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Abstract

The visibility representation (VR for short) is a classical representation of plane graphs. It has

various applications and has been extensively studied. A main focus of the study is to minimize

the size of the VR. It is known that there exists a plane graph G with n vertices where any VR

of G requires a grid of size at least 2
3 n × ( 4

3 n − 3) (width × height). For upper bounds, it is

known that every plane graph has a VR with grid size at most 2
3 n × (2n − 5), and a VR with

grid size at most (n − 1) × 4
3 n. It has been an open problem to find a VR with both height and

width simultaneously bounded away from the trivial upper bounds (namely with size at most

chn × cwn with ch < 1 and cw < 2).

In this paper, we provide the first VR construction with this property. We prove that every

plane graph of n vertices has a VR with height ≤ max{ 23
24 n + 2⌈√

n⌉ + 4, 11
12 n + 13} and width

≤ 23
12 n. The area (height×width) of our VR is larger than the area of some of previous results.

However, bounding one dimension of the VR only requires finding a good st-orientation or a good

dual s∗t∗-orientation of G. On the other hand, to bound both dimensions of VR simultaneously,

one must find a good st-orientation and a good dual s∗t∗-orientation at the same time, and thus

is far more challenging. Since st-orientation is a very useful concept in other applications, this

result may be of independent interests.
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1 Introduction

Drawing plane graphs has emerged as a fast growing research area in recent years (see [1]

for a survey). A visibility representation (VR for short) is a classical drawing style of plane

graphs, where the vertices of a graph G are represented by non-overlapping horizontal line

segments (called vertex segment), and each edge of G is represented by a vertical line segment

touching the vertex segments of its end vertices. Fig. 1 shows a VR of a plane graph G. The

problem of computing a compact VR is important not only in algorithmic graph theory, but

also in practical applications. A simple linear time VR algorithm was given in [13, 14] for

2-connected plane graphs. It uses an st-orientation of G and the corresponding st-orientation

of its st-dual G∗ to construct a VR. Using this approach, the height of the VR is bounded

by (n − 1) and the width of the VR is bounded by (2n − 5) [13, 14].
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Plane Graph 4-Connected Plane Graph

Width Height Width Height

1 ≤ (2n − 5) [13, 14] ≤ (n − 1) [13, 14]

2 ≤ ⌊ 3n−6

2
⌋ [6]

3 ≤ ⌊ 22n−42

15
⌋ [9] ≤ (n − 1) [7]

4 ≤ ⌊ 5n

6
⌋ [16]

5 ≤ ⌊ 13n−24

9
⌋ [17] ≤ ⌈ 3n

4
⌉ [15]

6 ≤ ⌊ 4n−1

5
⌋ [18]

7 ≤ 2n

3
+ ⌊2

√
n⌋ [4]

8 ≤ 2n

3
+ 14 [19]

9 ≤ ⌊ 4n

3
⌋ − 2 [3] ≤ ⌈ n

2
⌉ + 2⌈

√

n−2

2
⌉ [2]

10 ≤ 3

2
n [5] ≤ 3

4
n + 2⌈√

n⌉ + 4 [5]

11 ≤ 23

12
n ≤ max{ 23

24
n + 2⌈√

n⌉ + 4,
11

12
n + 13}

Table 1 Previous and new results on the height and the width of VR. (For the line 8, the original

bound given in [19] was Height ≤ 2n/3 + O(1). By a more careful calculation, the term O(1) is

actually 14.)

As in many other graph drawing problems, one of the main concerns in the VR research

is to minimize the grid size (i.e. the height and the width) of the representation. For the

lower bounds, it was shown in [16] that there exists a plane graph G with n vertices where

any VR of G requires a grid of size at least (⌊ 2n
3 ⌋) × (⌊ 4n

3 ⌋ − 3). Some work has been done

to reduce the height and width of the VR by carefully constructing special st-orientations.

Table 1 compares related previous results and new result in this paper.

The line 1 in Table 1 gives the trivial upper bounds. All other results, except the line 10

and 11 (the recult in this paper), concentrated on one dimension of the VR (either the width

or the height). In Table 1, the un-mentioned dimension is bounded by the trivial upper

bound (namely, n−1 for the height and 2n−5 for the width). In [11, 12], heuristic algorithms

were developed aiming at reducing the height and the width of VRs simultaneously. The line

10 in Table 1 is the only VR construction with simultaneously reduced height and width.

However, it only works for 4-connected plane graphs. The line 11 shows the new result

in this paper: we prove that every plane graph with n vertices has a VR with height at

most max{ 23
24 n + 2⌈√

n⌉ + 4, 11
12 n + 13} and width at most 23

12 n. The representation can be

constructed in linear time.

The present paper is organized as follows. Section 2 introduces preliminaries. Section 3

presents a decomposition lemma for plane graphs. Section 4 presents the construction of VR

with the stated height and width. Section 5 concludes the paper.

2 Preliminaries

In this paper, we only consider simple graphs (namely without self-loops and multiple edges).

A planar graph is a graph G = (V, E) such that the vertices of G can be drawn in the plane

and the edges of G can be drawn as non-intersecting curves. Such a drawing is called an

embedding. The embedding divides the plane into a number of connected regions. Each region

is called a face. The unbounded face is the exterior face. The other faces are interior faces.

The vertices and edges that are not on the boundary of the exterior face are called interior
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vertices and edges, respectively. A plane graph is a planar graph with a fixed embedding. A

plane triangulation is a plane graph where every face is a triangle (including the exterior

face). |G| denotes the number of vertices of G. I(G) denotes the set of interior vertices of G.

Thus |I(G)| = |G| − 3 for a plane triangulation G.

For a path P , length(P ) (or |P |) denotes the number of edges in P . For two vertices

a, b in P , P (a, b) denotes the sub-path of P from a to b (inclusive). (We slightly abuse the

notation here: For a graph G, |G| denotes the number of vertices in G. For a path P , |P |
denotes the number of edges in P .)

When discussing VRs, we assume the input graph G is a plane triangulation. (If not, we

get a triangulation G′ by adding dummy edges into G. After constructing a VR for G′, we

can get a VR of G by deleting the vertical line segments for the dummy edges). From now

on, G always denotes a plane triangulation.

A numbering O of a set S = {a1, . . . , ak} is a one-to-one mapping between S and the set

{1, 2, . . . , k}. We write O = 〈ai1
, ai2

, . . . , aik
〉 to indicate O(ai1

) = 1, O(ai2
) = 2 ... etc. A

set S with a numbering written this way is called an ordered list. For two elements ai and aj ,

if ai is assigned a smaller number than aj in O, we write ai ≺O aj . Let S1 and S2 be two

disjoint sets. If O1 is a numbering of S1 and O2 is a numbering of S2, their concatenation,

written as O = 〈O1, O2〉, is the numbering of S1 ∪ S2 where O(x) = O1(x) for all x ∈ S1 and

O(y) = O2(y) + |S1| for all y ∈ S2.

G is called an directed graph (digraph) if each edge of G is assigned a direction. An

orientation of a (undirected) graph G is a digraph obtained from G by assigning a direction

to each edge of G. We use G to denote both the resulting digraph and the underlying

undirected graph unless otherwise specified. (Its meaning will be clear from the context.)

Let G = (V, E) be an undirected graph. A numbering O of V induces an orientation of

G as follows: each edge of G is directed from its lower numbered end vertex to its higher

numbered end vertex. The resulting digraph, denoted by GO, is called the orientation derived

from O which, obviously, is an acyclic digraph. We use lengthG(O) (or simply length(O) if

G is clear from the context) to denote the length of the longest directed path in GO.

For a 2-connected plane graph G and an exterior edge (s, t), an orientation of G is called

an st-orientation if the resulting digraph is acyclic with s as the only source and t as the

only sink. Such a digraph is also called an st-graph. Lempel et al. [8] showed that for every

2-connected plane graph G and an exterior edge (s, t), there exists an st-orientation. For

more properties of st-orientation and st-graph, we refer readers to [10].

Let G be a 2-connected plane graph and (s, t) an exterior edge. An st-numbering of G is

a one-to-one mapping ξ : V → {1, 2, . . . , n}, such that ξ(s) = 1, ξ(t) = n, and each vertex

v 6= s, t has two neighbors u, w with ξ(u) < ξ(v) < ξ(w), where u (w, resp.) is called a

smaller neighbor (bigger neighbor, resp.) of v. Given an st-numbering ξ of G, the orientation

of G derived from ξ is obviously an st-orientation of G. On the other hand, if G = (V, E) has

an st-orientation O, we can define an one-to-one mapping ξ : V → {1, . . . , n} by topological

sort. It is easy to see that ξ is an st-numbering and the orientation derived from ξ is O.

From now on, we will interchangeably use the term “an st-numbering” of G and the term

“an st-orientation” of G, where each edge of G is directed accordingly.

◮ Definition 1. Let G be a plane graph with an st-orientation O, where (s, t) is an exterior

edge drawn at the left on the exterior face of G. The st-dual graph G∗ of G and the dual

orientation O∗ of O is defined as follows:

Each face f of G corresponds to a node f∗ of G∗. In particular, the unique interior face

adjacent to the edge (s, t) corresponds to a node s∗ in G∗, the exterior face corresponds

to a node t∗ in G∗.

STACS’11
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For each edge e 6= (s, t) of G separating a face f1 on its left and a face f2 on its right,

there is a dual edge e∗ in G∗ from f∗
1 to f∗

2 .

The dual edge of the exterior edge (s, t) is directed from s∗ to t∗.

t

a

c

s

b

(1) (2)s

b

a

c

t

s*

t*

Figure 1 (1) An st-graph G and its st-dual graph G∗; (2) A VR of G.

Fig. 1 (1) shows an st-graph G and its st-dual graph G∗. (Circles and solid lines denote

the vertices and the edges of G. Squares and dashed lines denote the nodes and the edges of

G∗.) It is well known that the st-dual graph G∗ defined above is an st-graph with source s∗

and sink t∗. The correspondence between an st-orientation O of G and the dual st-orientation

O∗ is a one-to-one correspondence. The following theorem was given in [13, 14]:

◮ Theorem 2. Let G be a 2-connected plane graph with an st-orientation O. Let O∗ be the

dual st-orientation of the st-dual graph G∗. A VR of G can be obtained from O in linear

time. The height of the VR is length(O). The width of the VR is length(O∗). Since G has n

vertices and G∗ has 2n − 4 nodes, any st-orientation of G leads to a VR with height ≤ n − 1

and width ≤ 2n − 5.

Fig. 1 (2) shows a VR of the graph G shown in Fig. 1 (1). The width of the VR is

length(O∗) = 5. The height of the VR is length(O) = 3.

The following theorems were given in [19, 3, 5], and will be needed later for our VR

construction.

◮ Theorem 3. [19] Every plane triangulation with n vertices has a VR with width ≤ 2n − 5

and height ≤ 2
3 n + 14, which can be constructed in linear time.

◮ Theorem 4. [3] Every plane triangulation with n vertices has a VR with height ≤ n − 1

and width ≤ ⌊ 4
3 n⌋ − 2, which can be constructed in linear time.

◮ Theorem 5. [5] Every 4-connected plane triangulation with n vertices has a VR with

height ≤ 3
4 n + 2⌈√

n⌉ + 4 and width ≤ 3
2 n, which can be constructed in linear time.

From Theorem 2, results in above theorems can also be stated in terms of the length of

the orientations of G. The statement “G has an st-orientation O such that length(O) ≤ x

and length(O∗) ≤ y” is equivalent to the statement “the VR of G derived from O has height

≤ x and width ≤ y”. We will use these two statements interchangeably.

3 A Decomposition Lemma

The basic idea of our VR construction is as follows: We use the VR constructions in Theorems

2, 3, 4 and 5 for different subgraphs of G, some of them have small width and others have

small height. The crux of the construction is to find a proper balance that reduces overall
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height and width of the VR. In this section, we prove a decomposition lemma that is needed

by our VR construction to achieve the balance.

Let G = (V, E) be a plane graph. A triangle of G is a set of three mutually adjacent

vertices. The notation △ = (a, b, c) denotes a triangle consisting of vertices a, b, c. A triangle

△ divides the plane into its interior and exterior regions. We say △ = (a, b, c) is a separating

triangle if G − {a, b, c} is disconnected. In other words, △ = (a, b, c) is a separating triangle

if there are vertices in both its interior and exterior regions. The following fact by Whitney

is well known:

◮ Fact 1. A plane triangulation G is 4-connected if and only if G has no separating triangles.

Let △ = (a, b, c) be a separating triangle. G△ denotes the subgraph of G induced by

{a, b, c} ∪ {v ∈ V | v is in interior of △}. △ is maximal if there is no other separating

triangle △′ such G△ ⊂ G△′ . Two triangles △1 and △2 are related if either G△1
⊆ G△2

or

G△2
⊆ G△1

.

Let G1 and G2 be two plane triangulations. If G1 has an internal face f such that the

vertex set of f and the vertex set of the outer face of G2 are identical, we can embed G2 into

G1 by identifying the face f and the exterior face of G2. The resulting plane triangulation is

denoted by G1 ⊕f G2 (or simply G1 ⊕ G2).

◮ Definition 6. Let G1 and G2 be two plane triangulations such that G2 can be embedded

into G1 by a common face f = {a, b, c}. Let O1 be an st-orientation of G1 and O2 be an

st-orientation of G2 such that the three edges {(a, b), (b, c), (c, a)} are oriented the same

way in O1 and O2. OG1
⊕ OG2

denotes the union of O1 and O2, which is an orientation of

G1 ⊕ G2.

◮ Lemma 7. Let G1, G2, O1, and O2 be as in Definition 6. Then OG1
⊕ OG2

is an

st-orientation of G1 ⊕ G2.

Proof. Immediate from the definition. ◭

◮ Definition 8. The 4-block tree of a plane triangulation G is a rooted tree T defined as

follows:

If G has no separating triangles (i.e. G is 4-connected), then T consists of a single root r.

If not, let △1, . . . , △p be the maximal separating triangles of G. Let Ti be the 4-block

tree of G△i
. Then T is the tree with root r and the roots of Ti (1 ≤ i ≤ p) as the children

of r.

From the definition, we have the following properties:

Each non-root node u of T corresponds to a separating triangle △u of G.

For any u, v ∈ T , u and v have ancestor-descendant relation if and only if △u and △v

are related in G.

For a node u of T , Gu denotes the subgraph G△u
− (∪v∈C(u)I(G△v

)) where C(u) is

the set of children of u in T . In other words, Gu is obtained from G△u
by deleting all

vertices that are in the interior of the maximal separating triangles of G△u
. Since Gu has no

separating triangles, Gu is 4-connected. Each Gu is called a 4-block component of G. Fig. 2

shows a plane triangulation G, the 4-block components and the 4-block tree of G.

For a node u ∈ T , define |Tu| = |G△u
|.

◮ Lemma 9. Let G be a triangulation and T be its 4-block tree. At least one of the following

two conditions holds.

STACS’11
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Figure 2 (1) A triangulation G; (2) 4-block components and the 4-block tree T of G.

1. There exists a node v in T such that |Gv| ≥ n
6 .

2. There exists a set of unrelated separating triangles {△1, △2, . . . , △h}, such that |G△i
| ≥ 5

and n
4 − 3 ≤ ∑h

i=1 |I(G△i
)| ≤ 3

4 n − 3.

Proof. Let r be the root of T . Let H be a maximal path in T from r to some node v of T

such that for each node u ∈ H, |Tu| ≥ 3n
4 (v can be the root r).

If v is a leaf of T , then |Gv| ≥ 3n
4 > n

6 . So condition (1) is satisfied.

Now, suppose v is not a leaf. Let {v1, v2, . . . , vp} be the children of v in T . Without loss

of generality, assume |Tv1
| ≤ |Tv2

| ≤ . . . ≤ |Tvp
|. Then, either n

4 ≤ |Tvp
| < 3n

4 ; or |Tvi
| < n

4

for all vi ∈ {v1, v2, . . . , vp}.

If n
4 ≤ |Tvp

| < 3n
4 , then the separating triangle △vp

satisfies n
4 − 3 ≤ |I(G△vp

)| ≤ 3n
4 − 3.

So the single separating triangle △vp
satisfies condition (2).

Now suppose |Tvi
| < n

4 for all vi. Let im be the index such that |Tvi
| ≤ 4 for all i ≤ im

and |Tvi
| ≥ 5 for all i > im. There are three cases.

(1)
∑

i>im
(|Tvi

| − 3) < n
4 − 3.

Let n1 = |Gv|. Since Gv is a triangulation with n1 vertices, Gv has 2n1 − 5 internal faces

by Euler’s formula. Each child vi of v corresponds to a maximal separating triangle of G△v
,

and each such separating triangle is one of the interior faces of Gv. Thus, im ≤ p ≤ 2n1 − 5.

Since |I(G△vi
)| = 1 for all i ≤ im, we have:

3

4
n ≤ |Tv| = n1 +

∑

i≤im

|I(G△vi
)| +

∑

i>im

|I(G△vi
)|

= n1 + im +
∑

i>im

|I(G△vi
)| ≤ n1 + (2n1 − 5) +

∑

i>im

|I(G△vi
)|

From the assumption
∑

i>im
|I(G△vi

)| < n
4 − 3, we have: 3n1 − 5 > 3

4 n − n
4 = n

2 . This

implies |Gv| = n1 ≥ n
6 + 5

3 . So Gv satisfies (1).

(2) n
4 − 3 ≤

∑

i>im
(|Tvi

| − 3) ≤ 3
4 n − 3.

This is equivalent to n
4 −3 ≤ ∑

i>im
|I(G△vi

)| ≤ 3
4 n−3. So the set of unrelated separating

triangles {△vim+1
, △vim+2

, . . . , △vip
} satisfies (2).

(3)
∑

i>im
(|Tvi

| − 3) > 3
4 n − 3
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Let it be the first index such that
∑

im<i≤it
(|Tvi

| − 3) ≥ n
4 − 3. Because each |Tvi

| <
n
4 , clearly

∑

im<i≤it
(|Tvi

| − 3) ≤ 3
4 n − 3. So the set of unrelated separating triangles

{△vim+1
, △vim+2

, . . . , △vit
} satisfies (2). ◭

4 Compact Visibility Representation

In this section. we describe our compact VR construction of a plane triangulation G. In

order to reduce VR’s height and width simultaneously, we construct a VR of G by using

different VRs for some subgraphs of G. As stated in theorems 2, 3, 4 and 5, some of these

VRs have small height and others have small width. Roughly speaking, we select a set

of separating triangles, {△1, △2, . . . , △h} of G. For the subgraph of G that is outside of

{G△1
, G△2

, . . . , G△h
} (call it G′), we use a VR of G′ with small height. For each G△i

, we

use a VR with small width. Then, we embed each G△i
into G′.

Define X (k) = ⌈ 2
3 k⌉ − 1. It is easy to verify:

X (k) is a non-decreasing function; and X (k) ≥ 1 and X (k) ≥ k/3 for all k ≥ 2.

◮ Theorem 10. Let S = {△1, △2, . . . , △h} be a set of unrelated separating triangles of

G. Then G has an st-orientation O such that length(O) ≤ 2n
3 +

∑

h

i=1
|I(G△i

)|

3 + 14 and

length(O∗) ≤ 2n − 5 − ∑h

i=1 X (|I(G△i
)|).

Proof. Define Gext = G − ∪h
i=1I(G△i

) and Gj = Gext ∪ (∪j
i=1G△i

). We will show that Gj

(0 ≤ j ≤ h) has an st-orientation Oj so that:

◮ Claim 1. length(Oj) ≤ 2
3 |Gj | +

∑

j

i=1
|I(G△i

)|

3 + 14.

◮ Claim 2. length(O∗
j ) ≤ 2|Gj | − 5 − ∑j

i=1 X (|I(G△i
)|).

Then the theorem follows. We prove claims 1 and 2 by induction.

Base case j = 0: From Theorem 3, G0 = Gext has an st-orientation O0 such that

length(O0) ≤ 2
3 |G0| + 14 and length(O∗

0) ≤ 2|G0| − 5. So the claims hold for the base case.

Induction hypothesis: Gk has an st-orientation Ok such that: length(Ok) ≤ 2
3 |Gk| +

∑

k

i=1
|I(G△i

)|

3 + 14. and length(O∗
k) ≤ 2|Gk| − 5 − ∑k

i=1 X (|I(G△i
)|).

Suppose that △k+1 = {ak+1, bk+1, ck+1}. Without loss of generality, assume the edges of

△k+1 are oriented in Ok as {(ak+1 → bk+1), (bk+1 → ck+1), (ak+1 → ck+1)}.

By Theorem 4, G△k+1
has an st-orientation O△k+1

, with ak+1 as the source and ck+1 as

the sink, such that: length(O△k+1
) ≤ |G△k+1

| − 1 and length(O∗
△k+1

) ≤ ⌊ 4
3 |G△k+1

|⌋ − 2.

Let Ok+1 = Ok ⊕ O△k+1
. First we show length(Ok+1) ≤ 2

3 |Gk+1| +

∑

k+1

i=1
|I(G△i

)|

3 + 14.

Note that |Gk+1| = |Gk| + |I(G△k+1
)| = |Gk| + |G△k+1

| − 3.

Let Pk+1 be a longest path in Ok+1 from s to t in Gk+1; Pk a longest path in Ok from s

to t in Gk; and P△k+1
a longest path in O△k+1

from ak+1 to ck+1. There are several cases:

(i) Pk+1 does not contain any interior edge in G△k+1
. Then Pk+1 is a path in Gk. By

induction hypothesis,

length(Ok+1) = |Pk+1| ≤ 2

3
|Gk|+

∑k

i=1 |I(G△i
)|

3
+14 ≤ 2

3
|Gk+1|+

∑k+1
i=1 |I(G△i

)|
3

+14.

STACS’11



148 Compact Visibility Representation of Plane Graphs

s

t

s

(1)

t

s

t

k+1a

k+1k+1
P     (s, a     )

k+1P    (a      ,b     )
k+1k+1

k+1 k+1P    (c     ,t)

k+1k+1k+1
P    (a      ,c     )

t*s*

(3)(2)

b 

k+1k+1
P     (s, a     )

k+1
b 

k+1
c

P*
k+1

f 
k+1

P    (b     ,t)
k+1k+1k+1

c

k+1
b 

k+1
a

k+1
c

k+1
a

k+1

Figure 3 The proof of Theorem 10 (1) Case 2; (2) Case 3; (3) Path in the dual graph.

(ii) Pk+1 passes through a path in G△k+1
from ak+1 to ck+1 (see Fig. 3 (1)). Pk+1

can be divided into 3 sub-paths: {Pk+1(s, ak+1), Pk+1(ak+1, ck+1), Pk+1(ck+1, t)}. Here

Pk+1(s, ak+1), Pk+1(ck+1, t) are paths in Gk. Pk+1(ak+1, ck+1) is a path in G△k+1
. Since

P△k+1
is a longest path in G△k+1

, we have: |Pk+1(ak+1, ck+1)| ≤ |P△k+1
|.

Let P ′ be the concatenation of: Pk+1(s, ak+1) followed by the edges (ak+1 → bk+1)

and (bk+1 → ck+1); followed by Pk+1(ck+1, t). Then P ′ is a path in Gk. Thus

|P ′| = |Pk+1(s, ak+1)| + 2 + |Pk+1(ck+1, t)| ≤ |Pk|. This implies: |Pk+1(s, ak+1)| +

|Pk+1(ck+1, t)| ≤ |Pk| − 2. Hence:

length(Ok+1) = |Pk+1| = |Pk+1(s, ak+1)| + |Pk+1(ak+1, ck+1)| + |Pk+1(ck+1, t)|

≤ |Pk| − 2 + |P△k+1
| ≤ 2

3
|Gk| +

∑k

i=1 |I(G△i
)|

3
+ 14 + |G△k+1

| − 1 − 2

=
2

3
|Gk| +

∑k

i=1 |I(G△i
)|

3
+ (|I(G△k+1

)| + 3) + 14 − 3

=
2

3
(|Gk| + |I(G△k+1

)| + 3) +

∑k+1
i=1 |I(G△i

)| + 3

3
+ 14 − 3

=
2

3
|Gk+1| +

∑k+1
i=1 |I(G△i

)|
3

+ 14

(iii) Pk+1 passes through a path in G△k+1
from ak+1 to bk+1 (see Fig. 3 (2)).

Pk+1 can be divided into three sub-paths: {Pk+1(s, ak+1), Pk+1(ak+1, bk+1), Pk+1(bk+1, t)}.

Here Pk+1(s, ak+1), Pk+1(bk+1, t) are paths in Gk, while Pk+1(ak+1, bk+1) is a path in

G△k+1
. The concatenation of Pk+1(ak+1, bk+1) and the edge bk+1 → ck+1 is a path in

G△k+1
. Hence: |Pk+1(ak+1, bk+1)| + 1 ≤ |P△k+1

|. The concatenation of Pk+1(s, ak+1)

followed by the edge ak+1 → bk+1, followed by Pk+1(bk+1, t) is a path in Gk. So:

|Pk+1(s, ak+1)| + 1 + |Pk+1(bk+1, t)| ≤ |Pk|. Hence:

length(Ok+1) = |Pk+1| = |Pk+1(s, ak+1)| + |Pk+1(ak+1, bk+1)| + |Pk+1(bk+1, t)|
≤ (|Pk| − 1) + (|P△k+1

| − 1)

≤ 2

3
|Gk| +

∑k

i=1 |I(G△i
)|

3
+ 14 + |G△k+1

| − 3

=
2

3
|Gk+1| +

∑k+1
i=1 |I(G△i

)|
3

+ 14
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(iv) Pk+1 passes through a path in G△k+1
from bk+1 to ck+1. The proof is symmetric to

Case 3.

Next we prove Claim 2. Let P ∗
k be a longest path of O∗

k from s∗ to t∗. From induction

hypothesis, |P ∗
k | ≤ 2|Gk| − 5 −

∑k

i=1 X (|I(G△i
)|). Let P ∗

△k+1
be a longest path in G∗

△k+1
.

By Theorem 4, |P ∗
△k+1

| ≤ ⌊ 4
3 |G△k+1

|⌋ − 2.

Let P ∗
k+1 be a longest path of O∗

k+1 from s∗ to t∗. Let fk+1 be the face in Gk+1 that is

in the interior of △k+1 adjacent to the edge ak+1 → ck+1 (see Fig. 3 (3).) (In other words,

fk+1 corresponds to the source node of dual st-orientation of G∗
△k+1

.) If P ∗
k+1 uses any edge

in G∗
△k+1

, it must cross the edge ak+1 → ck+1 and enter the face fk+1. There are two cases.

(a) P ∗
k+1 does not pass fk+1. Then P ∗

k+1 is a path in G∗
k and the claim trivially holds.

(b) P ∗
k+1 passes through fk+1.

length(O∗
k+1) = |P ∗

k | + |P ∗
△k+1

| − |{fk+1}| ≤ 2|Gk| − 5

−
k

∑

i=1

X (|I(G△i
)|) + ⌊4

3
|G△k+1

|⌋ − 2 − 1

= 2(|Gk+1| − |I(G△k+1
)|) − 5

−
k

∑

i=1

X (|I(G△i
)|) + ⌊4

3
(|I(G△k+1

)| + 3)⌋ − 3

= 2|Gk+1| − 5 −
k

∑

i=1

X (|I(G△i
)|) − 2|I(G△k+1

)| + ⌊4

3
|I(G△k+1

)|⌋ + 1

= 2|Gk+1| − 5 −
k

∑

i=1

X (|I(G△i
)|) − (⌈2

3
|I(G△k+1

|⌉ − 1)

= 2|Gk+1| − 5 −
k+1
∑

i=1

X (|I(G△i
)|)

◭

◮ Lemma 11. Let S = {△1, △2, . . . , △h} be a set of unrelated separating triangles of G such

that G′ = G − (∪h
i=1I(G△i

)) is a 4-connected graph. Then, G has an st-orientation O such

that length(O) ≤ 3
4 n +

∑

h

i=1
|I(G△i

)|

4 + 2⌈
√

|G′|⌉ + 4 and length(O∗) ≤ 3
2 n +

∑

h

i=1
|I(G△i

)|

2 .

Proof. Define Gj = G′ ∪ (∪j
i=1G△i

). We show, by induction, that Gj has an st-orientation

Oj such that

1. length(Oj) ≤ 3
4 n +

∑

j

i=1
|I(G△i

)|

4 + 2⌈
√

|G′|⌉ + 4

2. length(O∗
j ) ≤ 3

2 n +

∑

j

i=1
|I(G△i

)|

2 .

Base case j = 0: Since G0 = G′ is 4-connected, by Theorem 5, G′ has an st-orientation

O′ such that length(O′) ≤ 3
4 |G′| + 2⌈

√

|G′|⌉ + 4 and length(O′∗) ≤ 3
2 |G′|. The claims are

trivially true.

Suppose the claims are true for j = k.

Suppose that △k+1 = {ak+1, bk+1, ck+1}. Without loss of generality, assume the edges of

△k+1 are oriented in Ok as {(ak+1 → bk+1), (bk+1 → ck+1), (ak+1 → ck+1)}.

By Theorem 2, G△k+1
has an st-orientation O△k+1

, with ak+1 as the source and ck+1 as

the sink, such that length(O△k+1
) ≤ |G△k+1

| − 1 and length(O∗
△k+1

) ≤ 2|G△k+1
| − 5.

We show the orientation Ok+1 = Ok ⊕ O△k+1
satisfies the claims.
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The proof of Claim 1 is similar to the first part of the proof of Theorem 10. We only

prove Claim 2.

By induction hypothesis, Gk has an st-orientation Ok such that length(O∗
k) ≤ 3

2 |Gk| +
∑

k

i=1
|I(G△i

)|

2 . Also, we know that length(O∗
△k+1

) ≤ 2|G△k+1
|−5. As in the proof of Theorem

10, there are two cases for analyzing length(O∗
k+1).

(a) P ∗
k+1 does not pass fk+1. Then P ∗

k+1 is a path in G∗
k and the claim trivially holds.

(b) P ∗
k+1 passes fk+1. Then:

length(O) ≤ 3

2
|Gk| +

1

2

k
∑

i=1

|I(G△i
)| + 2|G△k+1

| − 5 − 1

=
3

2
|Gk| +

1

2

k
∑

i=1

|I(G△i
)| + 2|I(G△k+1

)| ≤ 3

2
|Gk+1| +

1

2

k+1
∑

i=1

|I(G△i
)|

This completes the induction. ◭

◮ Theorem 12. Let Gv be a 4-block component of G, with the corresponding separating

triangle △v in G. Then G has an st-orientation O such that length(O) ≤ 3
4 n + 1

4 (n − |Gv|) +

2⌈
√

|Gv|⌉ + 4 and length(O∗) ≤ 3
2 n + n−|Gv|

2 .

Proof. Let S = {△1, △2, . . . , △h} be the set of maximal separating triangles of G△v
. Since

Gv is 4-connected, by Lemma 11, G△v
has an st-orientation O△v

such that:

length(O△v
) ≤ 3

4
|G△v

| + 2⌈
√

|Gv|⌉ + 4 +

∑h

i=1 |I(G△i
)|

4

length(O∗
△v

) ≤ 3

2
|G△v

| +

∑h

i=1 |I(G△i
)|

2
.

Let Gext = G − I(G△v
). Then Gext has an st-orientation such that length(Oext) ≤

|G
ext

| − 1 and length(O∗
ext) ≤ 2|Gext| − 5. Let O = Oext ⊕ O△v

. Then:

length(O) ≤ length(Oext) + length(O△v
) − 2

≤ (|G
ext

| − 1) +
3

4
|G△v

| + 2⌈
√

|Gv|⌉ + 4 +

∑h

i=1 |I(G△i
)|

4
− 2

=
3

4
|Gext| +

1

4
|Gext| +

3

4
|G△v

| + 2⌈
√

|Gv|⌉ +

∑h

i=1 |I(G△i
)|

4
+ 1

=
3

4
(|G| + 3) +

1

4
(|V (Gext) ∪ (∪h

i=1I(G△i
))|) + 2⌈

√

|Gv|⌉ + 1

=
3

4
(n + 3) +

1

4
(n − |Gv| + 3) + 2⌈

√

|Gv|⌉ + 1

=
3

4
n +

1

4
(n − |Gv|) + 2⌈

√

|Gv|⌉ + 4

length(O∗) = length(O∗ext) + length(O∗
△v

) − 1

≤ (2|Gext| − 5) + (
3

2
|G△v

| +

∑h

i=1 |I(G△i
)|

2
) − 1

=
3

2
|Gext| +

3

2
|G△v

| +
1

2
|Gext| +

∑h

i=1 |I(G△i
)|

2
− 6

=
3

2
(|G| + 3) +

1

2
(|I(Gext) ∪ (∪h

i=1I(G△i
))| + 3) − 6 =

3

2
n +

1

2
(n − |Gv|)
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This completes the proof. ◭

◮ Theorem 13. Every plane triangulation G of n vertices has a VR with height ≤ max{ 23
24 n+

2⌈√
n⌉ + 4, 11

12 n + 13} and width ≤ 23
12 n.

Proof. By Lemma 9, there are two cases:

Case 1: G has a 4-block component with size n1 ≥ n/6. By Theorem 12, G has an

st-orientation O such that length(O) ≤ 3
4 n+ n−n1

4 +2⌈√
n⌉+4 and length(O∗) ≤ 3n

2 + (n−n1)
2 .

Since n1 ≥ n
6 , we have: length(O) ≤ 23

24 n + 2⌈√
n⌉ + 4 and length(O∗) ≤ 23

12 n.

Case 2: G has a set of unrelated separating triangles {△1, △2, . . . , △h} such that:

For all i, |G△i
| ≥ 5, (which implies |I(G△i

)| ≥ 2).
n
4 − 3 ≤ ∑h

i=1 |I(G△i
)| ≤ 3

4 n − 3.

Since X (z) ≥ z/3 for all z ≥ 2, we have:

h
∑

i=1

X (|I(G△i
)|) ≥

∑h

i=1 |I(G△i
)|

3
.

By Theorem 10, G has an st-orientation O such that

length(O) ≤ 2n

3
+

| ∪h
i=1 I(G△i

)|
3

+ 14 ≤ 2n

3
+

3n/4 − 3

3
+ 14 =

11

12
n + 13

length(O∗) ≤ 2n − 5 −
h

∑

i=1

X (|I(G△i
)|) ≤ 2n − 5 − n/4 − 3

3
<

23

12
n.

In either case, the orientation O leads to a VR of G with the stated width and height. ◭

5 Conclusion

In this paper, we showed that every plane graph of n vertices has a VR with height

≤ max{ 23
24 n + 2⌈√

n⌉ + 4, 11
12 n + 13} and width ≤ 23

12 n. This is the first VR construction for

general plane graphs that simultaneously bounds the height and the width from the trivial

upper bound. The gap between the size of our VR and the known lower bound is still large.

It would be interesting to find more compact VR constructions.
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