ΣO)ω that results from the choices of System and Environment is accepted

by A. Checking if System wins the game is equivalent to testing nonemptiness of Büchi tree automata

and can be done in quadratic time [29]. Furthermore, if System wins the game, then there is a strategy

that depends only on the states of A. Thus, if A = 〈ΣI × ΣO, Q, q0, ρ, F 〉, then the nonemptiness

algorithm yields a function L : Q → ΣO, which means that A is strongly realized by the transducer

T = 〈ΣI ,ΣO, Q, q0, η, L〉, where η(q, σ) = ρ(q, 〈σ, L(q)〉).
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In deciding s_realΣI ,ΣO,b(A,∞, k), System only has to win against environments with at most

k states. Thus, if a prefix of the play is not k-generable then System wins immediately, since no

transducer with at most k states can generate such a play. Let Dk be a DFW that accepts exactly all

words that are not k-generable. By Lemma 11, such a DFW with 22O(k)

states exists.

Then, s_realΣI ,ΣO,b(A,∞, k) holds iff s_realΣI ,ΣO,b(A × Dk,∞,∞), where A × Dk is the

product of A and Dk, which accepts a word w ∈ (ΣI × ΣO)ω if w is accepted by A or is not

k-generable. It follows that if s_realΣI ,ΣO,b(A,∞, k), then A is realized by a transducer who states

space is that of A × Dk. ◭

Theorem 12 tells us that we can solve strong realizability against bounded transducers, but at a cost

that is doubly exponential in k. Thus, on the one hand, we expect more specifications to be realizable

when we bound the size of the adversaries, but, on the other hand, deciding such realizability comes

at a considerable cost. The question is whether this cost is unavoidable. To prove this, we would have

to show that deciding s_realΣI ,ΣO,b(A,∞, k) is 2EXPTIME-hard.

OPEN QUESTION: Is deciding s_realΣI ,ΣO,b(A,∞, k) 2EXPTIME-hard?

As in the case of bounded systems, we can show that the strong realizability problem for bounded

environment is at least NP-hard. The problem, however, seems to be much harder. As supporting

evidence for the hardness of the problem, we show that recognizing k-generable words by an

automaton requires doubly-exponential size.

For a word x = x1, . . . xn ∈ Σ∗
I , a combination lock transducer for x is Tx = 〈ΣI ,ΣO, {0, . . . , n},

0, τ〉, where ΣO = {0, 1}, and for all 0 ≤ j < n, we have ρ(j, xj+1) = j + 1 and ρ(j, σ) = 0, for

all σ 6= xj+1. Also, ρ(n, σ) = n, for all σ ∈ ΣI . Finally, τ(j) = 0 for all 0 ≤ j < n and τ(n) = 1.

Thus, Tx outputs 0 in all states but n. It can read x from its initial state, in which case it reaches the

state n, where it outputs 1. When a violation of x is detected, Tx goes back to its initial state.

◮ Theorem 13. A DFW that recognizes Lk has at least 22k

states.

Proof. Recall that two words x1, x2 ∈ (ΣI × ΣO)∗ are Lk-equivalent, in the Myhill-Nerode sense,

iff for all z ∈ (ΣI × ΣO)∗, we have that x1 · z ∈ Lk iff x2 · z ∈ Lk. The number of states in a

minimal DFW for Lk is the number of equivalence classes of the Lk-equivalence relation.

Let ΣI = {a, b,#} and ΣO = {0, 1}. For a word x ∈ (a+ b)k, let Tx be the transducer obtained

from the combination lock {a, b}/{0, 1}-transducer for x by adding #-transitions from all states to

the initial state. Thus, # is an input reset symbol that resets to the initial state from all states. For

every subset P of (a + b)k, let w(P ) be the ΣI/ΣO word in which the input part consists of the

words in P in some order, say lexicographic, with each word preceded by a reset, and the output part

is all 0. We claim that all the words w(P ), for different subsets P , are not Lk-equivalent. Let P and

Q be two different subsets. Assume, without loss of generality, that x ∈ Q \ P .

Note that the transducer Tx is strongly connected, and it is easy to see also that it is minimized.

Let w be a checking sequence for Tx, and let Tx(w) = w/y. That is, the only k-state transducer that

can generate w/y (including k-transducers that are not combination locks) is Tx starting from some

state. If we append to w(P ) the word #/0 · w/y, then the resulting word is in Lk, as Tx generates it.

On the other hand, if we append the word #/0 · w/y to w(Q), then the resulting word is not in Lk.

Indeed, because of the w/y portion, the only k-transducer that could possibly generate the resulting

word is Tx, but since x ∈ Q, the transducer Tx cannot generate w(Q), as it would output 1 after

reading #x. 4
◭

4 A small variant of the argument holds also for binary input alphabet, i.e., without the additional reset symbol. Restrict
to combination locks where the first and the last symbol of the combination word is a, and replace the reset symbol

by bk. Then, bk acts like a reset for these machines.
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5.1 Absolute liveness properties

A specification ψ is of an absolute liveness property if for every computation π, we have that π |= ψ

iff π |= Fψ [26]. In this section we show that for absolute liveness properties, weak and strong

realizability against bounded environments coincide, and the complexity of deciding realizability is

only exponential in the bound. Intuitively, it follows from the fact that the system can take its time to

learn the environment with which it interacts, and then follow a strategy against that environment.

We formalize this intuition by means of the so-called machine identification problem: Given

k ≥ 1, we say that a word w is a k-identifier for every two O/I-k-transducers T ′
1 , T

′
2 , if the two

transducers produce the same output sequence y in response to w, and if s1, s2 are their states

respectively after processing w, then T ′
1/s1 ≡ T ′

2/s2. In other words, observing the response of the

environment to w, identifies uniquely up to equivalence the part of the environment transducer that is

reachable from the final state after w. The machine identification problem was formulated and solved

by Moore in his classical paper [19]. It is shown there that for every k ≥ 1, there is a k-identifier of

length exponential in k, and it can be constructed in exponential time. (The word w is essentially a

homing sequence of the disjoint union of all k-transducers.)

◮ Theorem 14. Let ψ be an absolute liveness specification. Then

1. w_realI,O,1(ψ,∞, k) iff s_realI,O,1(ψ,∞, k).

2. If ψ is given as a DBW, we can decide s_realI,O,1(ψ,∞, k) in time polynomial in ψ and expo-

nential in k.

Proof. Clearly s_realI,O,1(ψ,∞, k) implies w_realI,O,1(ψ,∞, k). For the other direction, assume

that w_realI,O,1(ψ,∞, k) holds. Then, for each O/I-k-transducer T ′ there is an I/O-transducer T

that guarantees that ψ holds. We need, however, one I/O-transducer T that can guarantee ψ against

all O/I-k-transducers. What T can do is first output a k-identifier sequence w. After observing

the response y of the k-transducer T ′ of the environment, we can construct a transducer T ′′ with at

most k states that is equivalent to T ′/s where s is the current state of T ′ after w. Then, using weak

realizability, T can simulate the I/O-transducer that wins against T ′′. This proves the first claim.

The second claim follows from the fact that, for every given k-transducer T ′ for the environment,

we can determine in polynomial time whether there is a system that satisfies a DBW specification

ψ with environment T ′, hence w_realI,O,1(ψ,∞, k) (and s_realI,O,1(ψ,∞, k)) can be decided in

time polynomial in ψ and exponential in k. If s_realI,O,1(ψ,∞, k) holds, then a transducer T for

the system that realizes ψ can be constructed also in time polynomial in ψ and exponential in k, as

explained above. ◭
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