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Everywhere complex sequences and the

probabilistic method ∗

Andrey Yu. Rumyantsev1

1 Moscow State University, Russia

Abstract

The main subject of the paper is everywhere complex sequences. An everywhere complex sequence

is a sequence that does not contain substrings of Kolmogorov complexity less than αn − O(1)

where n is the length of the substring and α is a constant between 0 and 1.

First, we prove that no randomized algorithm can produce an everywhere complex sequence

with positive probability.

On the other hand, for weaker notions of everywhere complex sequences the situation is

different. For example, there is a probabilistic algorithm that produces (with probability 1)

sequences whose substrings of length n have complexity
√

n − O(1).

Finally, one may replace the complexity of a substring (in the definition of everywhere com-

plex sequences) by its conditional complexity when the position is given. This gives a stronger

notion of everywhere complex sequence, and no randomized algorithm can produce (with pos-

itive probability) such a sequence even if αn is replaced by
√

n, log∗ n or any other monotone

unbounded computable function.
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1 Introduction

The paper considers binary sequences with substrings of high Kolmogorov complexity.

Kolmogorov complexity of a binary string is the minimal length of a program that produces

this string. We refer the reader to [1] or [2] for the definition and basic properties of

Kolmogorov complexity.

The Levin–Schnorr Theorem (see, e.g., [1]) characterizes randomness of a sequence in terms

of complexity of its prefixes. It implies that a n-bit prefix of a Martin-Löf random sequence

has complexity n−O(1). (Technically, we should consider monotone or prefix complexity here;

for plain complexity we have n − O(log n) bound, but in this paper logarithmic precision is

enough.) So sequences with complex prefixes exist (and, moreover, fair coin tossing produces

such a sequence with probability 1).

If we require all substrings (not only prefixes) to be complex, the situation changes.

Random sequences no longer have this property, since every random sequence contains

arbitrarily long groups of consecutive zeros (and these groups have very small complexity).

However, sequences with this property (“everywhere complex”) still exist. The following

Lemma (proved by Levin [3]) says that there exists a sequence where every substring has high
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complexity (though the condition is now weaker; the complexity is greater than αn − O(1)

where n is the length and 0 < α < 1).

Here is the exact statement. Let ω([i, j)) be a substring ωiωi+1ωi+2 . . . ωj−1 of a sequence

ω; let K(u) be the Kolmogorov complexity of a binary string u.

◮ Lemma 1 (Levin). Let α be a real number, 0 < α < 1. There exists a sequence ω such that

K(ω([k, k + n))) ≥ αn − O(1).

for all natural numbers k and n.

Here the constant O(1) may depend on α but not on n and k.

Levin’s proof in [3] used complexity arguments: informally, we construct the sequence

from left to right adding bit blocks; each new block should increase the complexity as much

as possible.

Later it became clear that this lemma has a combinatorial meaning: if for every n

some 2αn strings of length n are “forbidden”, there exists an infinite sequence without long

forbidden substrings. This combinatorial interpretation shows that the statement of the

lemma (and even a stronger statement about subsequences, not only substrings) is a corollary

of the Lovász local lemma (see [4, 5]). Recently two more proofs were suggested (by Joseph

Miller [6] and Andrej Muchnik).

Before stating our results, let us mention the following slightly generalized version of

Levin’s lemma. Though not stated explicitly in [3], it can be proved by the same argument.

◮ Lemma 2 (Levin, generalized). Let α be a real number, 0 < α < 1. Then there exists a

sequence ω such that

K(ω([k, k + n)) | k, n) ≥ αn − O(1).

for all integers k, n.

Here K(x|y) denotes conditional Kolmogorov complexity of a string x when y is given (i.e.,

the minimal length of a program that transforms y to x). The difference is that substrings

are now complex with respect to their position and length (so, for example, the binary

representation of k can not appear starting from position k). In combinatorial terms, we

have different sets of forbidden substrings for different positions. (In fact, n is not important

here since its complexity, O(log n), can be absorbed by changing α.)

One can ask how “constructive” the proofs of Levin’s lemma and its variants could be.

There are several different versions of this question. One may assume that the set of forbidden

strings is decidable and ask whether there exists a computable sequence that avoids all

sufficiently long forbidden strings. Miller’s argument shows that this is indeed the case,

though a similar question of 2D configurations (instead of 1D sequences, cf. [4]) is still open.

In this paper we consider a different version of this question and ask whether there exists

a probabilistic algorithm that produces a sequence satisfying the statement of Levin’s Lemma

(or some version of it) with positive probability.

2 The results

We say that a sequence ω is α-everywhere complex if

K(ω([k, k + n))) ≥ αn − c

for some constant c and for all integers k and n.
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466 Everywhere complex sequences and the probabilistic method

◮ Theorem 3. No probabilistic algorithm can produce with positive probability a sequence ω

that is α-everywhere complex for some α ∈ (0, 1).

◮ Theorem 4. Let
∑

∞

i=0 ai be a computable converging series of nonnegative rational numbers.

There exists a probabilistic algorithm that produces with probability 1 some sequence ω such

that

K(ω([k, k + n))) ≥ a[log n]n − c

for some c and for all k and n.

◮ Theorem 5. No probabilistic algorithm can produce with positive probability a sequence ω

with the following property: there exists a non-decreasing unbounded computable function

g : N → N such that

K(ω([k, k + n)) | k, n) ≥ g(n)

for all k and n.

Theorem 3 and 4 complement each other: the first one says that α-everywhere complex

sequences for a fixed α > 0 (even very small) cannot be obtained by a probabilistic algorithm;

the second one says that if we allow sublinear growth and replace the bound αn by
√

n or

n/ log2 n, then the probabilistic algorithm exists. (There are intermediate cases where none

of these theorems is applicable, say, n/ log n bound; we do not know the answer for these

cases.)

Theorem 5 says that Theorem 4 cannot be extended to the case of the generalized Levin

lemma; here the answer is negative for any computable non-decreasing unbounded function.

3 Proof of Theorem 4

Let us start with the positive result.

Proof of theorem 4. The idea of the construction is simple. We fix some computable

function f : N → N and then let ωi = τf(i) where τi is a sequence of random bits (recall that

we construct a probabilistic algorithm that uses random bit generator).

In other words, we repeat the same random bit τj several times at the locations ωi where

f(i) = j. Why does this help? It allows us to convert bounds for the complexity of prefixes

of τ into bounds for the complexity of substrings of ω. Indeed, if we have some substring of

ω and some additional information that tell us where several first bits of τ are located in the

substring, we can reconstruct a prefix of τ .

We now give more details. We may assume without loss of generality that n, the length

of a substring, is large enough. We may also assume that n is a power of 2, i.e., that n = 2m

for some m. Indeed, for every substring x we can consider its prefix x′ whose length is the

maximal power of 2 not exceeding the length of x. The bound for complexity of x′ gives the

same bound (up to a constant factor) for the complexity of x.

Consider the substring ω([k, k + 2m)) for some k and m. We want it to contain all the

bits from some prefix of τ , more specifically, the first am2m bits τ0, . . . , τam2m
−1 of τ . (We

may assume without loss of generality that am2m is an integer.)

To achieve this, we put each of these bits at the positions that form an arithmetic

progression with common difference 2m. The first term of this progression will be smaller

than its difference, and therefore each interval of length 2m contains exactly one term of this

progression.

In this way for a given m we occupy am-fraction of the entire space of indices (each

progression has density 1/2m and we have am2m of them). So to have enough room for all
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m we need that
∑

am ≤ 1. This may be not the case at first, but we can start with large

enough m0 to make the tail small.

Technically, first we let m = m0 and split N into 2m arithmetic progressions with difference

2m. (The first progression is formed by multiples of 2m, the second is formed by numbers

that are equal to 1 modulo 2m, etc.) We use first am2m of them for level m reserving the rest

for higher levels. Then we switch to level m = m0 + 1, splitting each remaining progression

into two (even and odd terms), use some of them for level m0 + 1, convert the rest into

progressions with twice bigger difference for level m0 + 2, etc. (Note that if in a progression

the first term is less than its difference, the same is true for its two halves.)

This process continues indefinitely, since we assume that am0
+ am0+1 + · · · ≤ 1. Note

that even if this sum is strictly less than 1, all natural numbers will be included in some of

the progressions: indeed, at each step we cover the least uncovered yet number. So we have

described a total computable function f (its construction depends on m0, see below).

Now we translate lower bounds for complexity of prefixes of τ into bounds for complexity

of substrings of ω: the substring ω([k, k + 2m)) contains first am2m bits of τ (for m ≥ m0),

and the positions of these bits can be reconstructed if we know k mod 2m and the function

f . This additional information uses O(m) bits (recall that m0 ≤ m and it determines f). So

K(ω([k, k + 2m))) ≥ K(τ([0, am2m))) − O(m) ≥ am2m − O(m).

The last term O(m) can be eliminated: increasing am by O(m)/2m, and even more, say, by

m2/2m, we do not affect the convergence. (The bounds presented are literally true for prefix

complexity; plain complexity of prefixes of τ is a bit smaller but the difference again can be

easily absorbed by a constant factor that does not affect the convergence.) ◭

4 Proof of Theorem 5

The proofs of Theorem 3 and Theorem 5 are based on the same idea. We start with proving

Theorem 5 as it is simpler.

Proof of Theorem 3. Fix some probabilistic algorithm A. We need to prove that some

property (“there exists a non-decreasing unbounded computable function g" such that

K(ω([k, k + n))|k, n) ≥ g(n) for all k and n”) has probability 0 with respect to the output

distribution of A. Since there are countably many computable functions g, it is enough

to show that for a given g this happens with probability 0. So we assume that both A

(probabilistic algorithm) and g (a computable monotone unbounded function) are fixed, and

for a given ε > 0 prove that the property “K(ω([k, k + n))|k, n) ≥ g(n) for all k and n” has

probability smaller than ε.

Assume first that probabilistic algorithm A produce an infinite output sequence with

probability 1, and therefore defines a computable probability distribution PA on the Cantor

space of infinite sequences.

Consider some n. First we prove that for large enough N it is possible to select one

“forbidden” string of length n for each starting position k = 0, 1, . . . , N − 1 in such a way that

the event “output sequence avoids all the forbidden strings” (at the corresponding positions)

has probability less than ε.

This can be proved in several different ways. For example, we can use the following

probabilistic argument. Let us choose the forbidden strings randomly (independently with

the random bits used by A). For every output sequence of A the probability that it avoids all

randomly selected “forbidden” strings is (1 − 2−n)N which is less than ε if N is sufficiently
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468 Everywhere complex sequences and the probabilistic method

large. Therefore, the overall probability of the event “output of A avoids all forbidden strings”

(with respect to the product distribution) is less than ε. Now we use averaging in different

order and conclude that there exists one sequence of N forbidden strings with the required

property.

After the existence of such a sequence is proved, it can be found by exhaustive search

(recall that PA is computable). Let us agree that we use the first sequence with this property

(in some search order) and estimate the complexity of forbidden strings when length n and

position k are known. The value of N is a simple function of n and ε (which is fixed for

now, as well as A), and we do not need any other information to construct forbidden strings.

So their conditional complexity is bounded and is less than g(n) for large enough n. So

the probability that all the substrings in the output of A will have complexity greater than

g(their length), is less than ε.

It remains to explain how to modify this argument for a general case, without the

assumption that A generates infinite sequences with probability 1. Let us modify the function

N(ε, n) in such a way that (1 − 2−n)N(n,ε) < ε/2. Consider the probability of the event “A

generates a sequence of length N(n, ε) + n”. If somebody gives us (in addition to n and ε)

an approximation from below for this probability with error at most ε/2, we may enumerate

A’s output distribution on strings of length N + n and stop when the lower bound is reached.

Then we apply the argument above using this restricted distribution and show that for this

restricted distribution the probability to avoid simple strings is less than ε/2, which gives

ε-bound for the full distribution (since they differ at most by ε/2). It is important here that

the missing information is of size log(1/ε) + O(1), so for a fixed ε we need O(1) additional

bits. ◭

5 Proof of Theorem 3

The proof of Theorem 3 is similar to the preceding one, but more technically involved. In

the previous argument we were allowed to choose different forbidden strings for different

positions, and it was enough to use one forbidden string for each position. Now we use the

same set of forbidden strings for all positions, and the simple bound (1 − 2−n)N is replaced

by the following lemma.

◮ Lemma 6. Let α ∈ (0, 1). For every ε > 0 there exist natural numbers n and N (with n <

N) and random variables An, An+1, . . . , AN whose values are subsets of Bn,Bn+1, . . . ,BN

respectively, that have the following properties:

(1) the size of subset Ai never exceeds 2αi;

(2) for every binary string x of length N the probability of the event “for some i ∈
{n, . . . , N} some element of Ai is a substring of x” exceeds 1 − ε.

The number n can be chosen arbitrarily large.

(We again use the probabilistic argument; this lemma estimates the probability for every

specific x and some auxiliary probability distribution; the output distribution of randomized

algorithm A is not mentioned at all. Then we use this lemma to get an estimate for the

combined distribution, and change the order of averaging to prove the existence of finite sets

An, . . . , AN with required properties.)

Proof. First let us consider the case α > 1/2. Then we actually need only two lengths n

and N , where N ≫ n, all other lengths are not used and the corresponding random subsets

can be empty. For length n, we consider a uniform distribution on all sets of size 2αn; all
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these sets have equal probabilities to be a value of random variable An. For length N the

set AN is chosen in some fixed way (no randomness), see below.

Assume that some string x of length N is fixed. There are two possibilities:

(a) there are at least 2n/2 different substrings of length n in x;

(b) there are less than 2n/2 different substrings.

In the first case (a) strings of length n play the main role. Let S be a set of n-bit strings

that appear in x; it contains at least 2n/2 strings. The probability that the desired event

does not happen does not exceed the probability of the following event: “making 2αn random

choices among n-bit strings, we never get into S”. (It is a bit smaller, since now we can

choose the same string several times.) This probability is at most

(1 − 2−n/2)2αn

= (1 − 2−n/2)2n/22(α−1/2)n ≈ (1/e)2(α−1/2)n

and converges to zero (rather fast) as n → ∞.

In the second case (b) strings of length N come into play. We may assume that N is a

multiple of n. Let us split x into blocks of size n. We know that x has some special property:

there are at most 2n/2 different blocks. Note that for large N the number of strings with

this special property is less than 2αN . Indeed, to encode such a string x, we first list all the

blocks that appear in x (this is a very long list, but its length is determined by n and does

not depend on N), and then specify each block by its number in this list. In this way we

need N/2 + O(1) bits (the number is half as long as the block itself) and this is less than

αN for large N . So for such a large N we may include all strings with this property in AN

and get the desired effect with probability 1.

Now let us consider the case when α > 1/3 (but can be less than 1/2). Now we need three

lengths n1 ≪ n2 ≪ n3. We will use n2 that is a multiple of n1, and n3 that is a multiple of

n2. For length n1 we again consider a random set of 2αn1 strings of length n1. It guarantees

success if the string x contains at least 2(2/3)n1 different blocks of length n1.

Now we compile a list of possible blocks of size n2 that are “simple”, i.e., contain at

most 2(2/3)n1 different blocks of size n1. The same argument as before shows that a simple

block can be described by (2/3)n2 + O(1) bits, where O(1) depends only on n1. Now An2

is a random set of 2αn2 simple blocks of size n2. Then the argument again splits into two

sub-cases. (Recall that we assume now that x is made of simple blocks of size n2.)

The first case happens when x contains more than 2n2/3 different simple blocks. Then

with high probability some block of x appears in An2
.

The second case happen when x contains less than 2n2/3 different simple blocks. Then x

can be encoded by the list of these blocks, and this requires n3/3 + O(1) bits. So if n3 is

large enough (compared to n2), all possibilities can be included in An3
, and this finishes the

argument for α > 1/3.

A similar argument with four layers works for α > 1/4, etc. ◭

This lemma will be the main technical tool in the proof of Theorem 3. But first let us

prove a purely probabilistic counterpart of Theorem 3 that is of independent interest.

◮ Theorem 7. Let α ∈ (0, 1). For every probability distribution P on Cantor space Ω, there

exist sets A1, A2, . . . of binary strings such that

(1) the set An contains at most 2αn strings of length n;

(2) with P -probability 1 a random sequence has substrings in Ai for infinitely many i.

The possible “philosophical” interpretation of this theorem: one cannot prove the existence

of sequences that avoid almost all Ai by a direct application of the probabilistic method;

something more delicate (e.g., Lovász local lemma) is needed.
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470 Everywhere complex sequences and the probabilistic method

Proof. Let us first consider sequences of some finite length N and the induced probability

distribution on them. We claim that for every ε and for large enough N we can choose

A1, . . . , AN in such a way that they satisfy (1) and P -probability to avoid them is less than

ε.

To show this, consider the (independent) random distribution on strings of lengths

1, . . . , N provided by the lemma. What is the probability that a random string avoids a

random set (with respect to the product distribution of P and the distribution provided by

the lemma)? Since for every fixed string the probability is less than ε (assuming N is large

enough), the overall probability (the average) is less than ε. Changing the order of averaging,

we see that for some A1, . . . , AN the corresponding P -probability is less than ε.

Note that in fact we do not need short strings; strings longer than any given n are enough

(if N is large). So we can use this argument repeatedly with non-overlapping segments

[ni, Ni] and εi decreasing fast (e.g., εi = 2−i). Then for P -almost every sequence we get

infinitely many violations. Moreover, since the series
∑

εi is converging, P -almost every

sequence hits an Aj where j ∈ [ni, Ni] for all but finitely many i (Borel–Cantelli lemma). ◭

Now we are ready to prove the weak version of Theorem 3:

Let α ∈ (0, 1). There is no randomized algorithm that produces α-everywhere complex

sequences with probability 1.

(The difference with the full version is that here we have probability 1 instead of any

positive probability and that the value of α is fixed.)

To prove this statement, let us consider the output distribution P of this algorithm.

Since the algorithm produces an infinite sequence with probability 1, this distribution is a

computable probability distribution on the Cantor space. This measure can be then used to

effectively find sequences εi, ni, Ni and sets Aj as described so that with P -probability 1

a random sequence hits an Aj where j ∈ [ni, Ni] for all but finitely many i. Since the sets

Aj can be effectively computed and have at most 2αj elements, every element of Aj has

complexity at most αj + O(log j); the logarithmic term can be absorbed by a change in α.

This argument shows also that for every computable probability distribution P and

every α ∈ (0, 1) there exists a Martin-Löf random sequence with respect to P that is not

α-everywhere complex. One more corollary: for every α ∈ (0, 1) the (Medvedev-style) mass

problem “produce an α-everywhere complex sequence” is not Medvedev (uniformly) reducible

to the problem “produce a Martin-Löf random sequence”.

It remains to make the last step to get the proof of Theorem 3.

Proof of Theorem 3. If the probability to get an everywhere complex sequence is positive,

then for some α the probability to get an α-everywhere complex sequence for this specific α

is positive. (Indeed, we may consider only rational α and use countable additivity.)

So we assume that some α is fixed and some probabilistic algorithm produces α-everywhere

complex sequences with positive probability. We cannot apply the same argument as above.

The problem is that the output of the algorithm (restricted to the first N bits) is a distribution

on B
N that is not computable (the probability that at least N bits appear at the output, is

only a lower semicomputable real). However, for applying our construction for some εi, it is

enough to know the output distribution up to precision εi/2 (in terms of statistical distance),

as explained in the proof of Theorem 5, we replace our distribution by its part, and the error

is at most ε/2. For this we need only log(1/εi) + O(1) bits of advice, which can be made

small compared to αn. ◭

Now we get a stronger statements for mass problems:
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◮ Theorem 8. The mass problem “produce an everywhere complex sequence” is not Muchnik

(non-uniformly) reducible to the problem “produce a Martin-Löf random sequence”.

Proof. Indeed, imagine that for every random sequence there is some oracle machine that

transforms it to an everywhere complex sequence. Since the set of oracle machines is

countable, some of then should work for a set of random sequences that has positive measure,

which contradicts Theorem 3. ◭

The author thanks Steven Simpson for asking the question, and Joseph Miller and

Mushfeq Khan for the discussion and useful remarks.
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