
HAL Id: hal-00573600
https://hal.science/hal-00573600

Submitted on 4 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The
CSP Dichotomy is Decidable

Martin Dyer, David Richerby

To cite this version:
Martin Dyer, David Richerby. The
CSP Dichotomy is Decidable. Symposium on Theoretical Aspects of Computer Science (STACS2011),
Mar 2011, Dortmund, Germany. pp.261-272. �hal-00573600�

https://hal.science/hal-00573600
https://hal.archives-ouvertes.fr

The #CSP Dichotomy is Decidable

Martin Dyer1 and David Richerby∗

1 School of Computing, University of Leeds, LS2 9JT, UK

Abstract

Bulatov (2008) and Dyer and Richerby (2010) have established the following dichotomy for the

counting constraint satisfaction problem (#CSP): for any constraint language Γ, the problem of

computing the number of satisfying assignments to constraints drawn from Γ is either in FP or is

#P-complete, depending on the structure of Γ. The principal question left open by this research

was whether the criterion of the dichotomy is decidable. We show that it is; in fact, it is in NP.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Constraint satisfaction problem, counting problems, complexity dicho-

tomy, decidability.

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.261

1 Introduction

Many important and natural problems in areas such as graph theory, Boolean logic, databases,

type inference, scheduling, artificial intelligence and even theoretical physics can be expressed

naturally as constraint satisfaction problems (CSPs) [9, 13]. In such problems, we seek to

assign values from some domain to variables, while simultaneously satisfying a collection of

constraints on the values that may be taken by given combinations of the variables.

For example, graph three-colourability is the problem of deciding whether we can assign

one of three colours (domain values) to each vertex of a graph (variables) such that no

edge joins vertices with the same colour (constraints). Since it includes this well-known

NP-complete problem, it is immediate that this general form of CSP, known as uniform CSP

is, itself, NP-complete.

For this reason, attention has focused on the so-called nonuniform version of CSP. Here,

we fix a domain D and a set Γ of relations over D, known as the constraint language. We

write CSP(Γ) for the version of CSP where we only allow constraints of the form, “the values

assigned to variables v1, . . . , vr must form a tuple in the r-ary relation H ∈ Γ.” Note that all

the constraints needed to express three-colourability can be written by taking D to be any

three-element set and letting Γ contain just the binary disequality relation on D.

It follows that, for some Γ, even the restricted problem CSP(Γ) is NP-complete. However,

taking Γ to be the binary disequality relation on a two-element domain allows us to express

graph two-colourability, which is in P. Feder and Vardi [13] conjectured that these are the

only possibilities: that is, for all Γ, CSP(Γ) is in P or is NP-complete. To date, this conjecture

remains open but it is known to hold in special cases [1, 14, 18]. Recent efforts to resolve the

conjecture have focused on techniques from universal algebra [6].

It follows from Ladner’s theorem that there can be no such dichotomy for the whole of

NP, since either P = NP or there is an infinite, strict hierarchy of complexity classes between

∗ Supported by EPSRC grant EP/E062172/1 “The Complexity of Counting in Constraint Satisfaction
Problems”.

© Martin Dyer and David Richerby;
licensed under Creative Commons License NC-ND

28th Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr; pp. 261–272

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.261
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

262 The #CSP Dichotomy is Decidable

the two [15]. Therefore, if P 6= NP, there are problems in NP that are neither in P nor

NP-complete. However, a dichotomy for CSP is still possible because the problems expressible

as CSP(Γ) for some Γ are a proper subset of NP. In particular, there is no Γ such that CSP(Γ)

defines graph Hamiltonicity or even graph connectivity (this follows from [11,12]). Further,

Ladner’s proof is via a diagonalisation that does not seem to be expressible in CSP [13].

In the present paper, we consider the counting constraint satisfaction problem, #CSP.

Here, we are interested in the number of satisfying assignments to CSP instances. For several

restricted classes of constraint language Γ, it was known that #CSP(Γ) is either in polynomial

time or #P-complete [4, 5, 7–9].

Bulatov successfully proved the dichotomy for all Γ [2,3], showing that #CSP(Γ) is always

either computable in polynomial time or #P-complete. He made extensive use of techniques

from universal algebra; the present authors gave an elementary proof of an equivalent

dichotomy [10]. The principal question left open by this research was the decidability of the

distinct but equivalent criteria: that is, whether there is an algorithm that determines for

which Γ #CSP(Γ) is tractable and for which it is #P-complete. In this paper, we demonstrate

such an algorithm.

We first describe the dichotomy — formal definitions will be given later. A ternary

relation R is balanced if the matrix M(x, y) = |{z : xyz ∈ R}| decomposes into blocks of

rank one. A relation R ⊆ Dr of arity r ≥ 3 can be considered as a ternary relation over

Dk ×Dℓ ×Dr−k−ℓ for any k, ℓ ≥ 1 with k + ℓ < r. We say that R is balanced if every such

interpretation as a ternary relation is balanced.

A relation that can be defined from the relations in Γ using only existential quantification,

conjunction and equalities between variables is said to be pp-definable. Γ is strongly balanced

if all pp-definable relations of arity three or more are balanced. This gives the criterion of

the dichotomy in [10].

◮ Theorem 1 (Dichotomy Theorem). If Γ is strongly balanced, then #CSP(Γ) is in FP;

otherwise, it is #P-complete.

Note that infinitely many relations are pp-definable in Γ, which is why decidability is

not obvious. Bulatov’s criterion is equivalent but expressed in terms of an infinite algebra

constructed from Γ so, again, is not obviously decidable.

In the remainder of the paper, we construct a nondeterministic, polynomial-time algorithm

that determines whether a given constraint langauge Γ is strongly balanced.

1.1 Proof outline

Our proof of the Dichotomy Theorem [10] uses succinct representations, which we call

“frames”, of a class of relations we call strongly rectangular. We do not require frames in the

present paper but strong rectangularity is useful as it imposes structure and because every

strongly balanced relation is strongly rectangular. We first show that strong rectangularity

is decidable in NP.

We next develop an alternative, equational characterisation of strong balance. We use this

characterisation to translate the question of whether a constraint langauge Γ over domain D

is strongly balanced to a property of homomorphisms to the relational structure (D,Γ)6 (we

use a standard definition of Cartesian products). Using a technique due to Lovász [16], we

show that this property is equivalent to the existence of certain automorphisms of the product

structure. It follows that strong balance is decidable in NP, since we can nondeterministically

“guess” a suitable collection of functions and check, in deterministic polynomial time, that

they are the desired automorphisms.

Martin Dyer and David Richerby 263

1.2 Organisation of the paper

The remainder of the paper is organised as follows. The necessary definitions and notation

and some basic results appear in Section 2. In Section 3, we review the concept of strong

rectangularity, which we introduced in [10] and, in Section 4, we formally define strong

balance and present some necessary results on rank-one block matrices. The proof of the

decidability of strong balance appears in Section 5 and some concluding remarks follow, in

Section 6.

2 Definitions and notation

Given a set D, we write a = (a1, . . . , ar) for an r-ary tuple in Dr. We will sometimes omit

the brackets and commas and just write a1 . . . ar.

For a natural number n, we write [n] for the set {1, . . . , n}.

2.1 Relations and constraints

Let D = {d1, d2, . . . , dq} be a finite domain with q = |D|. A constraint language Γ is a finite

set of named, finitary relations on D, including the binary equality relation {(di, di) : i ∈ [q]},

which we denote by =. We will call S = (D,Γ) a relational structure. We may view an r-ary

relation H on D with ℓ = |H| as an ℓ× r matrix with elements in D. Then a tuple t ∈ H is

any row of this matrix. We write HΓ for the instantiation of the relation H in Γ.

We define the size of a relation H as ‖H‖ = ℓr, the number of elements in its matrix, and

the size of Γ as ‖Γ‖ =
∑

H∈Γ ‖H‖. To avoid trivialities, we will assume that every relation

H ∈ Γ is nonempty. We will also assume that every d ∈ D appears in a tuple of some relation

H ∈ Γ. If this is not so for some d, we can remove it from D. It then follows that ‖Γ‖ ≥ q.

Let V = {ν1, ν2, . . . , νn} be a finite codomain. An assignment is a function x : V → D.

We will abbreviate x(νi) to xi. If {i1, i2, . . . , ir} ⊆ [n], we write H(xi1
, xi2

, . . . , xir
) for

the relation Θ = {x : (xi1
, xi2

, . . . , xir
) ∈ H} and we refer to this as a constraint. Then

(νi1
, νi2

, . . . , νir
) is the scope of the constraint and we say that x is a satisfying assignment

for the constraint if x ∈ Θ.

A Γ-formula Φ in a set of variables {x1, x2, . . . , xn} is a conjunction of constraints

Θ1 ∧ · · · ∧ Θm. We will identify the variables with the xi above, although strictly the latter

are only a model of the formula. The precise labelling of the variables is of no significance

and a formula remains the same if its variables are bijectively renamed.

A Γ-formula Φ describes an instance of the constraint satisfaction problem (CSP) with

constraint language Γ. A satisfying assignment for Φ is an assignment that satisfies all Θi

(i ∈ [m]). The set of all satisfying assignments for Φ is the Γ-definable relation RΦ over D.

We will make no distinction between Φ and RΦ, unless this could cause confusion.

If H ⊆ Dr and I = {i1, . . . , ik} ⊆ [r], with i1 < · · · < ik, we write prIH for the projection

of H given by {(ai1
, . . . , aik

) : a1 . . . ar ∈ H}.

2.2 Definability

A primitive positive (pp) formula Ψ is a Γ-formula Φ with existential quantification over

some subset of the variables. A satisfying assignment for Ψ is any satisfying assignment for Φ.

The unquantified (free) variables then determine the pp-definable relation RΨ, a projection

of RΦ. Again, we make no distinction between Ψ and RΨ.

The set of all Γ-definable relations is denoted by CSP(Γ) and the set of all relations

pp-definable in Γ is the relational clone 〈Γ〉.

STACS’11

264 The #CSP Dichotomy is Decidable

2.3 Polymorphisms

A Mal’tsev polymorphism of a relation H ⊆ Dr is a function ϕ : D3 → D with the following

properties:

1. whenever a,b, c ∈ H, we have ϕ(a,b, c) :=
(

ϕ(a1, b1, c1), . . . , ϕ(ar, br, cr)
)

∈ H;

2. for any a, b ∈ D, ϕ(a, b, b) = ϕ(b, b, a) = a.

The first condition describes a (ternary) polymorphism; the second is known as the

Mal’tsev property. Note that the first condition can be extended to functions of arbitrary

arity but we only require ternary polymorphisms here.

A function ϕ is a polymorphism of a constraint langauge Γ if it is a polymorphism of

every relation in Γ. The following lemma is well known from the folklore and is easy to prove.

◮ Lemma 2. ϕ is a polymorphism of Γ if, and only if, it is a polymorphism of 〈Γ〉.

2.4 Homomorphisms and monomorphisms

A different, but equivalent, view of CSP(Γ) is often taken in the literature. This is to regard Φ

as a finite structure with domain V and relations determined by the scopes of the constraints.

Thus, we have relations H̃, where (i1, i2, . . . , ir) ∈ H̃ if, and only if, H(xi1
, xi2

, . . . , xir
) is a

constraint. A satisfying assignment x corresponds to a homomorphism from Φ to Γ.

The following definitions and notation are used only in Section 5. Let [D1 → D2]

denote the set of functions from D1 to D2. A homomorphism between two relational

structures S1 = (D1,Γ1) and S2 = (D2,Γ2) is a function σ ∈ [D1 → D2] that preserves

relations. Thus, for each r-ary relation H and each tuple u = (u1, . . . , ur) ∈ HΓ1, we

have σ(u) = (σ(u1), . . . , σ(ur)) ∈ HΓ2. We write σ : S1 → S2 to indicate that σ is a

homomorphism.

Let [V →֒ D] and [V ↔ D] denote the sets of all injective and bijective functions

V → D, respectively. An injective homomorphism is called a monomorphism and we will

write σ : S1 →֒ S2. An endomorphism of a relational structure S is a homomorphism

σ : S → S (such a function is also a unary polymorphism). An automorphism is a bijective

endomorphism whose inverse is also an endomorphism. Note that [S →֒ S] = [S ↔ S],

since D is finite, so an injective endomorphism is always an automorphism. Clearly, the

identity function is always an automorphism, for any relational structure S.

2.5 Powers of structures

We use the following construction of powers of S (see, for example, [17, p. 282]). For any

relational structure S = (D,Γ) and k ∈ N, the relational structure S
k = (Dk,Γk) is defined

as follows. The domain is the Cartesian power Dk. The constraint language Γk is such

that, each r-ary relation H ∈ Γ, corresponds to an r-ary Hk ∈ Γk, which is defined as

follows. If ui = (ui,1, ui,2, . . . , ui,k) ∈ Dk (i ∈ [r]), then (u1,u2, . . . ,ur) ∈ Hk if, and only if,

(u1,j , u2,j , . . . , ur,j) ∈ H for all j ∈ [k]. Now, if Ψ is a formula pp-definable in Γ, we define

the corresponding formula Ψk to be identical to Ψ, except that each occurrence of H ∈ Γ is

replaced by the corresponding relation Hk ∈ Γk. Observe that Ψk is actually pp-definable in

Γ, since Ψk(x) = Ψ(x1) ∧ Ψ(x2) ∧ · · · ∧ Ψ(xk), where the xi (i ∈ [k]) are disjoint n-tuples of

variables. In particular, we have |Ψk| = |Ψ|k.

Using this construction, the definition of a polymorphism can be reformulated. In this

view of CSP(Γ), it follows directly that a k-ary polymorphism is just a homomorphism

ϕ : Sk → S.

Martin Dyer and David Richerby 265

3 Rectangularity

The key tool in our proof of the Dichotomy Theorem [10] is the use of succint representations

(which we call “frames”) for a class of relations that we call strongly rectangular. Frames

allow us to efficiently count solutions in the polynomial-time cases but we do not require

them here. However, the concept of strong rectangularity does play a role in our analysis.

A binary relation H ⊆ A1 ×A2 is rectangular if, for all a, b ∈ A1 and c, d ∈ A2,

ac, ad, bc ∈ H implies bd ∈ H .

For r ≥ 2, a relation H ⊆ Dr can be considered as a binary relation in Dk ×Dr−k for

any k with 1 ≤ k < r. We say that a relation of arity r ≥ 2 is rectangular if every such

expression of it as a binary relation is rectangular.

◮ Definition 3. A constraint langauge Γ is strongly rectangular if every relation in 〈Γ〉 of

arity ≥ 2 is rectangular.

We consider the following computational problem.

strong rectangularity

Instance : A relational structure S = (D, Γ).

Question : Is Γ strongly rectangular?

As 〈Γ〉 is an infinite set, it is not immediate whether strong rectangularity is

decidable. However, it turns out that strong rectangularity is equivalent to the existence of a

Mal’tsev polymorphism.

◮ Lemma 4. Γ is strongly rectangular if, and only if, it has a Mal’tsev polymorphism.

We defer the proof of this lemma for a moment. We require the lemma to prove the

following result.

◮ Lemma 5. strong rectangularity is in NP.

Proof. By Lemma 4, Γ is strongly rectangular if, and only if, it has a Mal’tsev polymorphism.

Thus, we nondeterministically guess a function ϕ : D3 → D in time O(q3). We can verify

that ϕ is a Mal’tsev polymorphism, deterministically in time O(‖Γ‖4) just by checking that

all relevant inputs to ϕ produce appropriate outputs. ◭

Lemma 4 is usually proved in an algebraic setting. That proof is not difficult, but requires

an understanding of concepts from universal algebra, such free algebras and varieties [6].

Therefore, we will give a proof in the relational setting which, we believe, provides more

insight for the reader whose primary interest is in relations.

Proof of Lemma 4. Suppose Γ has a Mal’tsev polymorphism ϕ. Consider any pp-definable

binary relation B ⊆ Dr ×Ds. By Lemma 2, ϕ is also a polymorphism of B. If (a, c), (a,d),

(b,d) ∈ B then we have (ϕ(a,a,b), ϕ(c,d,d)) = (b, c) ∈ B, from the definition of a Mal’tsev

polymorphism. Thus, B is rectangular and, hence, Γ is strongly rectangular.

Conversely, suppose Γ is strongly rectangular. Denote the relation H ∈ Γ by H = {uH
i :

i ∈ [ℓH]}, where uH
i ∈ DrH. Consider the Γ-formula

Φ(x) =
∧

H∈Γ

∧

i1∈[ℓH]

∧

i2∈[ℓH]

∧

i3∈[ℓH]

H
(

xH
i1,i2,i3

)

,

STACS’11

266 The #CSP Dichotomy is Decidable

where xH
i1,i2,i3

is an rH -tuple of variables, distinct for all H ∈ Γ, i1, i2, i3 ∈ [ℓH]. Thus, the

relation RΦ has arity rΦ =
∑

H∈Γ rHℓ
3
H and |RΦ| =

∏

H∈Γ ℓH
ℓ3

H.

Clearly RΦ has three tuples u1, u2, u3 such that the sub-tuple corresponding to xH
i1,i2,i3

in

uj is uH
ij

for each j ∈ {1, 2, 3}. Then U = {u1,u2,u3} has the following universality property

for Γ. For all H ∈ Γ and every triple of (not necessarily distinct) tuples t1, t2, t3 ∈ H, there

is a set I(t1, t2, t3) with I ⊆ [rΦ], |I| = rH such that prIRΦ = H and prIuj = tj (j = 1, 2, 3).

Now, for each set of identical columns in U , we impose equality on the corresponding

variables in Φ, to give a Γ-formula Φ′. Let U ′ be the resulting submatrix of U , with rows u′
1,

u′
2, u′

3. Observe that U ′ is obtained by deleting copies of columns in U . Therefore U ′ has no

identical columns and has a column (a, b, c) for all a, b, c ∈ prkH with H ∈ Γ and k ∈ [rH].

Next, for all columns (a, b, c) of U ′ such that b /∈ {a, c}, we impose existential quantification

on the corresponding variables in Φ′, to give a pp-formula Φ′′. Let U ′′ be the submatrix of U ′

with rows u′′
1 , u′′

2 , u′′
3 corresponding to u′

1, u′
2, u′

3. Then U ′′ results from deleting columns

in U ′ and U ′′ has columns of the form (a, a, b) or (c, d, d). Thus, after rearranging columns

(relabelling variables), we will have

U ′′ =







u′′
1

u′′
2

u′′
3






=







a c

a d

b d






,

for some nonempty tuples a, b, c, d. By strong rectangularity, this implies u′′ =
[

b c
]

∈

RΦ′′ .

Removing the existential quantification in Φ′′, u′′ can be extended to u′ ∈ RΦ′ . Now,

if column k of U ′ is (a, b, c) say, we define ϕ(a, b, c) = u′
k. This is unambiguous, since U ′

has no identical columns. Thus, u′ = ϕ(u′
1,u

′
2,u

′
3) ∈ RΦ′ . If, for any a, b, c ∈ D, ϕ(a, b, c)

remains undefined, we will set ϕ(a, b, c) = a unless a = b, in which case ϕ(a, b, c) = c. Clearly

ϕ satisfies ϕ(a, b, b) = ϕ(b, b, a) = a, for all a, b ∈ D, and so has the Mal’tsev property.

Removing the equalities between variables in Φ′, u′ can be further extended to u =

ϕ(u1,u2,u3) ∈ RΦ. This is consistent since u satisfies the equalities imposed on Φ to

give Φ′. Now, for any t1, t2, t3 ∈ H, the universality property of U implies that prIu =

ϕ(t1, t2, t3) ∈ H. Thus, ϕ preserves all H ∈ Γ, so it is a polymorphism and hence a Mal’tsev

polymorphism. ◭

4 Strong balance

Recall the Dichotomy Theorem (Theorem 1): #CSP(Γ) is computable in polynomial time if

Γ is strongly balanced, and is #P-complete, otherwise. In this section, we formally define

strong balance and investigate its properties.

A rank-one block matrix is a k × k matrix M whose rows and columns can be permuted

to give a block-diagonal matrix whose non-zero blocks have rank 1. (It is equivalent to say

that the relation {xy : M(x, y) 6= 0} is rectangular and there are functions α, β : [k] → N

such that M(x, y) = α(x)β(y) where M 6= 0 but we will use a third characterisation, given

by Corollary 9.)

Let H ⊆ A1 ×A2 ×A3 be a ternary relation. We say that H is balanced if the balance

matrix

M(x, y) = |{z ∈ A3 : (x, y, z) ∈ H}| (x ∈ A1, y ∈ A2)

is a rank-one block matrix. For r > 3, a relation H ⊆ Dr can be expressed as a ternary

Martin Dyer and David Richerby 267

relation in Dk ×Dℓ ×Dr−k−ℓ for any k, ℓ ≥ 1 with k + ℓ < r. We say that a relation H of

arity r > 3 is balanced if every such expression of H as a ternary relation is balanced.

◮ Definition 6. A constraint language Γ is strongly balanced if every relation of arity ≥ 3 in

〈Γ〉 is balanced.

Note that infinitely many relations are pp-definable in any constraint language. Our goal

in the remainder of this paper is to show that, this notwithstanding, the property of being

strongly balanced is decidable.

Towards this goal, we derive a different characterisation of rank-one block matrices. This

may seem more complicated than the original definition, but it is more suited to our purpose.

By the underlying relation of a matrix M(x, y), we mean the relation {(x, y) : M(x, y) 6= 0}.

We say that a matrix is rectangular if its underlying relation is.

◮ Lemma 7. A is a rank-one block matrix if, and only if, every 2 × 2 submatrix of A is a

rank-one block matrix.

Proof. Let A be a k × ℓ rank-one block matrix and let

B =

[

air ais

ajr ajs

]

(i, j ∈ [k], r, s ∈ [ℓ])

be any 2 × 2 submatrix of A. If any of air, ais, ajr, ajs is zero, at least two must be zero,

since A is rectangular. In this case, B is clearly a rank-one block matrix. If air, ais, ajr, ajs

are all nonzero, B must be a submatrix of some block of A. Since this block has rank one, B

also has rank one.

Conversely, suppose A is not a rank-one block matrix. If its underlying relation is not

rectangular, there exist air, ais, ajr > 0 with ajs = 0. The corresponding matrix B clearly

has rank two, and has only one block so is not a rank-one block matrix. If the underlying

relation of A is rectangular, then A must have a block of rank at least two. This block must

have some 2 × 2 submatrix B with rank two and all its elements non-zero. ◭

◮ Lemma 8. A rectangular 2 × 2 matrix A is a rank-one block matrix if, and only if,

a2
11a

2
22a12a21 = a2

12a
2
21a11a22.

Proof. The equation holds if any of a11, a12, a21 or a22 is zero. But, then, rectangularity

implies that at least two of them must be zero and A is a rank-one block matrix in all possible

cases. Otherwise, the equation is equivalent to a11a22 = a12a21, which is the condition that

A is singular. So A is one block, with rank one. The argument is clearly reversible. ◭

◮ Corollary 9. A rectangular k × ℓ matrix A is a rank-one block matrix if, and only if,

a2
ira

2
jsaisajr = a2

isa
2
jrairajs, for all i, j ∈ [k] and r, s ∈ [ℓ].

Proof. When i = j or r = s, the two sides of the equation are identical. Otherwise, the

equality follows directly from Lemmas 7 and 8. ◭

It is possible to modify the above so that Corollary 9 involves products of only five

elements, rather than six, but we do not pursue that refinement here.

The following lemma gives a basic precondition for strong balance.

◮ Lemma 10. Every strongly balanced constraint language is strongly rectangular.

STACS’11

268 The #CSP Dichotomy is Decidable

Proof. Suppose Ψ ∈ 〈Γ〉 is not rectangular. There are ac,bc,ad ∈ R such that bd /∈ R. Let

Ψ′ be the relation {uvv : uv ∈ Ψ} and let M ′ be its balance matrix. The 2 × 2 submatrix

corresponding to rows a and b and columns c and d is

B =

[

α β

γ 0

]

for some α, β, γ ≥ 1. This submatrix is not a rank-one block matrix so, by Lemma 7, nor is

M ′. Therefore, Γ is not strongly balanced. ◭

5 Decidability

We now give a relaxation of the strong balance criterion, by noting the conditions sufficient

for the success of the algorithm in [10]. For an instance with n variables, the algorithm only

requires that ternary relations on D ×D ×Di, for i ∈ [n− 2], be balanced. Therefore, let

Ψ(x), with x = (x1, . . . , xn), be an arbitrary formula pp-definable in Γ. For the algorithm to

succeed, it suffices that the q × q matrix

M(a, b) =
∣

∣{x ∈ [V → D] : x ∈ Ψ, x1 = a, x2 = b}
∣

∣ (∀a, b ∈ D)

is a rank-one block matrix for any Ψ. We may therefore take this as the criterion for strong

balance.

We will construct an algorithm to solve the following decision problem.

strong balance

Instance : A relational structure S = (D, Γ).

Question : Is Γ strongly balanced?

Recall from Section 2 that we may assume that ‖Γ‖ ≥ q. Thus, we may take ‖Γ‖ as

the measure of input size for strong balance and we bound the complexity of strong

balance as a function of this value. Complexity is a secondary issue, since ‖Γ‖ is a constant

in the nonuniform model for #CSP(Γ). In this model, we are only required to show that some

algorithm exists to solve strong balance. However, we believe that the computational

complexity of deciding the dichotomy is intrinsically interesting. Our approach will be to

show that the strong balance condition is equivalent to a structural property of Γ that can

be checked in NP.

We may assume that Γ is strongly rectangular since, if it is not, we know by Lemma 10

that it is not strongly balanced. For the remainder of this section, we fix an n-ary pp-definable

relation Ψ ∈ 〈Γ〉 with balance matrix M .

By Corollary 9, the condition for M to be a rank-one block matrix is that

M(a, c)2M(a, d)M(b, d)2M(b, c) = M(a, d)2M(a, c)M(b, c)2M(b, d) for all a, b, c, d ∈ D.

We can reformulate this condition using the construction of powers of S. If a = (a1, . . . , ak)

and b = (b1, . . . , bk), the balance matrix Mk for Ψk is the qk × qk matrix given by

Mk(a,b) =
∣

∣{x ∈ [V → Dk] ∩ Ψk : x1 = a, x2 = b}
∣

∣

= M(a1, b1)M(a2, b2) · · ·M(ak, bk) .

The condition for M to be a rank-one block matrix can be rewritten as

M6(ā, c̄) = M6(ā, d̄) , (1)

Martin Dyer and David Richerby 269

where

ā = (a, a, a, b, b, b), c̄ = (c, c, d, d, d, c), d̄ = (d, d, c, c, c, d) . (2)

Let us fix ā, c̄, d̄. For notational simplicity, let us write S̄ for S
6, Γ̄ for Γ6, Ψ̄ for Ψ6, M̄

for M6 and D̄ for D6. Then, from (1), we must verify that M̄(ā, c̄) = M̄(ā, d̄) for all relations

RΨ̄ that are pp-definable in Γ̄ and given ā, c̄, d̄ ∈ D̄. We use a method of Lovász [16]; see

also [8]. For s̄ ∈ D̄, and a pp-definition Ψ̄ in variables V , let

Homs̄(Ψ̄) = {x ∈ [V → D̄] ∩ Ψ̄ : x1 = ā, x2 = s̄}

homs̄(Ψ̄) = |Homs̄(Ψ̄)| .

However, a homomorphism V → D̄ that is consistent with Ψ̄ is just a satisfying assignment

to Ψ̄. M̄(ā, s̄) is the number of such assignments with x1 = ā and x2 = s̄, i.e., the number of

homomorphisms that map x1 7→ ā and x2 7→ s̄. This proves the following.

◮ Lemma 11. Γ is strongly balanced if, and only if, homc̄(Ψ̄) = homd̄(Ψ̄) for all formulae

Ψ̄ and all ā, c̄, d̄ of the form above.

We will also need to consider the injective functions in Homs̄(Ψ̄). For s̄ ∈ D̄, let

Mons̄(Ψ̄) = {x ∈ [V →֒ D̄] ∩ Ψ̄ : x1 = ā, x2 = s̄}

mons̄(Ψ̄) = |Mons̄(Ψ̄)| .

◮ Lemma 12. homc̄(Ψ̄) = homd̄(Ψ̄) for all Ψ̄ if, and only if, monc̄(Ψ̄) = mond̄(Ψ̄) for all Ψ̄.

Proof. Consider the set I of all partitions I of V into disjoint classes Ī1, . . . , ĪkI
, such that

1 ∈ Ī1, 2 ∈ Ī2. Writing I � I ′ whenever I is a refinement of I ′, P = (I,�) is a poset. We will

write ⊥ for the partition into singletons, so ⊥ � I for all I ∈ I.

Let V/I denote the set of classes Ī1, . . . , ĪkI
of the partition I, so |V/I| = kI , and let

Ī1, Ī2 be denoted by 1/I, 2/I. Let Ψ̄/I denote the relation obtained from Ψ̄ by imposing

equality on all pairs of variables that occur in the same partition of I. Thus, the constraints

x1 = ā, x2 = s̄ become x1/I = ā, x2/I = s̄. Then we have

homs̄(Ψ̄) = homs̄(Ψ̄/⊥) =
∑

I∈I

mons̄(Ψ̄/I) =
∑

I∈I

mons̄(Ψ̄/I)ζ(⊥, I) , (3)

where ζ(I, I ′) = 1, if I � I ′, and ζ(I, I ′) = 0, otherwise, is the ζ-function of P. Thus, if

monc̄(Ψ̄) = mond̄(Ψ̄) for all Ψ̄, then

homc̄(Ψ̄) =
∑

I∈I

monc̄(Ψ̄/I)ζ(⊥, I) =
∑

I∈I

mond̄(Ψ̄/I)ζ(⊥, I) = homd̄(Ψ̄) . (4)

Conversely, suppose that homc̄(Ψ̄) = homd̄(Ψ̄) for all Ψ̄. The reasoning used to give (3)

implies, more generally, that

homs̄(Ψ̄/I) =
∑

I�I′

mons̄(Ψ̄/I ′) =
∑

I′∈I

mons̄(Ψ̄/I ′)ζ(I, I ′) .

Now, Möbius inversion for posets [20, Ch. 25] implies that the matrix ζ : I × I → {0, 1} has

an inverse µ : I × I → Z. It follows directly that

mons̄(Ψ̄) =
∑

I∈I

homs̄(Ψ̄/I)µ(⊥, I) .

STACS’11

270 The #CSP Dichotomy is Decidable

Thus, with homc̄(Ψ̄) = homd̄(Ψ̄) for all Ψ̄, we have

monc̄(Ψ̄) =
∑

I∈I

homc̄(Ψ̄/I)µ(⊥, I) =
∑

I∈I

homd̄(Ψ̄/I)µ(⊥, I) = mond̄(Ψ̄) . (5)

Now, (4) and (5) give the conclusion. ◭

◮ Lemma 13. monc̄(Ψ̄) = mond̄(Ψ̄) for all Ψ̄, if, and only if, there is an automorphism

η : D̄ ↔ D̄ of S̄ = (D̄, Γ̄) such that η(ā) = ā and η(c̄) = d̄.

Proof. The condition holds if S̄ has such an automorphism since, if Ψ̄(x) = ∃y Φ̄(x,y) for

some Φ̄, then

monc̄(Ψ̄) = |{x ∈ [V →֒ D̄] : x1 = ā, x2 = c̄, ∃y (x,y) ∈ Φ̄}|

= |{η(x) ∈ [V →֒ D̄] : x1 = η(ā), x2 = η(c̄), ∃y (η(x), η(y)) ∈ Φ̄}|

= |{x ∈ [V →֒ D̄] : x1 = ā, x2 = d̄, ∃y (x,y) ∈ Φ̄}|

= mond̄(Ψ̄) .

Conversely, suppose we have monc̄(Ψ̄) = mond̄(Ψ̄) for all Ψ̄. Consider the following Γ̄-formula

Φ̄ with domain D̄ and variables xt̄ (t̄ ∈ D̄):

Φ̄(x) =
∧

H̄ ∈ Γ̄

∧

(ū1,...,ūr) ∈ H̄

H̄(xū1
, . . . , xūr

) .

Then

Mons̄(Φ̄) = {x ∈ [D̄ →֒ D̄] : xā = ā, xc̄ = s̄, x ∈ Φ̄} .

We have Monc̄(Φ̄) 6= ∅, since the identity assignment xt̄ = t̄ for all t̄ ∈ D̄ is clearly satisfying.

Thus, by the assumption, Mond̄(Φ̄) 6= ∅. Let η ∈ Mond̄(Φ̄), so η is an endomorphism of

S̄ with η(ā) = ā and η(c̄) = d̄. Since [D →֒ D] = [D ↔ D], η : D ↔ D is the required

automorphism. ◭

◮ Corollary 14. S = (D,Γ) is strongly balanced if, and only if, for all ā, c̄, d̄ as defined in

(2), S̄ = (D̄, Γ̄) has an automorphism ψ such that ψ(ā) = ā and ψ(c̄) = d̄.

Proof. This follows from Lemmas 11, 12 and 13. ◭

This characterisation of strong balance leads directly to a nondeterministic algorithm.

◮ Theorem 15. strong balance is in NP.

Proof. We first determine whether Γ is strongly rectangular, using the method of Lemma 5.

If it is not, then Γ is not strongly balanced, by Lemma 10.

Otherwise, we can construct S̄ = (D̄, Γ̄) in time O(‖Γ‖6). Let q̄ = q6 = |D̄| and let

Π denote the set of q̄ ! permutations of D̄. Each π ∈ Π is a function π : D̄ →֒ D̄ and so a

potential automorphism of S̄. For each of the q4 possible choices a, b, c, d ∈ D, we determine

ā, c̄, d̄ ∈ D̄ in polynomial time. We select π ∈ Π nondeterministically and check that π(ā) = ā,

π(c̄) = d̄ and that π preserves all H̄ ∈ Γ̄. The computation requires O(q4‖Γ̄‖2) = O(‖Γ‖16)

time in total, so everything other than the O(q10) = O(‖Γ‖10) nondeterministic choices can

be done deterministically in a polynomial number of steps. ◭

Martin Dyer and David Richerby 271

We have paid little attention to the efficiency of the computations in Theorem 15. If

the elements of D are encoded as binary numbers in [q], comparisons and nondeterministic

choices require O(log q) bit operations, rather than the O(1) operations in our accounting.

On the other hand, membership in H6 can be tested in O(‖H‖) comparisons, rather than

the O(‖H‖6) that we have allowed. This might be reduced further by storing H in a suitable

data structure, instead of a simple matrix. As we have noted, Corollary 9 can be refined to

products of five terms, which can be used to improve the algorithm of Theorem 15.

If we consider the domain D as fixed, the problem of deciding whether constraint languages

over that domain D are strongly balanced is in deterministic polynomial time. With D fixed,

there are a constant number of potential Mal’tsev polymorphisms that must be checked to

determine strong rectangularity, and the numbers of tuples ā, c̄, d̄ and possible automorphisms

on D are also fixed constants.

6 Conclusions

We have shown that there is an algorithm that determines whether a constraint language

is strongly balanced. This means that the complexity dichotomy for #CSP(Γ) is effective,

thus answering the major open problem that arose from the proofs that the dichotomy

exists [3, 10].

Although we have shown strong balance to be decidable in NP, we have only established an

upper bound. We believe the complexity of the problem to be interesting in its own right. It

is not hard to see that the problem of determining whether the automorphisms of Corollary 14

exist is reducible to the graph isomorphism problem. It therefore seems unlikely that strong

balance is NP-complete as this would imply NP-completeness of graph isomorphism which

would, in turn, imply the collapse of the polynomial hierarchy [19]. However, we leave open

the question of whether strong balance is equivalent to graph isomorphism or whether more

efficient algorithms exist.

Bulatov’s proof of the #CSP(Γ) dichotomy is expressed not in terms of strong balance

but in terms of the “congruence singularity” of Γ (or, more precisely, of an algebra defined

from Γ). We have shown the two conditions to be equivalent but it remains open if there is a

direct proof that the property of congruence singularity is decidable.

References

1 A. A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element

domain. Journal of the ACM, 53(1):66–120, 2006.

2 A. A. Bulatov. The complexity of the counting constraint satisfaction problem. Electronic

Colloquium on Computational Complexity, 14(093), 2007. (Revised Feb. 2009).

3 A. A. Bulatov. The complexity of the counting constraint satisfaction problem. In Proc.

35th International Colloquium on Automata, Languages and Programming (Part 1), LNCS

5125, pp. 646–661. Springer, 2008.

4 J.-Y. Cai, P. Lu, and M. Xia. Holant problems and counting CSP. In Proc. 41st Annual

ACM Symposium on Theory of Computing (STOC 2009), pp. 715–724. ACM, 2009.

5 N. Creignou and M. Hermann. Complexity of generalized satisfiability counting problems.

Information and Computation, 125(1):1–12, 1996.

6 K. Denecke and S. L. Wismath. Universal Algebra and Applications in Theoretical Computer

Science. Chapman and Hall/CRC, 2002.

7 M. E. Dyer, L. A. Goldberg, and M. R. Jerrum. A complexity dichotomy for hypergraph

partition functions. Computational Complexity, 19(4):605–633, 2010.

STACS’11

272 The #CSP Dichotomy is Decidable

8 M. E. Dyer, L. A. Goldberg, and M. S. Paterson. On counting homomorphisms to directed

acyclic graphs. Journal of the ACM, 54(6), 2007.

9 M. E. Dyer and C. S. Greenhill. The complexity of counting graph homomorphisms. Ran-

dom Structures and Algorithms, 17(3–4):260–289, 2000. (Corrigendum in Random Struc-

tures and Algorithms, 25(3):346–352, 2004.)

10 M. E. Dyer and D. M. Richerby. On the complexity of #CSP. In Proc. 42nd ACM

Symposium on Theory of Computing (STOC 2010), pp. 725–734. ACM, 2010.

11 R. Fagin. Monadic generalized spectra. Zeitschrift für Mathematische Logik und Grundla-

gen der Mathematik, 21:89–96, 1975.

12 R. Fagin, L. J. Stockmeyer, and M. Y. Vardi. On monadic NP vs monadic co-NP. Inform-

ation and Computation, 120(1):78–92, 1995.

13 T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and

constraint satisfaction: A study through Datalog and group theory. SIAM Journal on

Computing, 28(1):57–104, 1998.

14 P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory

(Series B), 48(1):92–110, 1990.

15 R. E. Ladner. On the structure of polynomial time reducibility. Journal of the ACM,

22(1):155–171, 1975.

16 L. Lovász. Operations with structures. Acta. Math. Acad. Sci. Hung., 18:321–328, 1967.

17 J. Nešetřil, M. H. Siggers and L. Zádori. A combinatorial constraint satisfaction problem

dichotomy classification conjecture. European Journal of Combinatorics, 31(1):280–296,

2010.

18 T. Schaefer. The complexity of satisfiability problems. In Proc. 10th Annual ACM Sym-

posium on Theory of Computing, pp. 216–226. ACM Press, 1978.

19 U. Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer and System

Sciences, 37(3):312–323, 1988.

20 J. van Lint and R. Wilson. A Course in Combinatorics. (2nd ed.). CUP, 2001.

	Introduction
	Proof outline
	Organisation of the paper

	Definitions and notation
	Relations and constraints
	Definability
	Polymorphisms
	Homomorphisms and monomorphisms
	Powers of structures

	Rectangularity
	Strong balance
	Decidability
	Conclusions

