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Abstract

A normal Hall subgroup N of a group G is a normal subgroup with its order coprime with

its index. Schur-Zassenhaus theorem states that every normal Hall subgroup has a complement

subgroup, that is a set of coset representatives H which also forms a subgroup of G. In this paper,

we present a framework to test isomorphism of groups with at least one normal Hall subgroup,

when groups are given as multiplication tables. To establish the framework, we first observe that

a proof of Schur-Zassenhaus theorem is constructive, and formulate a necessary and sufficient

condition for testing isomorphism in terms of the associated actions of the semidirect products,

and isomorphisms of the normal parts and complement parts.

We then focus on the case when the normal subgroup is abelian. Utilizing basic facts of

representation theory of finite groups and a technique by Le Gall in [9], we first get an efficient

isomorphism testing algorithm when the complement has bounded number of generators. For

the case when the complement subgroup is elementary abelian, which does not necessarily have

bounded number of generators, we obtain a polynomial time isomorphism testing algorithm by

reducing to generalized code isomorphism problem. A solution to the latter can be obtained

by a mild extension of the singly exponential (in the number of coordinates) time algorithm

for code isomorphism problem developed recently by Babai in [3]. Enroute to obtaining the

above reduction, we study the following computational problem in representation theory of finite

groups: given two representations ρ and τ of a group H over Zdp , p a prime, determine if there

exists an automorphism φ : H → H, such that the induced representation ρφ = ρ ◦ φ and τ are

equivalent, in time poly(|H|, pd).

Keywords and phrases Group Isomorphism Problem, Normal Hall Subgroups, Computational

Complexity
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1 Introduction

The Group Isomorphism problem(GpI) is a computational problem intriguing for both com-

plexity theorists as well as computational group theorists. Given two finite groups G and H,

the problem asks to test if they are isomorphic, that is the existence of a bijection φ : G → H
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preserving group operations, namely ∀g, h ∈ G, φ(g · h) = φ(g) · φ(h). Naturally, the com-

plexity of the problem depends on how the group is represented: if the groups are given

as presentations (generators and relations), then it is undecidable [8, 1]. For permutation

groups given as generators, the best upper bound known [6] is PSPACE.

The least succinct input format, multiplication table (Cayley table), gives rise to a more

interesting scenario from a complexity theoretic perspective. For this case, the problem is

known to be easier than the well-known Graph Isomorphism problem (GrI) [13], thus giving

an upper bound of NP ∩ coAM. However, unlike many other isomorphism-type problems, a

reduction in the reverse direction is not known[13]. A recent work [7] shows that GrI can not

be AC0 reducible to GpI. Another distinction between GpI and GrI lies in the best known

algorithms for them. The best known algorithm for GrI is 2Õ(
√
n) [5], where n is the size of

the graph. For groups of size n with b generators, in [16] Tarjan is credited for pointing out

an nb+O(1) algorithm. Then by the observation that every group has a generating set of size

⌈logn⌉, we get an nlogn+O(1) algorithm for testing isomorphism of general groups. This is

improved by Lipton, Snyder and Zalcstein [14], who gave an algorithm running in O(log2 n)

space. However, whether a polynomial time algorithm exists is still open.

1.1 Progress for testing isomorphism of restricted classes of groups

There has been some progress on group isomorphism problem for restricted classes of groups.

The class of groups with bounded number of generators (say, of size b) can be tested efficiently

by the nb+O(1) algorithm. For abelian groups, Savage [19] first gave an O(n2) algorithm,

which was improved to O(n logn) by Vikas [24] and finally to O(n) by Kavitha [11]. Little

is known beyond abelian groups until 2008, when Le Gall [9] showed that isomorphism of

groups in the form of semidirect products of an abelian group and a cyclic group, whose

orders are coprime, can be tested in almost linear time even in the model of black-box groups.

The class of p-groups seems to be the current barrier, though recent works by Wilson [25, 26]

on the structure of p-groups are noteworthy.

Recently, Kayal and Nezhmetdinov [12] and Wilson [27] address the problem of finding

the factors of a group under the direct product operation (Wilson [27] considers a stronger

model, that is permutation groups given as generators). They show that given a group,

all its direct factors can be computed efficiently. As pointed out in [12], this result can

be interpreted in the context of isomorphism testing as follows: by Remak-Krull-Schmidt

theorem, two groups are isomorphic if and only if their direct factors are isomorphic up to

appropriate correspondence of the factors. Thus, the class of groups that are direct products

of groups with known efficient isomorphism testing procedure can be tested efficiently.

This argument suggests the following strategy: suppose for some group class, the groups

can be decomposed into smaller subgroups in some canonical way. Then after decomposition,

isomorphism testing of the original groups may reduce to testing isomorphism of the building

blocks, and then pasting solutions of building blocks back together. In the case of direct

product, decomposition is solved in [12] and [27], and “pasting” is trivial due to Remak-

Krull-Schmidt theorem. Now it is natural to ask if this strategy can be extended to the case

of less stringently defined products. The next natural target is that of semidirect products,

which is already considered in [9]. A group G is the semidirect product of a normal subgroup

N by a subgroupH ifG = NH andN∩H = {id}. Every h ∈ H can act onN by conjugation,

giving rise to a homomorphism from H to Aut(N), called the action associated with the

semidirect product. Unlike direct product, a semidirect product G = N ⋊τ H is canonical

only with respect to the associated action. For the special class considered in [9], due to this

reason Le Gall needs to solve the problem of testing whether two automorphisms of abelian
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groups are conjugate or not (when the automorphisms satisfy some property), for which he

gives an efficient algorithm.

1.2 Our result: a framework for testing isomorphism of groups with

normal Hall subgroups

A Hall divisor m of an integer n is a divisor of n such that (m,n/m) = 1. A normal Hall

subgroup is a normal subgroup whose order is a Hall divisor of the order of the group. In

this paper, we consider the class of groups with at least one normal Hall subgroup, and use

H to denote this group class. It turns out this condition suggests some interesting properties

of the group structure. For a given Hall divisor of the size of the group, if the normal Hall

subgroup of this size exists then it is a characteristic subgroup. Schur-Zassenhaus theorem

states that a normal Hall subgroup always has a complement, that is a set of representatives

forming a subgroup. Thus the semidirect product arises naturally for groups in H. Note

that H contains all groups of order 2 · pk, p a prime other than 2, and all nilpotent groups

that are not p-groups. To see the first point, note that a Sylow p-subgroup is normal as it

is of index 2, and the second point follows due to that a nilpotent group is direct product

of its Sylow subgroups.

Inspired by [9], we begin with formalizing the strategy for isomorphism testing discussed

in Section 1.1 for the class H. As a first step, we need to have an efficient decomposition

procedure. The observation is that the proof of Schur-Zassenhaus theorem is efficiently

constructive, establishing the following theorem about finding a complement of a normal

Hall subgroup.

◮ Theorem 1.1. (Algorithmic Schur-Zassenhaus theorem) For a group G of order n, given

as multiplication table, all its normal Hall subgroups can be computed in time O(n4). Given

a specific normal Hall subgroup, one of its complements can be computed in time O(n4).

In the second step, we need to consider how isomorphism of the original groups connects

isomorphisms of the components. Our next result, which has been discovered by Taunt [23]

in the context of construction of finite groups, is the formulation of a necessary and sufficient

condition of the original groups being isomorphic in Theorem 4.1. That condition involves

the actions associated with the semidirect products, and the isomorphisms of the normal and

complement parts. It is not listed here, partly due to its technicality, but the main reason

is that as discussed, we need to turn our focus to the case when the factors of semidirect

product are efficiently testable. The following notations will help us to talk about the group

classes of the factors in the semidirect product. Given two groups X and Y whose orders

are coprime, H(X,Y ) is the class of groups with a normal Hall subgroup isomorphic with

X, and a complement isomorphic with Y . For two group classes X and Y, H(X ,Y) is the

class of groups with a normal Hall subgroup X from X and the complement Y from Y.

Note that X being a Hall subgroup implies that the orders of X and Y are coprime. That

is H(X ,Y) =
⋃
X∈X ,Y ∈Y,gcd(|X|,|Y |)=1 H(X,Y ).

We set notations for some group classes with known isomorphism testing/computing

procedure. Let A be the class of abelian groups. As subclasses of A, Ap is the class

of abelian p-groups, and E is the class of elementary abelian groups.
∏

E is the class of

direct products of elementary abelian groups. Bb is the class of groups with the number

of generators bounded by b. Note that B2 includes all finite simple groups1, symmetric

1 For readers unfamiliar with this fact, c.f. the first theorem in [15], and note that a simple abelian group
must be a cyclic group with prime order.

STACS’11



570 Isomorphism Testing of Groups with Nomral Hall Subgroups

groups and cyclic groups. When the specific number of generators is not of our concern, we

will simply write B. C = B1 is the class of cyclic groups. Finally, we let K be a variable

taking values from the class of groups with known efficient isomorphism testing/computing

procedure. In this article, we mainly consider the case when K is A or B, or subclasses of

A or B. To give an example of the use of the notations, the main result of [9] is an efficient

isomorphism testing/computing algorithm of H(A, C), while our main concrete results are

efficient algorithms for H(A,B) (when the complement has bounded number of generators),

and H(A, E) (when the complement is elementary abelian). H(A,B) improves the class

H(A, C) studied in [9].

1.3 Our result: efficient isomorphism testing of H(A, E), H(A, B)

Representation theory of finite groups studies the homomorphisms from abstract groups to

general linear groups. Such a homomorphism is called a representation. In Theorem 4.1,

when the normal subgroup is an elementary abelian group Zkp, p a prime, it naturally gives

rise to the following algorithmic problem in representation theory of finite groups which may

be of independent interest, which we call AutoInducedRepEquiv (short for finding the

Automorphism Induced Representation Equivalence).

◮ Problem 1. (AutoInducedRepEquiv) Given two representations ρ and τ of a group H

over Zdp, p a prime, determine if there exists an automorphism φ : H → H, such that the

induced representation ρφ = ρ ◦ φ and τ are equivalent, in time poly(|H|, pd).

The following theorem suggests that AutoInducedRepEquiv can not be got around

in order to solve isomorphism of groups from H(E ,K).

◮ Theorem 1.2. For groups from H(E ,K), isomorphism testing is many-one equivalent to

AutoInducedRepEquiv.

Using basic facts from representation theory, it is not hard to solve AutoInducedRepE-

quiv when the number of generators is bounded, giving an efficient testing algorithm of

H(E ,B). The non-trivial case is when the number of generators is not bounded. When the

complement is an elementary abelian group, we further reduce AutoInducedRepEquiv to

a mild generalization2 of the linear code isomorphism problem in singly exponential time,

which asks whether two linear subspaces are the same up to permutation of coordinates in

time exponential to the number of coordinates.

◮ Theorem 1.3. For groups from H(E , E), AutoInducedRepEquiv reduces to generalized

code isomorphism problem.

In a recent work [3], Babai presents an algorithm solving the code isomorphism problem

in singly exponential time in the number of coordinates, which is logarithmic of the size of

the group in our case, allowing us to establish the following.

◮ Corollary 1.4. There is an O(n6) algorithm testing isomorphism of groups from H(E , E).

It is worth noting that the number of groups in this class is lower bounded by nΩ(logn),

for certain infinite sequence of group size n. Applying a technique in [9], we extend this

further to provide an efficient isomorphism testing of groups from H(A, E). An O(nb+5)

algorithm for H(A,Bb) can also be derived in this framework, rediscovering what is known

in Section 8.9, [10] (see Section 4.2).

2 See Section 5 for specific points of generalization.
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◮ Theorem 1.5. For groups of size n from H(A, E), there is an algorithm in time O(n6)

testing isomorphism.

The rest of the paper is organized as follows. Section 2 contains the preliminaries. In

Section 3 we present the decomposition procedure into normal and complement parts ,

proving Theorem 1.1. In Section 4, we first present the condition that shows how testing

isomorphism of the original groups relates to that of the small groups. Then we prove

Theorem 1.2, elaborate on the framework, and show that how a technique from [9] allows us

to reduce from H(
∏

E , E) to H(A, E). Finally, in Section 5, we introduce generalized code

isomorphism, the reductions (Theorem 1.3) and show how to test isomorphism of H(A, E).

Due to the page constraints, we only give sketches of proofs for some propositions. We refer

the interested readers to a full version of this article for the detailed proofs and complete

algorithms.

2 Preliminaries

In this section we introduce some preliminary concepts and notations that we will be using.

We refer the reader to a standard text book [18] for basic concepts in Group theory.

An abelian group is a group with group operation commutative. Given a prime p, an

abelian p-group is an abelian group of order pk, k ∈ Z+, and an elementary abelian p-group

is Zkp. Every abelian group can be decomposed as direct product of cyclic groups by the

fundamental theorem of abelian groups.

For a group G, we say that G is the semidirect product of N by H, for N ✁ G and

H ≤ G, written as G = N ⋊H, if G = NH and N ∩H = {id}. For a given decomposition of

G = N ⋊H, we call N the normal subgroup of this decomposition, and H the complement

subgroup. For a given N ✁G, from the definition of semidirect product it can be seen that

G = N ⋊H if and only if there is a set of coset representatives of G/N closed under group

operation. We use CNh to denote the automorphism of N induced by h by conjugating action.

Formally, CNh : N → N by n → hnh−1. This gives an homomorphism of τ : H → Aut(N), by

sending h to CNh . When we write G = N⋊τH, τ is the associated homomorphism from H to

Aut(N) acting by conjugation. Conversely, given two groupsN andH, and a homomorphism

τ : H → Aut(N) (we will use τh to denote the image of h under τ), a group G can be formed

as follows: elements in G are from N ×H, and we let (n, h) · (n′, h′) = (nτh(n′), hh′). This

gives a construction of (outer) semidirect product G = N ⋊τ H.3

◮ Theorem 2.1. (Schur-Zassenhaus theorem, c.f. [18]) Let G be a finite group of order n,

and m is a Hall divisor of n. If there exists N ✁ G, |N | = m, then we have H ≤ G such

that G = N ⋊H. If H and H ′ are two complements of N , then H and H ′ are conjugate.

Representation theory of finite groups: we list basic notions and facts about rep-

resentation theory of finite groups, and we refer the reader to a standard text book [20] for

further details.

For a finite group G and a vector space V , a representation of G over V is a group

homomorphism φ : G → GL(V ). There is always a trivial representation by mapping every

element in G to 1. If the underlying field of V is F, and V is of finite dimension d, a

homomorphism φ : G → GL(d,F) is called a representation of G over F of dimension d. For

3 Note that actually G = N ′ ⋊τ H ′, where N ′ = {(n, 1) | n ∈ N} and H ′ = {(1, h) | h ∈ H}. τ also
maps H ′ to Aut(N ′) naturally. As this is a simple embedding, for convenience we write G = N ⋊τ H.

STACS’11



572 Isomorphism Testing of Groups with Nomral Hall Subgroups

a given representation φ : G → GL(d,F), a subspace of V , L is an invariant subspace, or a

sub-representation if ∀g ∈ G, φg(L) = L. ~0 and V are called trivial invariant subspaces. A

representation without non-trivial invariant subspaces is called an irreducible representation.

If φ and ρ are representations of a group G over spaces V and W (over a field F), then the

direct sum φ ⊕ ρ is the representation of G over V ⊕ W defined as: (φ ⊕ ρ)g(u + v) :=

φg(u) + ρg(v) for g ∈ G. A representation is completely reducible if it is a direct sum

of irreducible representations. Maschke’s theorem states that if characteristic of F is 0 or

coprime with |G|, then the representation over F is completely reducible.

Two representations φ : G → GL(V ) and ψ : G → GL(V ) are equivalent if there exists a

general linear map T : V → V such that φ(g) = Tψ(g)T−1 for every g ∈ G. A fact about

completely reducible representations is that two representations are equivalent if and only

if irreducible representations (up to equivalence) that appear in their decompositions are

the same. Specifically, decomposing a representation gives for every irreducible represen-

tation (up to equivalence) its multiplicity in that representation, and two representations

are equivalent if and only if for every irreducible representation the multiplicities are the

same. For a representation φ : G → GL(F, d), and i ∈ [d], let Lφ(i) be the set of irreducible

representations with multiplicity i in the decomposition φ, and Lφ = (Lφ(i))i∈[d]. We say

Lφ = Lψ if and only if Lφ(i) = Lψ(i) for every i ∈ [d].

We use this straightforward criterion to test whether a representation is irreducible.

◮ Proposition 1. Let φ : G → GL(V ) be a representation. φ is irreducible if and only if

∀v ∈ V , v 6= ~0, 〈gv | g ∈ G〉 = V .

◮ Theorem 2.2. (Maschke’s theorem. Adaptation of [20], page 6, Theorem 1) Let φ : G →

GL(F, d) be a representation, gcd(|G|, char(F)) = 1. W ≤ V is a sub-representation of V .

Let p : V → W be a projection of V onto W , and the image of p′ = 1
|G|

∑
g∈G φ(g)◦p◦φ(g−1)

be W ′. Then W ′ is a sub-representation and V = W ⊕W ′.

Proposition 1 and Theorem 2.2 suggest the following procedure to decompose a represen-

tation into its irreducible components. Let φ : G → GL(V ) be a representation. For every

v ∈ V , test if 〈gv | g ∈ G〉 generates V . If so, it is an irreducible representation. Otherwise,

for a specific v, 〈gv | g ∈ G〉 is a sub-representation W . Then Theorem 2.2 helps to identify

a sub-representation W ′ such that V = W ⊕W ′. Recursively using the above procedure on

W and W ′ decomposes V into its irreducible components. This gives:

◮ Proposition 2. Given a representation φ : G → GL(V ), its irreducible components can be

listed in time O(dim(V )2 · |V | · |G|).

Proposition 2 is sufficient for our purpose. But we remark that, in general, the decom-

position of modular representation (representations over fields of finite characteristic) can

be done much more efficient (c.f. [17] and Chapter 7.4 of [10]). Given two irreducible repre-

sentations, there is an efficient algorithm to determine whether they are equivalent (c.f.[10],

Chapter 7.5.3). For factoring polynomials of degree n over Zp, we use theO(p1/2(log p)2n2+ε)

algorithm in [21]. For computing canonical normal form of a linear transformation, Steel’s

algorithm [22] in time O(n4) suffices.

3 Decomposition into normal and complement parts

In this section we describe that for a given group, all its normal Hall subgroups and their

complements can be listed, proving Theorem 1.1, by providing the following two propositions.

◮ Proposition 3. Let G be a group of size n. For a Hall divisor m, if a normal Hall subgroup

of order m exists then it can be computed in time O(n3).
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◮ Proposition 4. Let G be a group of order n, and N a normal Hall subgroup of order m.

Then a complement of N can be found in time O(n4).

The two propositions give a natural way of listing the normal Hall subgroups and their

complements: for a given Hall divisor m of the group size n, compute the normal Hall sub-

group of size m by Proposition 3 if it exists. Then compute its complement by Proposition 4.

Going over all Hall divisors lists all normal Hall subgroups and their complements.

Proposition 3 follows from that for a specific Hall divisor m, if the normal Hall subgroup

of m exists then it is generated by 〈gn/m | g ∈ G〉. Proof of Proposition 4 follows from the

constructive proof of Schur-Zassenhaus theorem [18], which can be rephrased as a recursive

algorithm. The base case of the algorithm is abelian groups, for which a complement can be

found starting with an arbitrary set of representatives. When the input is not abelian, the

algorithm branches into two cases depending on whether the normal subgroup is minimal.

The case using the Hall condition is when the normal subgroup is minimal, and we use the

Frattini argument and second isomorphism theorem to reduce to an instance of smaller size.

4 Condition for isomorphism testing

The next theorem shows how isomorphism of big groups reduces to that of components for

groups with normal Hall subgroups. This has been discovered by Taunt [23] in the context of

construction of finite groups, though he did not apply it to normal Hall subgroups explicitly.

◮ Theorem 4.1. (Theorem 3.3, [23]) Given G1 = N1 ⋊τ H1, G2 = N2 ⋊γ H2, with |N1| =

|N2|, |H1| = |H2|. N1 and N2 are normal Hall. Then G1
∼= G2 if and only if there exist an

isomorphism ψ : N1 → N2, and an isomorphism φ : H1 → H2, such that, ∀h ∈ H1,

τ(h) = ψ−1 ◦ γ(φ(h)) ◦ ψ. (1)

4.1 Proof of Theorem 1.2

Theorem 1.2 states that isomorphism of H(E ,K) is equivalent to AutoInducedRepEquiv.

In this section we show the two reductions here.

Isomorphism of groups in H(E ,K) to AutoInducedRepEquiv: By listing all normal Hall

subgroups and their complements we can find two normal Hall subgroups of the same size

from two groups. Then to test isomorphism of the original group, we first use known

isomorphism procedure for normal and complement parts. Given the isomorphisms of the

normal and complement parts, the only task left is to test Equation 1, which, by composing

the isomorphisms of the normal and complement parts, becomes AutoInducedRepEquiv

naturally.

AutoInducedRepEquiv to isomorphism of groups in H(E ,K): In Section 2 we described

the standard construction that, given groups N , H and τ : H → Aut(N), defines a group

G = N ⋊τ H. Thus, given two representations τ and γ of H over Zkp, we can construct

G1 = Zkp ⋊τ H and G2 = Zkp ⋊γ H, and then call the oracle to test if G1 and G2 are

isomorphic. By Theorem 4.1, the two representations are equivalent up to automorphism

action if and only if G1 and G2 are isomorphic. This gives the reduction.

4.2 A framework for testing isomorphism of groups from H(K, K)

Suppose we want to test isomorphism of two groups G1 and G2 from H(K,K). Given Theo-

rem 1.1, for any group all its normal Hall subgroups can be listed efficiently, so we can first

compare the orders of the normal Hall subgroups of G1 and G2, and output “not isomorphic”

STACS’11



574 Isomorphism Testing of Groups with Nomral Hall Subgroups

if there are no normal Hall subgroups of the same size. For normal Hall subgroups with

the same order, compute their complements using Proposition 4. Suppose we decompose

G1 = N1 ⋊H1 and G2 = N2 ⋊H2, with |N1| = |N2|. As the normal and complement parts

are from groups with known isomorphism computing procedure, run the isomorphism tests

between N1, N2 and H1, H2. If they are not isomorphic output “not isomorphic”. Now the

only task left is to test Equation 1. Recall that
∏

E denotes the class of direct products of

elementary abelian groups. The cases H(E ,B) and H(
∏

E ,B) are immediate: for H(E ,B),

the automorphisms of complements can be enumerated. For a given automorphism of the

complement, the problem is to test if two representations are equivalent. It can be solved by

decomposing the representations, and then noticing that equivalence of irreducible represen-

tations can be determined efficiently. For H(
∏

E ,B), like in H(E ,B), as the automorphisms

of the complement can be enumerated, for a given automorphism, the problem is to test

if the representations over the direct factors of the normal subgroup are equivalent. These

instances can be solved separately.

We remark that when the complement is in B, to find the complement it is easy to come

up with an efficient enumeration procedure (without using algorithmic Schur-Zassenhaus).

It is also noted that when the normal subgroup is
∏

E , the idea of treating the represen-

tations over the factors separately does not work in general unless an automorphism of the

complements is fixed as a priori. From the above discussion, the difficult case is when the

complement has no generating set of size O(1).

4.3 From H(
∏

E , K) to H(A, K): Le Gall’s technique

In [9], Le Gall presented a technique that reduces testing conjugation of automorphisms

of an abelian group to that of linear mappings, when the orders of the automorphisms are

coprime with that of the abelian group. We refer it as Le Gall’s technique in this paper.

◮ Lemma 4.2. (Le Gall’s technique) For a given abelian p-group A, and a generating set

S ⊆ A, let φ1 and φ2 be two automorphisms of A, given by listing the images of the generating

set. If p ∤ |φ1| = |φ2|, there exists an efficiently-computable map Λp : Aut(A) → GL(Zp, |S|),

such that φ1 and φ2 are conjugate if and only if Λp(φ1) and Λp(φ2) are conjugate.

We show that Le Gall’s technique allows us to reduce testing isomorphism of H(A,K)

to that of H(
∏

E ,K). For convenience we first explain how Le Gall’s technique allows us to

reduce isomorphism of H(Ap,K) to H(E ,K). Let G1 and G2 be decomposed as N1 ⋊τ H1

and N2 ⋊γH2, where N1 and N2 are abelian p-groups. Then decompose N1 and N2 into the

canonical form, and identify H1 and H2 as isomorphic. Now by Theorem 4.1, we need to

test if there exist ψ ∈ Aut(N1), and φ ∈ Aut(H), such that τ(h) and γ(φ(h)) are conjugate

by ψ, for every h ∈ H. Noting that p ∤ |H|, Lemma 4.2 tells that this happens if and only

if Λp(τ(h)) and Λp(γ(φ(h))) are conjugate. Thus composing Λp with τ and γ, noting that

Λp ◦ τ and Λp ◦ γ send H to GL(Zp, k), we reduce the case of H(Ap,K) to H(Zkp,K). To

go from H(A,K) to H(
∏

E ,K) we just need to consider the factors of
∏

E separately and

apply the appropriate Λp.

5 Isomorphism of H(A, E)

The main result of this section is a reduction of the isomorphism testing problem for groups

in H(A, E) to the problem of generalized code isomorphism problem. We first introduce this

problem. For Fn, a linear code of dimension d is a subspace of dimension d. A generating

matrix of a code C of dimension d is a d by n matrix with row vectors being a basis of
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C. With abuse of notation we will also use C to denote the generating matrix of the code

C. Two codes C and D of dimension d over F are isomorphic if they are equivalent up to

permutation of coordinates. Formally, if there exists a d by d non-singular matrix G and an

n by n permutation matrix P such that GCP = D.

◮ Theorem 5.1. ([3]) For C and D be two linear codes given as generating matrices, their

isomorphism can be tested, and the coset of isomorphism be computed, in time (2 + o(1))n.

We generalizes code isomorphism problem slightly to get:

◮ Problem 2. (Generalized code isomorphism problem) Given two matrices d′ × n matrices

C ′ and D′ over the field F, and a permutation group S ≤ Sn, if there exists G ∈ GL(F, d′)
and a permutation matrix P ∈ S, such that GC ′P = D′.

The generalized code isomorphism problem generalizes code isomorphism problem in two

ways: first we do not require row vectors of C ′ and D′ to be linearly independent. Secondly

the permutation matrix P must come from a certain permutation group S. Its solution in

singly exponential time can be viewed as a corollary to Theorem 5.1, by applying a coset

intersection running in singly exponential time[2].

◮ Corollary 5.2. Given two d′ ×n matrices C ′ and D′, and a permutation group S, whether

C ′ and D′ are isomorphic can be tested, the coset of permutation matrices be computed, in

time (2 + o(1))n.

5.1 Representation of Zℓ
q over Zp

In this section, we recall basic facts concerning representations of Zℓq over Zp, p, q two

different primes, and we refer the reader to standard textbooks for more details. First

suppose the cyclotomic polynomial Φq(x) factors as g1 · g2 · . . . · gr over Zp, in which gi’s are

monic polynomials with the same degree d = (q − 1)/r. It is noted that d is the order of p

in the multiplicative group (Z/qZ)×. Let M ∈ GL(Zp, d) be the companion matrix of g1.4

For v ∈ Zℓq, v 6= ~0, we define v∗ : Zℓq → Zq by mapping v∗(u) = (v, u) (the inner product of

v and u). Now define fv : Zℓq → GL(Zp, d) by sending u → Mv∗(u). To unify notation let

f~0 : Zℓq → Zp be the trivial representation. Then fv gives an irreducible representation of

Zℓq over Zp, and {fv | v ∈ V } is the set of all irreducible representations. However, fv and

fu may be equivalent, for u, v ∈ V , as described in the following claim.

◮ Claim 1. Let fv and fu be two irreducible representations of Zℓq over Zp induced from

v, u ∈ Zℓq, v, u 6= ~0 as above. fv and fu are equivalent if and only if u = sv for s ∈ Zq, and

Ms and M are conjugate.

◮ Corollary 5.3. Let Sp,q be the set of s satisfying the condition in Claim 1, and d be the

order of p in the multiplicative group (Z/qZ)×. Then |Sp,q| = d.

Let τ : Zℓq → GL(Zp, k) be a representation. Due to Maschke’s theorem, representations

of Zℓq over Zp are completely reducible. Suppose τ = fk1

v1
⊕ · · · ⊕ fkt

vt
, for vi ∈ V , i ∈ [t],

k1 ≥ · · · ≥ kt ≥ 1. Note that t is bounded by 1 + ⌊(k− 1)/d⌋ or k/d, depending on whether

the trivial representation exists or not. We will assume when a representation is decomposed

as such, the multiplicities of irreducible components are arranged to be non-increasing. For

4 In fact, any d by d matrix with characteristic polynomial as g1 would suffice, and it does not matter if
we choose, say companion matrix of gi, for any i ∈ [r].
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a given multiplicity w ∈ [k], recall that Lτ (w) is the set of irreducible representations with

multiplicity w appearing in τ , and Lτ = (Lτ (w))w∈[k] determines a representation up to

equivalence. The problem of working with Lτ is that the irreducible representations are

“abstract”, while we need to actually know the form of the irreducible representations. The

idea is to use vectors to index irreducible representations, at the cost of losing uniqueness.

◮ Definition 5.4. Given a representation τ : Zℓq → GL(Zp, k), and w ∈ [k], Lτ (w) is a set

of vectors such that for every irreducible representation f ∈ Lτ (w), there is a unique vector

v ∈ Lτ (w) such that fv and f are equivalent. Lτ = (Lτ (w))w∈[k]. Such a tuple of sets of

vectors is called an indexing tuple of Lτ .

◮ Remark. By Corollary 5.3, the number of different indexing tuples of Lτ is bounded by

dk/d ≤ (e1/e)k < 2k. (Note that we do not need to consider f~0.)

For two representations τ : Zℓq → GL(Zp, k) and γ : Zℓq → GL(Zp, k), τ and γ are

equivalent if and only if Lτ = Lγ . For two indexing tuples Lτ and Lγ of τ and γ, we also

use Lτ = Lγ to denote for every w ∈ [k], Lτ (w) = Lγ(w). An immediate consequence is the

following claim.

◮ Claim 2. Let τ : Zℓq → GL(Zp, k) and γ : Zℓq → GL(Zp, k) be two representations. τ and

γ are equivalent if and only if there exist indexing tuples of τ and γ, Lτ and Lγ , such that

Lτ = Lγ .

The induced representation of fv by φ ∈ GL(Zq, l) has a nice form: (fv ◦ φ)(u) =

fv(φ(u)) = Mv∗(φ(u)) = M (φT (v))∗(u) = fφT (v)(u). That is fv ◦φ = fφT (v). Note that for any

two representations g and h of an arbitrary group G and φ′ ∈ Aut(G), (g⊕h)◦φ′ = (g◦φ′)⊕

(h ◦ φ′). If follows that τ ◦ φ = fk1

φT (v1)
⊕ · · · ⊕ fkt

φT (vt)
. For φ ∈ GL(Zq, l), and S ⊆ Zℓq, S

φ is

the set obtained by applying φT to every vector in S. Thus Lτ◦φ = Lφτ
.
= (Lτ (w)φ | w ∈ [k]).

5.2 Isomorphism of H(E , E): proof of Theorem 1.3

To test isomorphism of two groups G1 and G2 identified as Zkp ⋊τ Zℓq and Zkp ⋊γ Zℓq, by

Theorem 1.2 we can view τ and γ as two representations of Zℓq over Zp of dimension k.

Then we need to solve AutoInducedRepEquiv problem for τ and γ. This is done, as

shown in Theorem 1.3, by reducing to generalized code isomorphism problem.

Since τ and γ are equivalent if and only if Lτ = Lγ , using Proposition 2 we decompose

τ and γ as τ = fk1

v1
⊕ · · · ⊕ fkt

vt
and γ = f ℓ1

u1
⊕ · · · ⊕ f

ℓt′

ut′
to get two specific indexing sets Lτ

and Lγ . Along with the decomposition, we can calculate the change of basis matrices S and

T , such that, the images of S(τ ◦φ)S−1 and TγT−1 are sets of block diagonal matrices with

blocks representing the irreducible representations. Also note that for a specific irreducible

representation, it is easy to identify an indexing vector of it, by examining which vector

maps to M , the companion matrix of some pre-determined factor of Φq(x) over Zp.

Given the decomposition, we first need to test if t = t′, and |Lτ (w)| = |Lγ(w)|, ∀w ∈ [k].

If the conditions are not satisfied τ and γ can not be equivalent under automorphism. For

now assume that the conditions are satisfied. By Lτ◦φ = Lφτ , we know the indexing tuple

of Lτ◦φ is to apply φT to the vectors in Lτ . From a specific indexing tuple Lτ , all indexing

tuples of Lτ can be enumerated based on Claim 1. From Remark 5.1, we can afford the

enumeration of all indexing tuples. Finally, by Claim 2, the only task left is to determine

whether there exists φ ∈ GL(Zp, ℓ), such that Lφτ is a specific indexing tuple of Lγ , in time

poly(pk, qℓ), where pk · qℓ is the size of the original group.

◮ Proposition 5. Testing the existence of φ so that of Lφ
T

τ = Lγ in time poly(pk, qℓ) reduces

to generalized code isomorphism problem in singly exponential time.
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Proof. Expand Lτ = (Lτ (1), . . . ,Lτ (k)) as

({v1, . . . , vs1
}, {vs1+1, . . . , vs2

}, . . . , {vsk−1+1, . . . , vsk
}),

in which s1 ≤ s2 ≤ · · · ≤ sk = t. Similarly expand Lγ as

({u1, . . . , us1
}, {us1+1, . . . , us2

}, . . . , {usk−1+1, . . . , usk
}).

Lφ
T

τ is just ({φ(v1), . . . , φ(vs1
)}, {φ(vs1+1), . . . , φ(vs2

)}, . . . , {φ(vsk−1+1), . . . , φ(vsk
)}), Lφ

T

τ =

Lγ can be formulated as finding φ ∈ GL(Zq, ℓ) and σ ∈ Ss1
× Ss2−s1

× · · · × Ssk−sk−1
such

that φ(v1, . . . , vt)σ = (u1, . . . , ut). This is just generalized code isomorphism problem with

the permutation group Ss1
× Ss2−s1

× · · · × Ssk−sk−1
, whose the generators can be com-

puted as symmetric groups can be generated by two elements. The reduction takes time

poly(k, ℓ). ◭

Thus the solution for generalized code isomorphism in singly exponential time gives the

algorithm for AutoInducedRepEquiv for elementary abelian groups, finishing the proof

of Theorem 1.3.

5.3 Isomorphism of H(A, E)

The idea for H(E , E) can be extended to H(
∏

E , E), as follows. Suppose we have G1 and

G2 identified as (
∏
i∈[s] Z

ki

pi
) ⋊ Zℓq, with the associated actions as τ and γ, respectively.

Now we need to test if there exist ψ ∈
∏
i∈[s] GL(Zpi

, ki) and φ ∈ GL(Zq, l) such that

τ(h) = ψ−1 ◦ γ(φ(h)) ◦ ψ, for every h ∈ Zℓq. Let τi : H1 → GL(Zpi
, ki) be the projection

of τ into the ith component, and similarly we have γi : H2 → GL(Zpi
, ki). This reduces

to testing for every i ∈ [s], if τi(h) and γi(φ(h)) are conjugate by ψi ∈ GL(Zpi
, ki), for

every h ∈ Zℓq. Viewing τi’s and γi’s as representations and going through the decomposition

into irreducibles, we get Lτi
’s and Lγj

’s and similarly we need to determine if there exists

φ ∈ GL(Zq, l) such that Lφ
T

τi
= Lγi

, for every i ∈ [s]. Now it is enough to group Lτi
’s

and Lγj
’s respectively, and view them as a single generalized code isomorphism instance.

Finally, Le Gall’s technique gives an efficient algorithm for groups from H(A, E).
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