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Abstract

This paper reviews structural problem decomposition methods, such as tree and path decompo-

sitions. It is argued that these notions can be applied in two distinct ways: Either to show that a

problem is efficiently solvable when a width parameter is fixed, or to prove that the unrestricted

(or some width-parameter free) version of a problem is tractable by using a width-notion as a

mathematical tool for directly solving the problem at hand. Examples are given for both cases.

As a new showcase for the latter usage, we report some recent results on the Partner Units

Problem, a form of configuration problem arising in an industrial context. We use the notion

of a path decomposition to identify and solve a tractable class of instances of this problem with

practical relevance.

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.12

1 Introduction: Treewidth and Other Notions of Width

Tree decompositions [52, 6] and their variants and generalizations [44] constitute a significant

success story of Theoretical Computer Science. In fact, tree decompositions and polynomial

algorithms for bounded treewidth constitute one of the most effective weapons to attack NP

hard problems, namely, by recognizing and efficiently solving large classes of tractable problem

instances. Structural problem decompositions such as treewidth are thus closely related to fixed-

parameter tractability [19, 37].

Tree and Path Decompositions. Formally, a tree decomposition of a graph G = (V, E) is a

pair P = (T, χ) such that T = (W, F ) is a tree or forest, and where the function χ associates to

every w ∈W a subset B ⊆ V such that

(1) for every vertex v in V there is a vertex w ∈W with v ∈ χ(w);

(2) for every edge (v1, v2) in E there is a vertex w ∈W with {v1, v2} ⊆ χ(w); and

(3) for every vertex v in V the set {w ∈W | v ∈ χ(w)} induces a subtree of T .

Condition (3) is called the connectedness condition. The subsets B associated with the vertices

of W are called bags. The width of a tree decomposition is maxw∈W (|χ(w)| − 1). The treewidth

tw(G) of G is the minimum width over all its tree decompositions.

A path decomposition of a graph is a tree decomposition where T = (W, F ) actually consists

of a simple root-leaf path. The pathwidth pw(G) of a graph is the minimum width over all its

path decompositions.

Several variants and generalizations of treewidth have been introduced, for an overview

see [44]. For example, the notion of treewidth is easily generalized from graphs to finite structures.

A finite structure A consists of a domain A, and relations R1, . . . , Rk of arities a1, . . . , ak, respec-

tively. Each such relation Ri consists of a set of tuples (r1, . . . , rai
) ∈ R where r1, ..., rai

∈ A.

A graph G = (V, E) corresponds to a finite structure whose domain is V , with a binary relation

E encoding the edges. If G is undirected, then E contains both pairs (v, w) and (w, v) for each
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edge {v, w} of G. Undirected graphs are thus represented as special cases of arbitrary (possibly

directed) graphs. The Gaifman graph of a structure A, is the undirected graph G(A) whose set

of vertices is the domain A of A and where there is an edge {a, b} iff a, b ∈ A and a 6= b, and there

exists a tuple in one of the relations of A in which a and b occur jointly. A tree decomposition

of the structure A is a tree decomposition for the Gaifman graph, G(A). The treewidth tw(A) of

a structure A is defined accordingly, i.e., tw(A) = tw(G(A)). Similarly, the pathwidth pw(A) is

defined as pw(G(A). The treewidth tw(C) (pathwidth pw(C)) of a class C of finite structures is

the maximum over all tw(A) ( pw(A)) for A ∈ C. A tree decomposition of a hypergraph H is

a tree decomposition of the primal graph G(H) of H, which has the same vertices as H and an

edge between each pair of vertices that jointly occur in a hyperedge of H.

It is NP hard to determine the treewidth of a structure A. However, for each fixed k,

checking whether tw(A) ≤ k, and if so, computing a tree decomposition for A of optimal width,

is achievable in linear time [5], and was recently shown to be achievable in logarithmic space [20].

Even though the multiplicative constant factor of Bodlander’s linear algorithm [5] is exponential

in k, there are algorithms that find exact tree decompositions in reasonable time or good upper

approximations in many cases of practical relevance, see for example [7, 8] and the references

therein.

The treewidth of a graph or relational structure is an invariant that can be used as a param-

eter to define infinite classes of graphs (or structures) related to problem instances. Many NP

hard problems of practical relevance can be solved in polynomial time on instances of bounded

treewidth and some are actually fixed-parameter tractable with respect to treewidth. Given

that bounded pathwidth implies bounded treewidth, these results hold a fortiori for bounded

pathwidth. The notion of treewidth is at the base of strong meta-theorems such as Courcelle’s

Theorem [13], which states that any problem expressible in monadic second-order logic (MSO)

over structures of bounded treewidth can be solved in linear time (or, by a recent result, in log-

arithmic space [20]). Many problems, e.g. the 3-colorability of graphs, are very easily expressed

in terms of MSO, and thus Courcelle’s theorem turns out to be a very effective tool for obtaining

tractability results.

Hypergraph Decompositions The structure of a computational problem is sometimes better

described by a hypergraph than by a graph. Therefore, various width-notions for hypergraphs

have been defined and studied, and often these are more effective than simply considering the

associated primal graph. In particular, the notion of hypertree width, which is based on hypertree

decompositions [24, 31, 1], is an appropriate measure for the degree of acyclicity of a hyper-

graph. Bounded hypertree width generalizes the concept of α-acyclic hypergraphs developed by

Fagin [21]. In essence, a hypertree decomposition of width k for a hypergraph H can be obtained

from a suitable tree decomposition of G(H) by covering each bag with at most k hyperedges of H.

However, under this definition, which actually defines the concept of generalized hypertree width,

ghw(H), of a hypergraph H, it is unfortunately NP-hard to determine whether a hypergraph

has width ≤ k for k = 3 [32]. Therefore, to define the actual concept of hypertree width, an

additional condition is imposed that ensures the tractability of computing hypertree decomposi-

tions of low width (for details, see [24]). Bounded hypertree width is strictly more general than

bounded treewidth because there exist families of hypergraphs with bounded hypertree width

whose treewidth is unbounded.

A number of practically relevant problems become tractable for instances whose associ-

ated hypergraphs have low hypertree width. Examples are constraint satisfaction problems

(CSPs) [16, 29], see Section 3.1 for a definition, and combinatorial auctions [26]. Very roughly,

CSPs of bounded hypertree-width are loosely constrained and therefore tractable. CSPs may

also become tractable because their associated hypergraphs are –in a precise sense– tightly con-

strained. Formally this was captured by the entropy-based measure of fractional edge cover [39].
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14 Structural Decomposition Methods and What They are Good For

CSPs whose associated hypergraphs are of bounded fractional edge cover number are tightly

constrained and can be solved in polynomial time. Combining hypertree decomposition with

fractional edge covers yields fractional hypertree decompositions [39], a decomposition method

that is more general than both hypertree decompositions and fractional edge covers. While hy-

pertree decompositions will be considered again in Section 3.1, this paper mainly deals with tree

and path decompositions.

Structure of the Paper. The rest of the paper is structured as follows. In the next section,

we present a taxonomy of the main uses of tree decomposition in Computer Science. We will

distinguish between two main categories (categories 1 and 2) and four sub-categories (1.a, 1.b,

2.a, and 2.b) of applications of tree decompositions. In Section 3, we give examples of problems

that fall into the categories 1.a, 1.b, and 2.a, respectively. In section 4, we describe a relevant

version of the Partner Unit Problem (Pup) and report about our recent result [3] showing that

the problem falls in category 2.b and is therefore tractable.

2 Taxonomy of Main Uses of Tree Decompositions

One may distinguish between two main usages of tree decompositions, each of which can be

subdivided in turn into two sub-cases. The following taxonomy will be illustrated with concrete

examples in the next sections. When we speak about the treewidth of a problem instance, we

mean the treewidth of some graph associated with the instance. Obviously, for each concrete

problem, one has to indicate what this graph is, and, whenever necessary, how it can be obtained

from the instance.

1. Proving a problem tractable for instances of bounded treewidth. This is probably the main

use of treewidth. The idea is that many practically relevant classes of inputs actually have

bounded treewidth, and that for such classes, a polynomial algorithm can be designed. We

distinguish between general tractability results and fixed-parameter tractability (FPT) re-

sults:

1.a General tractability results. We are able to show that the problem becomes tractable, but

the best known polynomial algorithms are of complexity Ω(nf(k)), where limk→∞ f(k) =

∞. In many such cases it can actually be proven that the problem is fixed-parameter

intractable with respect to the treewidth parameter k. A typical problem in this category,

is the CSP problem, which we will discuss in more detail in the next section.

1.b Fixed-parameter tractability results. This is the case if there exists a function f such that

the problem is solvable in time f(k)×nO(1) on instances of treewidth ≤ k. If the problem

is actually solvable in time f(k)×O(n), then we speak about fixed-parameter linearity. In

particular, fixed-parameter linearity results can be obtained whenever Courcelle’s Theorem

can be applied. To illustrate this, we will discus the Multicut problem in the next section.

2. Using treewidth as a tool for proving a problem to be generally tractable (on all instances).

There are a number of cases where treewidth is used as a tool in general tractability proofs.

Again, we may distinguish between two sub-cases:

2.a Proving that a problem is tractable both for small and large treewidth. For some problems

having some associated implicit or explicit parameter c, it can be shown that there exists

a function f such that the problem is tractable both for instances having treewidth ≤ f(c)

and also for instances having treewidth > f(c). The tractability proof for low treewidth is

usually completely different from the tractability proof for high treewidth. As an example

for this category, we will review the problem of checking whether a loop-free undirected

graph has a cycle of length 0 mod c, where c is a fixed constant. This problem was shown

to be tractable by Thomassen [53].
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2.b Proving that all yes-instances of a problem have bounded treewidth and that the problem is

tractable for this reason. Here, for some explicit or implicit constant parameter c associated

with the problem, one is able to find a function t, such that all yes-instances of the problem

must have treewidth ≤ t(c). Moreover, one shows that for instances of bounded treewidth

the problem is polynomially solvable. Note that this is actually a very special case of

Case 2.a. In fact, this means that the high-treewidth case is trivially tractable, because

all instances of high treewidth are no-instances. As an example for this category, we will

report in Section 4 about a new result related to the Partner Unit Problem (Pup), a

problem of industrial relevance [22].

3 Examples for Tractability Results Based on Bounded Treewidth

As announced, this section contains examples for the usages of bounded treewidth as described

under categories 1.a, 1.b, and 2.a. We start with a very brief review of the Constraint Satisfaction

Problem (CSP) in Section 3.1. We then describe the Multicut problem and illustrate how a nice

generalization of Courcelle’s Theorem can be used to show that Multicut is FPT on instances

of bounded treewidth. Finally, in Section 3.3 we review Thomassen’s famous result stating that

it can be determined in polynomial time whether a graph has an even cycle, and more generally,

whether a graph has a cycle of length 0 mod c where c is a fixed constant. Our presentation

of all these problems and results is necessarily very brief, but we include references to literature

containing a full treatment and many more results.

3.1 The Constraint Satisfaction Problem

The efficient solution of Constraint Satisfaction Problems (CSPs) has for many years been an

important goal of AI research and of related disciplines, in particular, Operations Research and

Database Theory.

An instance of a constraint satisfaction problem (CSP) (also constraint network) is a triple

I = (Var, U, C), where Var is a finite set of variables, U is a finite domain of values, and C =

{C1, C2, . . . , Cq} is a finite set of constraints. Each constraint Ci is a pair (Si, ri), where Si is

a list of variables of length mi called the constraint scope, and ri is an mi-ary relation over U ,

called the constraint relation. (The tuples of ri indicate the allowed combinations of simultaneous

values for the variables Si). A solution to a CSP instance is a substitution θ : Var −→ U , such

that for each 1 ≤ i ≤ q, Siθ ∈ ri. The problem of deciding whether a CSP instance has any

solution is called constraint satisfiability (CS). Many well-known problems in Computer Science

and Mathematics can be formulated as CSPs. For example, the famous problem of graph three-

colorability (3COL), i.e., deciding whether the vertices of a graph G = 〈Vertices, Edges〉 can be

colored by three colors (say: red, green, blue) such that no edge links two vertices having the

same color, can be formulated as a CSP as follows. The set Var contains a variable Xv for

each vertex v ∈ Vertices. For each edge e = 〈v, w〉 ∈ Edges, the set C contains a constraint

Ce = (Se, re), where Se = 〈Xv, Xw〉 and re is the relation r 6= consisting of all pairs of different

colors, i.e., r 6= = {〈red, green〉, 〈red, blue〉, 〈green, red〉, 〈green, blue〉, 〈blue, red〉, 〈blue, green〉}.

It is well-known, and easy to see, that Constraint Satisfiability is an NP-complete problem.

Membership in NP is obvious. NP-hardness follows immediately, e.g. from the NP hardness of

3COL. It is also well-known [4, 43, 15] that the CSP is equivalent to various database problems,

e.g., to the problem of evaluating Boolean conjunctive queries over a relational database.

To any CSP instance I = (V ar, U, C), we associate a hypergraph H(I) = (V, H), where

V = V ar, and H = {var(S) | C = (S, r) ∈ C}, where var(S) denotes the set of variables in the

scope S of the constraint C. The graph G(I) associated with a CSP is the primal graph G(H(I))

of the hypergraph H(I). Note that if all constraints of a CSP instance I are binary, then its

associated hypergraph H(I) is identical to its graph G(I).

STACS’11



16 Structural Decomposition Methods and What They are Good For

The following result (for treewidth) was implicit in work of Dechter and Pearl [17] based on

Freuder (see [29] for clarifications). It was explicitly stated by Kolaitis and Vardi (Theorem 5.4

in [46]) and, by Chekuri and Rajaraman[12], who considered a slightly different graph associated

to a CSP-instance I. The more general version for bounded hypertree width was proven in [24].

◮ Theorem 1. CSPs of bounded treewidth and CSPs of bounded hypertree width are tractable.

Since bounded treewidth implies bounded hypertree width [24, 29], it is sufficient to consider

the proof for bounded hypertree width. A detailed exposition is given in the proof of Theorem 21

of [46]. Essentially it is shown that a CSP instance I of hypertree width k can be transformed in

time O(nk) into an instance I∗ of size nk, where n is the size of I, whose associated hypergraph

is acyclic. I∗ can then be solved by using Yannakakis’ well-known method for answering acyclic

queries [54]. The total time for solving I is shown to be nk+1 log n.

It is natural to ask whether we could achieve fixed-parameter tractability (FPT) by finding

a better algorithm which would allow us to get rid of the constant k in the exponent of n, and

thus to replace the runtime bound by some expression f(k)× nc for a function f and a constant

c independent of k. Unfortunately, this appears to be very unlikely. In fact, the problem of

evaluating Boolean conjunctive queries, which is identical to the CSP problem, is easily shown to

be fixed-parameter intractable (more precisely, W [1]-hard) with respect to either parameter, the

query size or the number of variables [50], see also [38, 18]. It is therefore a fortiori FP-intractable

with respect to the treewidth parameter, given that any k-variable CSP has treewidth at most

k − 1. This makes the CSP a prime example for a problem in category 1.a of our classification.

The precise complexity of solving CSPs (or answering conjunctive queries) of bounded treewidth,

or hypertree width, is as follows [30, 24]:

◮ Theorem 2. Deciding satisfiability for CSP instances of bounded treewidth or bounded hypertree

width is LOGCFL-complete.

Given that LOGCFL is a class of highly parallelizable problems included in the well-known

very low classes AC1 and NC2, this shows that even though FP-intractable in case of bounded

treewidth, the problem is efficiently parallelizable. A concrete parallel algorithm can be obtained

by combining the transformation of the original CSP instance of bounded treewidth, I, into an

acyclic CSP instance I ′ (see [29]) (which is an AC0-reduction) with the Db-Shunt algorithm

described in [30].

By results of Grohe, Schwentick, and Segoufin [40], for CSPs of bounded arity (i.e., whose

constraint scopes and relations are of bounded arity, but otherwise unrestricted), it was shown

that bounded treewidth is actually the best possible tractability criterion: a class of CSP in-

stances of bounded arity is tractable if and only if it has bounded treewidth. However, when the

constraints can have unbounded arity, bounded treewidth is a sub-optimal tractability criterion

and is dramatically outperformed by bounded hypertree width. But, as already alluded to in the

introduction, there are yet more powerful decomposition methods, such as fractional hypertree

decompositions [39]. Even bounded fractional hypertree width does not seem to be an optimal

structural tractability criterion. An optimal criterion was very recently established by Marx

in [48], however, this criterion imposes conditions not only on the constraint scopes, but also on

the constraint relations, and is thus of a different, less "structural" type. Finally, let us observe

that it may be useful to consider hypertree decompositions or their generalizations, rather than

just tree decompositions, even in the case of bounded arities. In fact, in Theorem 16 of [33] it

was shown that each CSP instance I having n variables is of hypertree width ≤ ⌊n/2⌋+ 1, while

its treewidth may actually be n− 1.
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3.2 Network Multicut Problems

We now illustrate category 1.b of our taxonomy by a number of variants of the well-known

Multicut problem.

Multicut problems and their complexity. Multicut problems are highly relevant to the

field of network design. The smallest size of a multicut reveals the robustness and stability of a

network with multicommodity flows. Given a set H ⊆ V 2 of pairs of terminal vertices of a graph

G = (V, E), several forms of Multicut have been considered and have given rise to complexity

studies [9, 14, 23, 42, 41, 47, 49].

A large part of the literature deals with the Edge Multicut variant in which the solution

is a set of edges E′ ⊆ E that, if removed, separate every terminal pair. Variants in which sets

of vertices are removed, such as Unrestricted Vertex Multicut, wherein any vertices can

appear in the solution set V ′, and Restricted Vertex Multicut, wherein no terminal vertices

can appear in the solution set, have also been studied [9]. Formal definitions of these versions of

Multicut are given below.

In 2006, Guo et al. [41] present an algorithm which solves all three of the variants of the

problem in polynomial time given two constant parameters, the cardinality of the set of terminal

pairs, |H|, and the treewidth ω of G.

In [28], Gottlob and Tien Lee introduced a new single parameter for which all variants of

Multicut are FPT. This unique parameter is the treewidth ω∗ of the input structure A =

(V, E, H), which is equal to the treewidth of the graph (V, E ∪ H). These more recent FPT-

results are proved by using a powerful extended version of Courcelle’s theorem due to Arnborg,

Lagergren, and Seese [2]. By formulating Multicut in such an extended MSO, the considered

Multicut problems are shown to be FPT with respect to ω∗. Note that if the input graph has

bounded treewidth, and if H has bounded cardinality, then, obviously, the entire input structure

A = (V, E, H) also has bounded treewidth ω∗. However, ω∗ can be bounded even in cases where

G has bounded treewidth but H has unbounded cardinality. The FPT results for bounded ω∗

are thus a strict generalization of the results by Guo et al. [41]. These findings demonstrate that

powerful logical tools such as the extended version of Courcelle’s master theorem by Arnborg,

Lagergren, and Seese [2] can be applied to advance the state of the art in network multicut theory

and can help identify parameters of interest in complexity analysis.

Formal definitions of multicut problems. We now define the various different versions of

the MULTICUT problem mentioned earlier. The Edge Multicut problem is formally defined

as follows:

◮ Definition 3. Edge Multicut (EMC)

Input: An undirected graph G = (V, E), and H ⊆ V ×V a collection of pairs of vertices.

Task: Find a minimal cardinality set E′ ⊆ E whose removal disconnects each pair in H.

The vertex variants of the problem were identified by Calinescu et al. [9] and they are defined as:

◮ Definition 4. Unrestricted Vertex Multicut (UVMC)

Input: An undirected graph G = (V, E), and H ⊆ V ×V a collection of pairs of vertices.

Task: Find a minimal cardinality set V ′ ⊆ V whose removal disconnects each pair in H.

If H is a set of pairs of elements, we denote by H0 the set of all elements occurring in some pair

of H, i.e., H0 = {x|∃y : (x, y) ∈ H ∨ (y, x) ∈ H}.

◮ Definition 5. Restricted Vertex Multicut (RVMC)

Input: An undirected graph G = (V, E), and H ⊆ V ×V , a collection of pairs of vertices.

Task: Find a minimal cardinality subset V ′ ⊆ V where V ′ ∩H0 = ∅ and whose removal

disconnects each pair of vertices in H.

STACS’11



18 Structural Decomposition Methods and What They are Good For

It has been shown that all three forms of the problem are NP-complete for general graphs [14, 9]

and remain hard even for graphs with bounded treewidth [23, 9].

A strong master theorem by Arnborg, Lagergren, and Seese. Before showing that

the problems become FPT for inputs of bounded treewidth ω∗, we present a strong and most

useful generalization of Courcelle’s Theorem by Arnborg, Lagergren, and Seese [2]. Let us refer

to the version of MSO where second-order quantification is restricted to sets of domain elements

(e.g., sets of vertices of the input graph) as MSO1. Note that Courcelle [13] and other authors

considered an extended version of MSO called MSO2 which extends MSO1 by the possibility of

quantifying over subsets of any relation of the input structure, e.g., sets of edges of an input

graph. Thus, for example, if a relational symbol R is part of the problem signature, then a

subformula (∃X ⊆ R)ϕ(X), expressing that there exists a subset X of the relation R such that

ϕ(X) holds for some formula ϕ, could be part of an MSO2 formula. Courcelle’s Theorem is

actually valid for MSO2 (and thus, in particular, for MSO1). Arnborg, Lagergren and Seese [2]

considered an important extension of MSO2, called extended MSO that can be used to formulate

optimization and counting problems. They proved that solving problems expressible in this form

over input structures is FPT with respect to the treewidth of these input structures.

While in the original setting in [2], extended MSO properties were defined in a much more

general context, it is sufficient for our purposes to state a drastically simplified definition and,

accordingly, a simplified master theorem (Theorem 7). By optimization we here understand the

search for a minimum or maximum solution according to some cardinality criteria. The solution

itself is an “optimal” assignment of sets to second-order variables that freely occur in some MSO

formula, such that the formula is satisfied over a given input structure. More precisely:

◮ Definition 6 (simplified version of a definition in [2]). An optimization problem is an extended

MSO cardinality optimization problem if it can be expressed in the following form. The input of

the problem is a a structure A = (V, E, H), where V is a set (the universe of A), and E and

H are binary relations over elements of V . Let ϕ(X) be a fixed MSO1 or MSO2 formula over

A, where X is either a free set variable ranging over subsets of V , or a binary relation variable

ranging over subsets of E. The task is to find an assignment1 among all possible assignments z′

to the variable X such that:

|z(X)| = opt{|z′(X)| : (A, z′) |= ϕ(X)}

where opt is either min or max. A suitable assignment z is called a solution to the extended

MSO cardinality optimization problem.

Using this definition, Arnborg, Lagergren and Seese found the following important fixed-

parameter tractability result [2]:

◮ Theorem 7. Solving extended MSO cardinality problems is fixed-parameter tractable w.r.t. the

treewidth of the input structure. In particular, for a fixed extended MSO cardinality optimization

problem P , and a class C of input structures whose treewidth is bounded by some constant, the

following can be done in linear time:

Determine whether P has a solution for an input from C.

Compute a solution for an input from C, if one exists.

Applying the master theorem to multicut problems. We first define a useful formula that

states that two vertices x and y are connected by a path that lies entirely in a set S of vertices.

1 An assignment z to the variable X is an interpretation of X that maps X to a subset z(X) of V if X

is unary and a subset of E if X is binary.
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◮ Definition 8. On structures A = (V, E, H) as above, let connects(S, x, y) be defined as follows:

S(x) ∧ S(y) ∧ ∀P((P (x) ∧ ¬P (y))→ (∃v∃w (S(v) ∧ S(w) ∧ P (v) ∧ ¬P (w) ∧ E(v, w)))).

◮ Lemma 9 ([28]). Over a structure A = (V, E, H) as above, the formula connects(S, x, y) states

that there is a path in (V, E) that connects vertex x to vertex y, and this path lies entirely in S.

In particular, this is also true for directed graphs.

◮ Theorem 10 ([28]). The problems UVMC, RVMC, and EMC are fixed parameter linear with

respect to the treewidth ω∗ of the input structure (V, E, H).

Proof. (Sketch.) We outline the proof for UVMC. The problem UVMC can in fact be expressed

as an extended MSO cardinality optimization problem in the following way: Find an assignment

z ⊆ V to set variable X such that |z(X)| = min{|z′(X)| : 〈V, E, H, z′〉 |= uvmc(X)}, where

uvmc(X) is an MSO1 expression defined as:

uvmc(X) ≡ ∀x∀y(H(x, y)→ ∀S(connects(S, x, y)→ ∃v(X(v) ∧ S(v)))).

In words, the formula uvmc(X) defines X to be such that for each pair (x, y) ∈ H (i.e., for

each pair (x, y) that must be disconnected), whenever there is a set S of vertices from V that

contains a path from x to y, then X must intersect S, i.e. contain some vertex from S. In [28] it is

formally proven that uvmc(X) is true iff the set X is an unrestricted vertex multicut of (V, E, H).

The theorem then follows immediately from Theorem 7. Slight variants of this proof yield the

corresponding FPT results for RVMC and EMC. For EMC, quantification over subsets of the

edge relation is used. For details, see [28]. ◭

Master theorems such as Courcelle’s and the one of Arnborg, Lagergren and Seese are con-

structive and can be used for the implementation of model-checking tools such as MONA [45]

that directly interpret an MSO-formulation of a problem, or directly compile an MSO-formula

into a solution algorithm. However, in order to obtain more efficient algorithms and better upper

bounds it is currently still advisable to attempt a more detailed ad hoc analysis of the problem

at hand, once the master theorems show us they are FPT. The above FPT-results, for example,

were used by Pichler, Rümmele and Woltran [51] as a starting point for the design of very effec-

tive algorithms and for the derivation of rather low complexity bounds for Multicut problems

on inputs of low treewidth. In the future we may expect new tools that are able to automatically

compile algorithms and bounds of a similar quality. As an intermediate step, we believe that it

is rewarding to replace MSO by equally expressive but much simpler (and better optimizable)

languages for expressing a problem. One such candidate is the monadic fragment of the well-

known Datalog language [11, 10]. It was recently shown in [35] that over structures of bounded

treewidth, when a tree decomposition is provided, monadic Datalog is exactly as expressive as

MSO. As illustrated in [34, 36], many problems of practical relevance can be easily encoded in

monadic Datalog, and special interpreters that execute monadic Datalog programs over struc-

tures of bounded treewidth turned out to be much more efficient than MONA fed with the MSO

formulas that are logically equivalent to those Datalog programs. For a further discussion, see

Section 5 of [34].

3.3 The Even Cycle Problem

The EVEN CYCLE PROBLEM (ECP) is the problem of determining whether a loop-free

undirected graph has an even cycle. The tractability of ECP was open for a long time, until

Carsten Thomassen proved it polynomial [53]. Actually, Thomassen proved the following more

general result regarding the problems mCP of whether a loop-free undirected graph has a cycle

of length 0 modulo m, where m is a fixed positive integer.
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◮ Theorem 11 ([53]). For each integer m > 0, mCP is decidable in polynomial time.

As the following proof outline shows, the proof is according to the pattern of Case 2.a in our

taxonomy.

Proof. (Outline.) First it is shown that on graphs G = (V, E) of bounded treewidth, mCP is

tractable. With Courcelle’s theorem this is very easy; it is sufficient to note that mCP can be

expressed in MSO. (Given that Courcelle’s Theorem was not known, Thomassen gave a slightly

more involved ad hoc proof.)

The second part deals with input graphs of "large" treewidth. It is proven that for each fixed

m, a number t(m) can be determined, such that all graphs of treewidth > t(m) must actually

have a cycle whose length is a multiple of m. Thus, for the specific problem mCP, all instances

of "high" treewidth are actually yes-instances. In particular, it is shown by using Robertson’s and

Seymour’s result [52] that t(m) can always be chosen large enough such that G must contain a

subdivision of a grid H, which, in turn, must contain a cycle whose length is a multiple of m. ◭

In a similar fashion, while classifying the complexity of model checking for all prefix-classes

of existential second-order logic (ESO) over graphs, it was shown in [27] that evaluating fixed

closed formulas of type ∃R1, . . . Rk ∀x∃y φ(V, E, R1, . . . , Rk, x, y) over a loop-free undirected

input graph (V, E), where R1 . . . , Rk are existentially quantified relation symbols of arbitrary

arity, and where φ(V, E, R1, . . . , Rk, x, y) is a quantifier-free first order formula, is feasible in

polynomial time. Note that this generalizes Thomassen’s theorem, given that for each m, the

problem mCP can be expressed by an ESO formula of this type.

4 The Partner Units Problem

In this section, we describe the Partner Units Problem (Pup). First, in Section 4.1, a general

version of the problem is given, which is, however, intractable. In Section 4.2 we describe a special

version of the Pup which is of particular industrial relevance. It is for this special case that we

were able to establish tractability by exploiting the result that all yes-instances must necessarily

have bounded pathwidth (and thus bounded treewidth). It is thus the special case which serves

as a paradigmatic example of a problem in category 2.b of our taxonomy. In Section 4.2.4 we then

report on a prototypical implementation for the special case that already could solve benchmark

instances beyond the reach of the heuristic methods and "engineering approaches" previously used

to solve this problem. This section gives only a short summary; the original work underlying this

section, as well as detailed proofs can be found in [3].

4.1 Definition of the Partner Units Problem and Basic Facts

The Partner Units Problem (Pup) has recently been proposed as a new benchmark configuration

problem [22]. It captures the essence of a specific type of configuration problem that frequently

occurs in industry.

Informally it can be described as follows: Consider a set of sensors that are grouped into

zones. A zone may contain many sensors, and a sensor may be attached to more than one zone.

The Pup consists of connecting the sensors and zones to control units. These control units can

be connected to the same fixed maximum number UnitCap of zones and sensors.2 Moreover, if a

sensor is attached to a zone, but the sensor and the zone are assigned to different control units,

2 For ease of presentation we assume that UnitCap is the same for zones and sensors.
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then the two control units in question have to be (directly) connected. However, a control unit

cannot be connected to more than InterUnitCap other control units (the partner units).

The Pup occurs e.g. in the following application domain: Consider a museum where we want

to keep track of the number of visitors that populate certain parts (zones) of the museum. To

this end the doors leading from one zone to another are equipped with sensors. To keep track of

the visitors the zones and sensors are attached to control units; the adjacency constraints on the

control units ensure that communication between control units can be kept simple. It is worth

pointing out that the Pup is not limited to this application domain: It occurs whenever sensors

that are grouped into zones have to be attached to control units, and communication between

units should be kept simple.

Figure 1 shows a Pup instance and a solution for the case UnitCap = InterUnitCap = 2 —

six sensors (left) and six zones (right) which are completely inter-connected are partitioned into

units (shown as squares) respecting the adjacency constraints. Note that for the given parameters

this is a maximal solvable instance; it is not possible to connect a new zone or sensor to any of

the existing ones.

Figure 1 Solving a K6,6 Partner Units Instance — Partitioning Sensors and Zones into Units

More formally, the Pup consists of partitioning the vertices of a bipartite graph G = (V1, V2, E)

into a set U of bags such that each bag

contains at most UnitCap vertices from V1 and at most UnitCap vertices from V2; and

has at most InterUnitCap adjacent bags where the bags U1 and U2 are adjacent whenever

vi ∈ U1 and vj ∈ U2 and (vi, vj) ∈ E.

To every solution of the Pup we can associate a solution graph. For this we associate to every

bag u ∈ U a vertex u′ ∈ U ′. Then the solution graph G∗ has the vertex set V1 ∪ V2 ∪U ′ and the

set of edges {(v, u′) | v ∈ u ∧ u ∈ U} ∪ {(u′
i, u′

j) | ui and uj are adjacent.}. In the following we

will refer to the subgraph of the solution graph induced by the u′ as the unit graph.

The reasoning tasks for Pup instances that we consider in this paper are the following:

Decide whether there is a solution (Pudp).

Find a solution (Pusp).

Find an optimal solution; i.e. one that uses the minimal number of control units (Puop).

The rationale behind the optimization version is that (a) units are expensive, and (b) connections

are cheap. Especially the case where the maximum number InterUnitCap of connections between

units is limited to two is of great interest for our partners in industry.
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By a reduction from BinPacking it can be shown that Puop is NP-complete [3] when

InterUnitCap = 0, and UnitCap is part of the input. We also observe [3] that a Pup instance has

no solution if it contains K1,n or Kn,1 as a subgraph, where n = ((InterUnitCap+1)∗UnitCap)+1.

4.2 A Special Case: InterUnitCap = 2

We now turn to the announced special case, which consists of Pups where InterUnitCap = 2, i.e.

the number of neighbors of any given unit in a solution is bounded by 2. This special version of

the Pup, which is of high industrial relevance, can be directly tackled. We will do this by giving

an algorithm that decides this version of the Pup in NLogSpace by exploiting the notion of a

path decomposition of a given graph.

For ease of presentation in the sequel we make the simplifying assumption that the underlying

bipartite graph is connected. This does not affect solutions of the Pudp and the Pusp, where

the connected components can be tackled independently. For optimal solutions, however, the

connected components of an underlying graph will have to be considered simultaneously; cf. the

discussion in section 4.2.3.

4.2.1 Basic Properties of the Pup (Special Case)

We proceed by identifying basic properties of the Pup in the special case. The key observation

is that the units and their interconnections form a special kind of unit graph in any solution:

either a simple path, or a simple cycle. This holds because each unit is connected to at most two

partner units. Moreover, cycles are more general unit graphs than paths: Every solution can be

extended to a cyclic solution; hence in the sequel we only consider cyclic solutions.

Exploiting this observation we can transform the Pup into the problem of finding a suitable

path decomposition P of the zones-and-sensors-graph G:

◮ Theorem 12 (Pup is Path-Decomposable). Assume a Pup instance given by a graph G =

(V1, V2, E) is solvable with a solution graph G∗ with |U | = n. Let f be the unit function that

associates vertices from G to U . Then there is a path decomposition P = (P, χ) of G of pathwidth

≤ (3 ∗ 2 ∗UnitCap)− 1, with the following special properties:

(a) The length of P is n− 1; P = w1, . . . wn−1.

(b) There are sets S1 ⊆ V1, S2 ⊆ V2 with |Si| ≤ UnitCap such that S1∪S2 are in every bag of P.

(c) Apart from S1 ∪ S2 each bag contains at most 2 ∗ UnitCap elements from V1 (or V2, respec-

tively).

(d) For any vertex v ∈ V1 ∪V2 all neighbors of v appear in three consecutive bags of P (assuming

the first and last bag to be connected).

(e) For each bag χ(wi) of P it holds χ(wi) = f−1(U1) ∪ f−1(Ui) ∪ f−1(Ui+1) for 1 ≤ i ≤ n− 1.

(f) S1 = f−1(U1) ∩ V1 and S2 = f−1(U1) ∩ V2.

Proof. If G is solvable then there is a solution G∗ whose unit graph is a cycle U1, . . . , Un, U1.

Consider P = (P = w1, . . . , wn−1, χ) where χ(wi) = f−1(U1) ∪ f−1(Ui) ∪ f−1(Ui+1). This P is

indeed a path decomposition:

Every edge (v1, v2) is in some bag. Assume v1 and v2 are assigned to two different connected

units Ui and Ui+1. Then {v1, v2} ⊆ χ(wi).

The connectedness condition is satisfied: For the vertices connected to unit U1 the induced

subgraph is P . All other vertices occur in at most two consecutive bags.

Every bag in P contains ≤ (3 ∗ 2 ∗UnitCap) elements; hence pw(P) ≤ (3 ∗ 2 ∗UnitCap)− 1.

An optimal path decomposition of the complete bipartite graph Kn,n with n = 3 ∗UnitCap has

width (3 ∗ 2 ∗ UnitCap) − 1; cf. figure 1. Hence the bound is tight. The conditions (a − f) are

easily seen to hold for the path decomposition P constructed above. ◭
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Intuitively, the vertices in the sets S1 and S2 from condition (b) above are those that close

the cycle (i.e. that are connected to unit U1). These have to be in every bag as some of their

neighbors might only appear on the last unit Un.

4.2.2 An Algorithm for the Special Case

By Theorem 12 we know that if a Pup instance is solvable then there is a path decomposition with

specific properties. But we still need an algorithm for finding such suitable path decompositions.

Many algorithms for finding path decompositions of bounded width have been proposed in the

literature. But for the Pup we want to find path decompositions P with specific properties:

The paths should be short (the number of bags reflects the number of units); and hence,

The bags should be rather full (in "good" solutions the units will be filled up).

The construction of the bags must be interleaved with checking the additional constraints.

Below we introduce a novel algorithm that fits the bill; it is inspired by the algorithm for

finding hypertree decompositions from [24]. This non-deterministic algorithm does the following:

The bags on the path decomposition are guessed. The initial bag partitions the graph into a set of

remaining components that are recursively processed simultaneously. A single bag suffices to re-

member which part of the graph has already been processed; the bag separates the processed part

of the graph from the remaining components. Consequently, the current bag and the remaining

components can be stored in in logarithmic space, and the algorithm runs in NLogSpace. In

addition to the bags the unit function is guessed, too. According to condition (2d) of Theorem 12

all neighbors of any vertex in G occur in three consecutive bags in P. Hence, for checking locally

that the unit function is correct it suffices to remember three bags at each step.

A closer look reveals that it actually is enough to remember only U1 and two "first" and

"second" units Ui−1 and Ui. At each step the current bag’s content is then given by the union

of U1 with Ui−1 ∪ Ui. For the next step a third unit Ui+1 is guessed. All neighbors of vertices

assigned to the current second unit Ui are guaranteed to appear in Ui−1 ∪ Ui ∪ Ui+1. For the

current first unit Ui−1 this will already have been established (if i > 2); hence, in the next step

the new current first and second unit Ui and Ui+1 together with U1 are again a proper separator.

The neighbors of U1, however, are only guaranteed to appear somewhere on the first, second, or

last unit. Upon termination the current "second" unit is the last unit in the cycle. But in addition

to the first unit U1 the second unit U2 has to be stored throughout a run of the algorithm, too:

DecidePup(G)

1 Guess disjoint non-empty U1, U2 ⊆ V (G) with |Ui ∩ V1| ≤ UnitCap ≥ |Ui ∩ V2|

2 CR ← G \ (U1 ∪ U2)

3 if DecidePup (CR, 〈U1, U2〉, 〈U1, U2〉)

4 then ACCEPT

5 else REJECT
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DecidePup(CR, 〈U1, U2〉, 〈Ui−1, Ui〉)

1 if CR = ∅

2 then

3 if ∀v ∈ U1 nb(v) ⊆ U1 ∪ U2 ∪ Ui and

∀v ∈ Ui nb(v) ⊆ Ui−1 ∪ Ui ∪ U1

4 then ACCEPT

5 else REJECT

6 else

7 Guess non-empty Ui+1 ⊆ V (
⋃

CR) with |Ui+1 ∩ V1| ≤ UnitCap ≥ |Ui+1 ∩ V2|

8 For v ∈ Ui check nb(v) ⊆ (Ui−1 ∪ Ui ∪ Ui+1)

9 C ′
R ← (CR \ Ui+1)

10 DecidePup (C ′
R, 〈U1, U2〉, 〈Ui, Ui+1〉)

Using this algorithm in [3] we show the following:

◮ Theorem 13 (Tractability of Pudp). The decision problem for the Pup is solvable by the algo-

rithm DecidePup in NLogSpace for InterUnitCap = 2 and any given fixed value of UnitCap.

Answer Extraction

For actually obtaining a solution to a Pup instance we face the following problem: In general

it is not possible to remember the contents of all the bags in logarithmic space. Theoretically

this problem can be solved as follows: On a first accepting run of DecidePup we clearly can

remember the first bag’s contents in logarithmic space. We can then run DecidePup again with

a fixed first bag, and so forth. Hence the following holds:

◮ Theorem 14 (Tractability of Pusp). The problem of finding a solution to the Pup is solvable

in NLogSpace for InterUnitCap = 2 and any given fixed value of UnitCap.

Note that the problem of answer extraction disappears when actually implementing the non-

deterministic algorithm on a deterministic computer; cf. section 4.2.4.

Towards an Efficient Algorithm

We next make a number of observations that can be exploited to turn DecidePup into a prac-

tically efficient algorithm.

Guiding the Guessing Not all zones and sensors assigned to units have to be chosen randomly.

At most UnitCap neighbors of sensors and zones on the first unit can be assigned to the last

unit. Hence the following holds:3

|nbs(U1) \ (U1 ∪ U2)| ≤ UnitCap ≥ |nbz(U1) \ (U1 ∪ U2)|.

Moreover, the neighbors of U1 not assigned to U1 or U2 may only be guessed in the last step,

where the number of unprocessed sensors (or zones) is at most UnitCap.

Starting from i ≥ 2 we have the stronger:

(nbs(Ui) \ (Ui ∪ Ui−1)) ⊆ Ui+1 ⊇ (nbz(Ui) \ (Ui ∪ Ui−1)).

Finding Optimal Solutions First Next recall that "good" solutions correspond to short path

decompositions with filled-up bags. Moreover, the number of units used in the solution of a

3 We denote by nbs(U) the set of sensors adjacent to vertices in U .
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Pup instance G = (V1, V2, E) can always be bounded by lb = ⌈max (|V1|,|V2|)
UnitCap

⌉ from below and

ub = max (|V1|, |V2|) from above [3]. Hence we can apply iterative deepening search: First, try

to find a solution with lb units; if that fails increase lb by one. This has the effect that the first

solution found will be optimal. This yields the following:

◮ Corollary 15 (Tractability of Puop). On connected input graphs the optimization problem for

the Pup is solvable in NLogSpace.

In this context let us point out that branch-and-bound-search (on the number of units used)

does not work: E.g. a K6,6 graph does not admit solutions with more than three units.

Symmetry Breaking We already observed that cycles are more general unit graphs than paths.

But with cycles for unit graphs there is rotational symmetry: For a solution with unit graph

U1, . . . , Un, U1 there is a solution U2, . . . , Un, U1, U2, etc.. We can break this symmetry without

additional computational cost by requiring that

the first sensor is assigned to unit U1; and

the second sensor appears somewhere on the first half of the cycle.

4.2.3 Puop and Multiple Connected Components

Next let us discuss the problem of finding optimal solutions when the input graph consists of more

than one connected component. Here, part of the problem is that any two connected components

may either have to be assigned to the same, or to two distinct unit graph(s). A priori it is unclear

which of the two choices leads to better results. E.g. if we assume that UnitCap = 2 then two

K3,3 should be placed on one cyclic unit graph, while two K6,6 must stand alone. In [3] we are

able to show the following:

◮ Theorem 16 (Tractability of Puop on Multiple Connected Components). For InterUnitCap = 2

and any given value of UnitCap the optimization problem for the Pup on multiple connected com-

ponents is solvable in NLogSpace if there are only logarithmically many connected components

in the input graph.

4.2.4 Implementation and Evaluation

We prototypically implemented the DecidePup algorithm in Java, replacing the non-determinism

by a backtracking search mechanism. A detailed description of the procedure is beyond the scope

of this paper. However, in [25] a deterministic backtracking version of the non-deterministic hy-

pertree decomposition algorithm from [24] is described, and the issues we face when making

DecidePup deterministic are very similar. Suffice it to say the following: To avoid repeated

sub-computations we store those pairs of bags and remaining components (represented by unas-

signed neighbors) that could not be decomposed. We don’t store successful pairs — the first such

pair occurs when finding a solution. As there are only polynomially many such pairs the overall

runtime of the algorithm is polynomial [3]. Finally observe that for the backtracking search we

have to store the choices made, and hence answer extraction is easy.

We have evaluated our algorithm on a set of benchmark instances that we received from our

partners in industry. Using our prototypical implementation we could solve many instances that

were beyond the reach of the previously used heuristic methods and engineering approaches [3].

5 Conclusion

In this work we have reviewed structural problem decomposition methods, such as path-, tree-,

and hypertree decompositions. We have introduced a taxonomy of usages of treewidth for proving

tractability results, and illustrated each category by an example. In particular, we have shown
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that treewidth (or pathwidth) can be applied in two distinct main ways: Either to show that a

problem is efficiently solvable when a width parameter is fixed, or to prove that the unrestricted

(or some width-parameter free) version of a problem is tractable by using a width-notion as a

mathematical tool for directly solving the problem at hand.

As a show case for the latter usage we have reported on some recent results concerning

the Partner Units Problem, a type of configuration problem that was proposed to us by an

industrial partner. We have shown that, while the Pup is intractable in general, the notion of a

path decomposition can be used to obtain a polynomial algorithm for a highly relevant special

case. Our prototypical implementation of the respective DecidePup algorithm could solve many

previously unsolvable problem instances.

There is still significant work to be done on the Pup:

We need to analyze the cases with InterUnitCap = k and UnitCap = m for fixed constants

k > 2, m.

We would like to find better algorithms for the NP-hard general case (when InterUnitCap

and UnitCap are unbounded).

We have not yet exploited heuristics for the search.
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