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Abstract

Kernelization is a concept that enables the formal mathematical analysis of data reduction

through the framework of parameterized complexity. Intensive research into the Vertex Cover

problem has shown that there is a preprocessing algorithm which given an instance (G, k) of Ver-

tex Cover outputs an equivalent instance (G′, k′) in polynomial time with the guarantee that

G′ has at most 2k′ vertices (and thus O((k′)2) edges) with k′ ≤ k. Using the terminology of

parameterized complexity we say that k-Vertex Cover has a kernel with 2k vertices. There is

complexity-theoretic evidence that both 2k vertices and Θ(k2) edges are optimal for the kernel

size. In this paper we consider the Vertex Cover problem with a different parameter, the size

fvs(G) of a minimum feedback vertex set for G. This refined parameter is structurally smaller

than the parameter k associated to the vertex covering number vc(G) since fvs(G) ≤ vc(G) and

the difference can be arbitrarily large. We give a kernel for Vertex Cover with a number of

vertices that is cubic in fvs(G): an instance (G, X, k) of Vertex Cover, where X is a feedback

vertex set for G, can be transformed in polynomial time into an equivalent instance (G′, X ′, k′)

such that k′ ≤ k, |X ′| ≤ |X| and most importantly |V (G′)| ≤ 2k and |V (G′)| ∈ O(|X ′|3). A

similar result holds when the feedback vertex set X is not given along with the input. In sharp

contrast we show that the Weighted Vertex Cover problem does not have a polynomial ker-

nel when parameterized by fvs(G) unless the polynomial hierarchy collapses to the third level

(PH = Σp
3). Our work is one of the first examples of research in kernelization using a non-standard

parameter, and shows that this approach can yield interesting computational insights. To obtain

our results we make extensive use of the combinatorial structure of independent sets in forests.
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1 Introduction

The Vertex Cover problem is one of the six classic NP-complete problems discussed by

Garey and Johnson in their famous work on intractability [22, GT1], and has played an

important role in the development of parameterized algorithms [15, 28, 16]. A parameterized

problem is a language L ⊆ Σ∗ × N, and such a problem is (strongly uniform) fixed parameter

tractable if membership of an instance (x, k) can be decided in f(k)|x|c time for some

computable function f and constant c. Since the structure of Vertex Cover is so simple

and elegant, it has proven to be an ideal testbed for new techniques in the context of
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parameterized complexity. The problem is also highly relevant from a practical point of view

because of its role in bioinformatics [1] and other problem areas.

In this work we suggest a “refined parameterization” for the Vertex Cover problem

using the feedback vertex number fvs(G) as the parameter, i.e. the size of a smallest vertex

set whose deletion turns G into a forest. We give upper bounds on the kernel size for

the unweighted version of Vertex Cover under this parameterization, and also supply

a conditional superpolynomial lower bound on the kernel size for the variant of Vertex

Cover where each vertex has a non-negative integral weight. But before we state our results

we shall first survey the current state of the art for the parameterized analysis of Vertex

Cover.

There has been an impressive series of ever-faster parameterized algorithms to solve

k-Vertex Cover, which led to the current-best algorithm by Chen et al. that can decide

whether a graph G has a vertex cover of size k in O(1.2738k + kn) time and polynomial

space [9, 30, 8, 17]. The Vertex Cover problem has also played an important role in

the development of problem kernelization [23]. A kernelization algorithm (or kernel) is

a polynomial-time procedure that reduces an instance (x, k) of a parameterized decision

problem to an equivalent instance (x′, k′) such that |x′|, k′ ≤ f(k) for some computable

function f , which is the size of the kernel. We also use the term kernel to refer to the reduced

instance (x′, k′).

The k-Vertex Cover problem admits a kernel with 2k vertices and O(k2) edges, which

has been a subject of repeated study [6, 8, 10, 2, 11] and experimentation [1, 13]. There is

some complexity-theoretic evidence that the size bounds for the kernel cannot be improved.

Since practically all reduction-rules found to date are approximation-preserving [28], it

appears that a kernel with less than 2k vertices would yield a polynomial-time approximation

algorithm with a performance ratio smaller than 2 which would disprove the Unique Games

Conjecture [25]. A recent breakthrough result by Dell and Van Melkebeek [12] shows that

there is no polynomial kernel which can be encoded into O(k2−ǫ) bits for any ǫ > 0 unless

the polynomial hierarchy collapses to the third level (PH = Σp
3), which suggests that the

current bound of O(k2) edges is tight up to logarithmic factors.

This overview might suggest that there is little left to explore concerning kernelization for

vertex cover, but this is far from true. All existing kernelization results for Vertex Cover

use the requested size k of the vertex cover as the parameter. But there is no reason why we

should not consider structurally smaller parameters, to see if we can preprocess instances

of Vertex Cover such that their final size is bounded by a function of such a smaller

parameter, rather than by a function of the requested set size k. We study kernelization for

the Vertex Cover problem using the feedback vertex number fvs(G) as the parameter.

Since every vertex cover is also a feedback vertex set we find that fvs(G) ≤ vc(G) which

shows that the feedback vertex number of a graph is a structurally smaller parameter than

the vertex covering number: there are trees with arbitrarily large values of vc(G) for which

fvs(G) = 0. We call our parameter “refined” since it is structurally smaller than the standard

parameter for the Vertex Cover problem.

Related Work. The idea of studying parameterized problems using alternative param-

eters is not new (see e.g. [28]), but was recently advocated by Fellows et al. [19, 20, 29]

in the call to investigate the complexity ecology of parameters. The main idea behind this

program is to determine how different parameters affect the parameterized complexity of

a problem. Some recent results in this direction include FPT algorithms for graph layout

problems parameterized by the vertex cover number of the graph [21] and an algorithm to

decide isomorphism on graphs of bounded feedback vertex number [26]. We are aware of
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only two applications of this idea to give polynomial kernels using alternative parameters.

Fellows et al. [20, 18] show that the problems Independent Set, Dominating Set and

Hamiltonian Circuit admit linear-vertex kernels on graphs G when parameterized by

the maximum number of leaves in any spanning tree of G. Very recently Uhlmann and

Weller [31] gave a polynomial kernel for Two-Layer Planarization parameterized by the

feedback edge set number, which is a refined structural parameter for that problem since it

is smaller than the natural parameter.

Our Results. We believe that we are one of the first to present a polynomial problem

kernel using a non-standard but practically relevant refined parameter. We study the following

parameterized problem:

fvs-Weighted Vertex Cover

Instance: A simple undirected graph G, a weight function w : V (G) → N
+, a

feedback vertex set X ⊆ V (G) such that G − X is a forest, an integer k ≥ 0.

Parameter: The size |X| of the feedback vertex set.

Question: Is there a vertex cover C of G such that
∑

v∈C w(v) ≤ k?

We also consider the unweighted variant fvs-Vertex Cover in which all vertices have a

weight of 1. The problems fvs-Weighted Independent Set and fvs-Independent Set

are defined similarly. Throughout this work k will always represent the total size or weight

of the set we are looking for; depending on the context this is either a vertex cover or an

independent set.

We prove that fvs-Vertex Cover has a kernel in which the number of vertices is bounded

by min(O(|X|3), 2k). This bound is at least as small as the current-best Vertex Cover

kernel, but for graphs with small feedback vertex sets our bound is significantly smaller. We

also study the weighted version of the problem, and obtain a contrasting result: we show that

fvs-Weighted Vertex Cover does not admit a polynomial kernel unless PH = Σp
3. This is

very surprising since both the weighted and unweighted versions of k-Vertex Cover admit

polynomial kernels and can be attacked using similar reduction rules [10]. To our knowledge

we give the first example of a parameterized problem whose weighted and unweighted versions

are both NP-complete and FPT, but for which the unweighted version allows a polynomial

kernel but the weighted version does not.

When we present our results we will state them in terms of fvs-Independent Set and

fvs-Weighted Independent Set since this simplifies the exposition. Because we are using

the size of a feedback vertex set as the parameter, there are trivial parameterized reductions

between these problems: an instance (G, X, k) of fvs-Vertex Cover is equivalent to an

instance (G, X, |V (G)| − k) of fvs-Independent Set with the same parameter value |X|.

Hence our kernelization bounds for Independent Set carry over to Vertex Cover.

2 Preliminaries

In this work we only consider undirected, finite, simple graphs. Let G be a graph and denote

its vertex set by V (G) and the edge set by E(G). We denote the independence number of G

by α(G), the vertex covering number by vc(G) and the feedback vertex number by fvs(G).

We will abbreviate maximum independent set as MIS, and feedback vertex set as FVS. For

v ∈ V (G) we denote the open and closed neighborhoods of v by NG(v) and NG[v], respectively.

For a set S ⊆ V (G) we have NG(S) :=
⋃

v∈S NG(v)\S, and NG[S] :=
⋃

v∈S NG[v]. We write

G′ ⊆ G if G′ is a subgraph of G. The graph G[V (G) \ X] obtained from G by deleting the

vertices in X and their incident edges is denoted by G − X. The graph G[E(G) \ Y ] obtained

STACS’11
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(a) Graph G and its indepen-
dence decomposition.

(b) Decomposition for graph
G/{{u, v}}.

(c) Decomposition for graph
G − {u, v}.

Figure 1 Examples of the independence decomposition of a graph. Black vertices are in A, white

vertices are in N , gray vertices are in S and the edges in M are drawn with thick lines.

from G by deleting the edges in Y but not their endpoints is denoted by G/Y . Carefully

observe the difference between these two operators: if {u, v} is an edge in G, then G − {u, v}

is the graph obtained from G by deleting the vertices u, v and their incident edges, whereas

G/{{u, v}} is the graph obtained from G by removing the edge {u, v} while leaving the

endpoints u and v intact. We note that many details had to be omitted from this extended

abstract due to space restrictions; they can be found in the full version [24] of this work.

We need the following proposition on the structure of maximum independent sets in trees

by Zito [32, Theorem 2], which we re-state here in terms of forests:

◮ Proposition 1. Let F be a forest. Then there is a unique partition of the vertex set V (F )

into subsets A, N, S such that:

1. Any MIS for F contains all vertices of A and no vertices of N .

2. For each vertex v ∈ S there is a MIS for F containing v and a MIS for F avoiding v.

3. There is a perfect matching M in F [S], and any MIS for F contains exactly one endpoint

of each edge in M .

4. The matching M contains all the α-critical edges of F : for all e ∈ E(F ) it holds that

α(F ) < α(F/{e}) ⇔ e ∈ M .

This partition is uniquely characterized by adjacency relations. The sets A, N, S form the

described partition if and only if:

I. There is a matching M on the vertices of S.

II. No vertex of A is adjacent to another vertex of A or to a vertex in S.

III. Each vertex of N is adjacent to at least two vertices of A.

We will refer to this decomposition of the vertex set of a forest F into the subsets A, N, S

with the matching M as its independence decomposition (Figure 1).

◮ Observation 1. Let G be a graph. If G′ is a vertex-induced subgraph of G then α(G) ≥ α(G′),

so for all W ⊆ V (G) we have α(G) ≥ α(G − W ). If G′′ is an edge-induced subgraph of G

then α(G′′) ≥ α(G), so for all Z ⊆ E(G) we have α(G) ≤ α(G/Z).

◮ Observation 2. If G is a graph and v is a vertex in G such that degG(v) ≤ 1 then there is

a MIS for G that contains v.

3 Cubic Kernel for FVS-Independent Set

In this section we develop a cubic kernel for fvs-Independent Set. Consider an instance

(G, X, k) of the problem, which asks whether graph G with the FVS X has an independent

set of size k. Throughout this section F := G − X denotes the forest obtained by deleting

the vertices in X. Our starting point is the current-best Vertex Cover kernelization [8,

Theorem 2.2] which exploits a theorem by Nemhauser and Trotter [27].
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◮ Theorem 1. There is a polynomial-time algorithm that takes an instance (G, k) of Vertex

Cover as input, and computes in polynomial time an equivalent instance (G′, k′) such that G′

is a vertex-induced subgraph of G with k′ ≤ k, |V (G′)| − k′ ≤ |V (G)| − k and |V (G′)| ≤ 2k′.

We can ensure that G′ does not contain any vertices of degree ≤ 1.

Through the correspondence between Vertex Cover and Independent Set we can use

Theorem 1 to preprocess an instance (G, X, k) of fvs-Independent Set.

◮ Reduction Rule 1. Let (G, X, k) be the current instance of fvs-Independent Set. Run

the algorithm from Theorem 1 on the Vertex Cover instance (G, |V (G)| − k) and let the

result be (G′, |V (G′)| − k′). Obtain X ′ from X by deleting the vertices that were removed

from G by the algorithm, and use (G′, X ′, k′) as the new instance of fvs-Independent Set.

When given an independent subset X ′ ⊆ X of the feedback vertices we can efficiently

compute the largest independent set I in G which satisfies I ∩ X = X ′: since such a set

intersects X exactly in X ′, and since it cannot use any neighbors of X ′ the maximum size

is |X ′| + α(F − NG(X ′)) and this is polynomial-time computable since F − NG(X ′) is a

forest. We exploit this to assess which vertices from the FVS X might occur in a MIS of G.

◮ Definition 2. The number of conflicts ConfF ′(X ′) induced by a subset X ′ ⊆ X on a

subforest F ′ ⊆ F ⊆ G is defined as ConfF ′(X ′) := α(F ′) − α(F ′ − NG(X ′)).

This term ConfF ′(X ′) can be interpreted as follows. Choosing vertices from X ′ in an

independent set will prevent all their neighbors in the subforest F ′ from being part of the

same independent set; hence if we fix some choice of vertices in X ′, then the number of

vertices from F ′ we can add to this set (while maintaining independence) might be smaller

than the independence number of F ′. The term ConfF ′(X ′) measures the difference between

the two: informally it is the price we pay in the forest F ′ for choosing the vertices X ′ in the

independent set. We can now formulate our first new reduction rules.

◮ Reduction Rule 2. If there is a vertex v ∈ X such that ConfF ({v}) ≥ |X|, then delete v

from the graph G and from the set X.

◮ Reduction Rule 3. If there are distinct vertices u, v ∈ X with {u, v} 6∈ E(G) for which

ConfF ({u, v}) ≥ |X|, then add the edge {u, v} to G.

Correctness of these two rules can be established from the following lemma.

◮ Lemma 3. If X ′ ⊆ X is a subset of feedback vertices such that ConfF (X ′) ≥ |X| then

there is a MIS for G that does not contain all vertices of X ′.

Proof. Assume that I ⊆ V (G) is an independent set containing all vertices of X ′. We will

prove that there is an independent set I ′ which is disjoint from X ′ with |I ′| ≥ |I|. Since

ConfF (X ′) ≥ |X| it follows by definition that α(F ) − α(F − NG(X ′)) ≥ |X|; since I cannot

contain any neighbors of vertices in X ′ we know that |I ∩ V (F )| ≤ α(F − NG(X ′)), and

since |V (G)| = |X|+|V (F )| we have |I| ≤ |X|+α(F −NG(X ′)) ≤ α(F ). Hence the maximum

independent set for F , which does not contain any vertices of X ′, is at least as large as I; this

proves that for every independent set containing X ′ there is another independent set which

is at least as large and avoids the vertices of X ′. Therefore there is a MIS for G avoiding at

least one vertex of X ′. ◭

◮ Reduction Rule 4. If F contains a connected component T (which must be a tree) such that

for all X ′ ⊆ X with |X ′| ≤ 2 for which X ′ is independent in G it holds that ConfT (X ′) = 0,

then delete T from graph G and decrease k by α(T ).

STACS’11



182 Vertex Cover Kernelization Revisited: Upper and Lower Bounds

To prove the correctness of Rule 4 we need the following lemma.

◮ Lemma 4. Let T be a connected component of F and let XI ⊆ X be an independent set in G.

If ConfT (XI) > 0 then there is a set X ′ ⊆ XI with |X ′| ≤ 2 such that ConfT (X ′) > 0.

Proof. Assume the conditions stated in the lemma hold. Consider the independence decom-

position of T into the sets A, N, S, and let M be a perfect matching on T [S]. We will try

to construct a MIS I for T that does not use any vertices in NG(XI); this must then also

be a MIS for T − NG(XI) of the same size. By the assumption that ConfT (XI) > 0 any

independent set in T must use at least one vertex in NG(XI) in order to be maximum, hence

our construction procedure must fail somewhere; the place where it fails will provide us with

a set X ′ as required by the statement of the lemma.

Construction of a MIS. By Proposition 1 any MIS for T must use all vertices in A,

no vertices from N and exactly one endpoint of each edge in the matching M . It follows

that if some vertex v ∈ A is adjacent in G to a vertex x ∈ XI , then α(T − {v}) < α(T )

and therefore α(T − NG(x)) < α(T ) which proves that ConfT ({x}) > 0; hence we can then

use X ′ := {x} as our desired subset to prove the claim. In the remainder of the proof we

may therefore assume that no vertex of A is adjacent in G to a vertex in XI .

We now start building our independent set I for T that avoids vertices in NG(XI). We

start by taking all vertices of A in the independent set; we do not use any vertices in NG(XI)

here since A ∩ NG(XI) = ∅ by assumption. To augment I into a MIS for T it remains to

add one endpoint of each edge in the matching M . Since the endpoints of the matching are

not adjacent to vertices in A by the adjacency rules of Proposition 1, we can now restrict

ourselves to the subgraph T ′ := T [S] induced by the matched vertices since no choice of

independent vertices in T [S] will conflict with the choice of the vertices A. If there is a

vertex v in T ′ such that NT ′(v) = {u} and NG(v) ∩ XI = ∅, then the edge {v, u} must be

in the matching M (since M is a perfect matching in T [S]). Because we must choose one

of {u, v} in a MIS for T , and by Observation 2 choosing a degree-1 vertex will never conflict

with choices that are made later on, we can add v to our independent set I while respecting

the invariant that no vertex in I is adjacent in G to a vertex in XI . Since we have then

chosen one endpoint of the matching edge {u, v} in I, we can delete u, v and their incident

edges to obtain a smaller graph T ′ (which again contains a perfect submatching of M) in

which we continue the process. As long as there is a vertex with degree 1 in T ′ that has no

neighbors in XI then we take it into I, delete it and its neighbor, and continue. If this process

ends with an empty graph, then by Proposition 1 the set I must be a MIS for T , and since

it does not use any vertices adjacent to XI it must also be a MIS for T − NG(XI); but this

proves that α(T ) = α(T − NG(XI)) which means ConfT (XI) = 0, which is a contradiction

to the assumption at the start of the proof. So the process must end with a non-empty

graph T ′ ⊆ T such that vertices with degree 1 in T ′ are adjacent in G to a vertex in XI

and for which the matching M restricted to T ′ is a perfect matching on T ′. We use this

subgraph T ′ to obtain a set X ′ as desired.

Using the subgraph to prove the claim. Consider a vertex v0 in T ′ with degT ′(v0) =

1, and construct a path P = {v0, v1, . . . , v2p+1} by following edges of T ′ that are alternatingly

in and out of the matching M , until arriving at a degree-1 vertex whose only neighbor was

already visited. Since T ′ is acyclic, M restricted to T ′ is a perfect matching on T ′ and

we start the process at a vertex of degree 1, it is easy to verify that there must be such a

path P (there can be many; any arbitrary such path will suffice), that P must contain an

even number of vertices, that the first and last vertex on P have degree-1 in T ′ and that

the edges {v2i, v2i+1} must be in M for all 0 ≤ i ≤ p. Since we assumed that all degree-1

vertices in T ′ are adjacent in G to XI , there exist vertices x1, x2 ∈ X such that v0 ∈ NG(x1)
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and v2p+1 ∈ NG(x2). We now claim that X ′ := {x1, x2} satisfies the requirements of the

statement of the lemma, i.e. that ConfT ({x1, x2}) > 0. This fact is witnessed by considering

the path P in the original tree T . Any MIS for T which avoids NG({x1, x2}) must use one

endpoint of the matched edge {v0, v1}, and since the choice of v0 is blocked because v0 is a

neighbor to x1, it must use v1. But path P shows that v1 is adjacent in T to v2, and hence

we cannot choose v2 in the independent set. But since {v2, v3} is again a matched edge, we

must use one of its endpoints; hence we must use v3. Repeating this argument shows that

we must use vertex v2p+1 in a MIS for T if we cannot use v0; but the use of v2p+1 is also

not possible if we exclude NG({x1, x2}). Hence we cannot make a MIS for T without using

vertices in NG({x1, x2}) which proves that α(T ) > α(T − NG({x1, x2}). By the definition of

conflicts this proves that ConfT (X ′) > 0 for X ′ = {x1, x2}, which concludes the proof. ◭

Using this lemma we can prove the correctness of Rule 4.

◮ Lemma 5. Rule 4 is correct: if T is a connected component in F such that for all X ′ ⊆ X

which are independent in G and satisfy |X ′| ≤ 2 it holds that ConfT (X ′) = 0, then

α(G) = α(G − T ) + α(T ).

Proof. Assume the conditions in the statement of the lemma hold. It is trivial to see

that α(G) ≤ α(G − T ) + α(T ). To establish the lemma we only need to prove that

α(G) ≥ α(G − T ) + α(T ), which we will do by showing that any independent set IG−T in

G−T can be transformed to an independent set of size at least |IG−T |+α(T ) in G. So consider

such an independent set IG−T , and let XI := IG−T ∩ X be the set of vertices which belong

to both IG−T and the feedback vertex set X. Suppose that α(T ) > α(T − NG(XI)). Then

by Lemma 4 there is a subset X ′ ⊆ XI with |X ′| ≤ 2 such that ConfT (X ′) > 0. Since XI is

an independent set, such a subset X ′ would also be independent; but by the preconditions to

this lemma such a set X ′ does not exist and therefore we must have α(T ) = α(T − NG(XI)).

Now we show how to transform IG−T into an independent set for G of the requested

size. Let IT be a MIS in T − NG(XI), which has size α(T − NG(XI)) = α(T ). It is

easy to verify that IG−T ∪ IT must be an independent set in G because vertices of T are

only adjacent to vertices of G − T which are contained in X. Hence the set IG−T ∪ IT

is independent in G and it has size |IG−T | + α(T ). Since this argument applies to any

independent set IG−T in graph G − T it holds in particular for a MIS in G − T , which proves

that α(G) ≥ α(G − T ) + α(T ) which proves the claim. ◭

We introduce the concept of blockability for the statement of the last two reduction rules.

◮ Definition 6. We say that the pair x, y ∈ V (G) \ X is X-blockable if G contains an

independent set X ′ ⊆ X of size |X ′| ≤ 2 such that {x, y} ⊆ NG(X ′).

This can be interpreted as follows: any independent set in G that contains X ′ cannot

contain x or y, so the pair x, y is blocked from being in an independent set by choosing X ′. It

follows directly from the definition that if x, y is not X-blockable, then for any combination

of u ∈ NG(x) ∩ X and v ∈ NG(y) ∩ X we must have {u, v} ∈ E(G).

◮ Reduction Rule 5. If there are distinct vertices u, v ∈ V (G) \ X which are adjacent in G

and are not X-blockable such that degF (u), degF (v) ≤ 2 then reduce the graph as follows.

Delete vertices u, v and decrease k by 1. If u has a neighbor t in F which is not v, then make

all vertices of NG(v) ∩ X adjacent to t. If v has a neighbor w in F which is not u, then make

all vertices of NG(u) ∩ X adjacent to w. If the vertices t, w exist then they must be unique;

add the edge {t, w} to the graph.

STACS’11



184 Vertex Cover Kernelization Revisited: Upper and Lower Bounds

(a) Rule 5: Shrinking unblockable degree-2 paths
in trees. (k′ := k − 1)

(b) Rule 6: Removing unblockable pendants in
trees. (k′ := k − 2)

Figure 2 Illustrations of two reduction rules. The original structure is shown on the left, and the

image on the right shows the structure after the reduction. Feedback vertices X are drawn in the

bottom container, whereas the forest G − X is visualized in the top container.

◮ Reduction Rule 6. If there are distinct vertices t, u, v, w in V (G) \ X such that degF (u) =

degF (v) = 3, NF (t) = {u}, NF (w) = {v} and {u, v} ∈ E(G) such that none of the pairs {u, t},

{v, w}, {t, w} are X-blockable, then reduce as follows. Let {p} = NF (u) \ {t, v} and let

{q} = NF (v) \ {w, u}. Delete {t, u, v, w} and their incident edges from G, decrease k by 2,

make p adjacent to all vertices of NG(t)∩X and make q adjacent to all vertices of NG(w)∩X.

See Figure 2 for an illustration of the final two reduction rules, which are meant to reduce

the sizes of the trees in the forest F . The correctness of these rules can be proven by

an exchange argument. Whereas Rule 4 deletes a tree T from the forest F when we can

derive that for every independent set in G − T we can obtain an independent set in G

which is α(T ) vertices larger, these last reduction rules act locally within one tree, but

according to the same principle. Instead of working on an entire connected component of F ,

they reduce subtrees T ′ ⊆ F in situations where we can derive that every independent set

in X can be augmented with α(T ′) vertices from T ′. In Rule 5 we reduce the subtree on

vertices {u, v} which has independence number 1, and in Rule 6 we reduce the subtree on

vertices {u, v, t, w} with independence number 2. Connections between the vertices adjacent

to the reduced subtree are made to enforce that removal of the subtree does not affect the

types of interactions between the neighboring vertices.

When no reduction rules can be applied to an instance, we call it reduced. In reduced

instances the number of vertices in F must be bounded by a function of |X|, which can be

proven using the following notion.

◮ Definition 7. Let F ′ be a subforest of F , and define the number of active conflicts induced

on F ′ by the feedback set X as follows: ActiveF ′(X) :=
∑

X′∈X ConfF ′(X ′) using the

abbreviation X :=
{

X ′
∣

∣ X ′ ⊆ X ∧ |X ′| ≤ 2 ∧ X ′ is independent in G
}

.

The number of active conflicts induced on F in a reduced instance is polynomially bounded

in |X|. For every v ∈ X we have ConfF ({v}) < |X| by Rule 2, and every pair of distinct

non-adjacent vertices {u, v} ⊆ X satisfies ConfF ({u, v}) < |X| by Rule 3. Hence for every

reduced instance we have ActiveF (X) ≤ |X|2 +
(

|X|
2

)

|X|. A technical proof shows that in a

reduced instance the number of active conflicts induced on the forest F is at least 1
83 |V (F )|.

By combining this with the bound on the number of active conflicts, we can bound the

size of reduced instances and obtain a kernelization algorithm. The algorithm exhaustively

applies the six reduction rules, and the analysis then shows that the instance must be small

when no more reduction rules can be applied. Using the duality of Vertex Cover and

Independent Set we also obtain a kernel for fvs-Vertex Cover as a corollary.
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◮ Theorem 8. fvs-Independent Set has a kernel with a cubic number of vertices: there is

a polynomial-time algorithm that transforms an instance (G, X, k) into an equivalent instance

(G′, X ′, k′) such that |X ′| ≤ |X|, k′ ≤ k, |V (G′)|−k′ ≤ |V (G)|−k, |V (G′)| ≤ 2(|V (G′)|−k′)

and |V (G′)| ≤ |X| + 83|X|3.

◮ Corollary 9. fvs-Vertex Cover has a kernel with min(2k, |X| + 83|X|3) vertices.

4 No Polynomial Kernel for FVS-Weighted Independent Set

In this section we show that the introduction of vertex weights makes the parameterized

Independent Set problem harder to kernelize, by proving that fvs-Weighted Indepen-

dent Set does not have a polynomial kernel unless PH = Σp
3. To establish this result, we

introduce a new parameterized problem called t-Paired Vector Agreement and show

that it does not have a polynomial kernel unless PH = Σp
3. We then finish the proof by giving

a polynomial-parameter transformation [5, 14] to fvs-Weighted Independent Set.

t-Paired Vector Agreement

Instance: A list L consisting of t pairs of vectors (ai, bi) for 1 ≤ i ≤ t such that each

vector is an element of {0, 1, #, ?}m, and an integer k ≥ 0.

Parameter: The number of pairs t.

Question: Is it possible to choose one vector from each pair, such that the chosen

vectors S induce at most k conflict positions? A position 1 ≤ j ≤ m in a vector is

a conflict position if some chosen vector v ∈ S has vj = #, or if we have chosen

vectors u, v ∈ S such that uj = 0 and vj = 1.

The framework for proving that a parameterized problem does not have a polynomial

kernel unless PH = Σp
3 requires us to establish that the corresponding classical problem is

NP-complete. A reduction from Vertex Cover shows that the classic problem Paired

Vector Agreement is NP-complete. By exploiting the fact that t-Paired Vector

Agreement can be solved in O(2tp(m)) time for some polynomial p (by trying all possible

combinations of vectors), we can build an or-composition algorithm for the paired agreement

problem using a bitmask selection strategy; the techniques we use here are similar to those

employed by Dom et al. [14]. These two facts prove that t-Paired Vector Agreement

does not have a polynomial kernel unless PH = Σp
3. To relate these results to fvs-Weighted

Independent Set we use the following transformation.

◮ Lemma 10. There is a polynomial-parameter reduction from t-Paired Vector Agree-

ment to fvs-Weighted Independent Set.

Proof. Let (L, t, m, k) be an instance of t-Paired Vector Agreement. We may assume

that k < m otherwise the answer to the instance is trivially yes. We show how to build

an equivalent instance (G′, w′, X ′, k′) of fvs-Independent Set in polynomial time such

that |X ′| = 2t, which implies the existence of a polynomial-parameter reduction.

The graph G′ has 2(t + m) vertices, and is defined as follows. For each index 1 ≤ i ≤ t

there is a pair of vertices va
i , vb

i which are connected by an edge, and have weight 2(t + m).

For each vector position 1 ≤ j ≤ m there are vertices p0
j , p1

j which are connected by an

edge, and have weight 1. The vertices va
i and vb

i correspond to the vectors ai, bi of the

t-Paired Vector Agreement instance, and are connected to the position-vertices as

follows. Let v be a vertex va
i or vb

i corresponding to the vector vec(v) which is ai or bi,

respectively. For 1 ≤ i ≤ t vertex v is adjacent in G′ to all p0
j for which vector vec(v) has
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a 0 at position j; it is also adjacent to all p1
j for which vector vec(v) has a 1 at position j,

and finally vertex v is adjacent to all {p0
j , p1

j} for which vector vec(v) has a # at position j.

This concludes the definition of the structure of graph G′.

One may verify that a position vertex px
j is adjacent to exactly 1 other position vertex p1−x

j ,

which implies that the graph induced by the position vertices p0,1
j has maximum degree 1 and

is therefore a forest; this shows that the vector-vertices v
a/b
i form a feedback vertex set for G′

and thus we define the feedback vertex set for our instance as X ′ := {va
i , vb

i | 1 ≤ i ≤ t}

which has size exactly 2t. We now ask for an independent set of total weight at least k′ :=

2t(t + m) + (m − k), which completes the description of instance (G′, w′, X ′, k′). It is easy

to see that this instance can be computed in polynomial time from the instance (L, t, m, k).

The proof that these two instances are equivalent is not difficult, and has been deferred to

the full version of this paper. ◭

By standard kernelization lower-bound techniques (see [5, 14]) Lemma 10 implies:

◮ Theorem 11. The problems fvs-Weighted Independent Set and fvs-Weighted

Vertex Cover do not admit polynomial kernels unless PH = Σp
3.

It is interesting to note that an instance (G′, w′, X ′, k′) of fvs-Independent Set resulting

from the polynomial-parameter transformation of Lemma 10 has a very restricted graph

structure: every connected component of the forest G′ − X ′ is a path on two vertices. Hence

our proof shows that even using the parameter “number of vertex deletions needed to turn

the graph into a disjoint union of P2’s” (a structurally larger parameter than the FVS size)

there is no polynomial kernel unless PH = Σp
3.

5 Conclusion

We have given upper and lower bounds on the size of kernels for the Vertex Cover and

Independent Set problems using the parameter fvs(G). It would be very interesting

to perform experiments with our new reduction rules to see whether they offer significant

benefits over the existing Vertex Cover kernel on real-world instances. This result is one

of the first examples of a polynomial kernel using a “refined” parameter which is structurally

smaller than the standard parameterization. The contrasting result on the weighted problem

shows that there is a rich structure waiting to be uncovered when studying kernelization using

non-standard parameters. The kernel we have presented for fvs-Vertex Cover contains

O(|X|3) vertices and can therefore be encoded in O(|X|6) bits using an adjacency matrix.

The results of Dell and Van Melkebeek [12] imply that it is unlikely that there exists a kernel

which can be encoded in O(|X|2−ǫ) bits for any ǫ > 0. It might be possible to improve

the size of the kernel to a quadratic or even a linear number of vertices, by employing new

reduction rules. The current reduction rules can be seen as analogs of the traditional “high

degree” rule for the Vertex Cover problem, and it would be interesting to see whether it

is possible to find analogs of crown reduction rules when using fvs(G) as the parameter.

Although we have assumed throughout the paper that a feedback vertex set is supplied

with the input, we can drop this restriction by applying the known polynomial-time 2-

approximation algorithm for FVS [3]. Observe that the reduction algorithm does not require

that the supplied set X is a minimum feedback vertex set; the kernelization algorithm works

if X is any feedback vertex set, and the size of the output instance depends on the size of

the FVS that is supplied. Hence if we compute a 2-approximate FVS and supply it to the

kernelization algorithm, the bound on the number of vertices in the output instance is only a

factor 2 worse than when running the kernelization using a minimum FVS.
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This paper has focused on the decision version of the Vertex Cover problem, but the

data reduction rules given here can also be translated to the optimization version to obtain

the following result: given a graph G there is a polynomial-time algorithm that computes a

graph G′ and a non-negative integer c such that vc(G) = vc(G′) + c with |V (G′)| ≤ 2 vc(G)

and |V (G′)| ∈ O(fvs(G)3); and a vertex cover S′ for G′ can be transformed back into a

vertex cover of G of size |S′| + c in polynomial time.

The approach of studying Vertex Cover parameterized by fvs(G) fits into the broad

context of “parameterizing away from triviality” [28, 7], since the parameter fvs(G) measures

how many vertex-deletions are needed to reduce G to a forest in which Vertex Cover can

be solved trivially in polynomial time. As there is a wide variety of restricted graph classes

for which Vertex Cover is in P , this opens up a multitude of possibilities for non-standard

parameterizations. For every graph class G which is closed under vertex deletion and for

which the Vertex Cover problem is in P , the Vertex Cover problem is in FPT when

parameterized by the size of a set X such that G − X ∈ G, assuming that X is given as part

of the input. Recent work [4] into this direction shows that whenever G contains all cliques

the resulting parameterized problem does not have a polynomial kernel unless PH = Σp
3.

Examples of such classes G are chordal graphs, interval graphs and other types of perfect

graphs. We conclude with two specific open problems. Is there a polynomial kernel using

the deletion distance from a bipartite graph as the parameter? Does the Vertex Cover

problem parameterized by the size of a minimum set X such that treewidth(G − X) ≤ i

have a polynomial kernel for every fixed i, or is there some value of i for which this problem

does not have a polynomial kernel? The classic Vertex Cover kernelizations can be

interpreted as the case i = 0 whereas this paper supplies the result for i = 1. It appears that

many interesting insights are waiting to be discovered in this direction.
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