
HAL Id: hal-00573590
https://hal.science/hal-00573590

Submitted on 4 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to prove security of communication protocols? A
discussion on the soundness of formal models w.r.t.

computational ones.
Hubert Comon-Lundh, Véronique Cortier

To cite this version:
Hubert Comon-Lundh, Véronique Cortier. How to prove security of communication protocols? A
discussion on the soundness of formal models w.r.t. computational ones.. Symposium on Theoretical
Aspects of Computer Science - STACS2011, Mar 2011, Dortmund, Germany. pp.29-44. �hal-00573590�

https://hal.science/hal-00573590
https://hal.archives-ouvertes.fr

How to prove security of communication

protocols?

A discussion on the soundness of formal models

w.r.t. computational ones.∗

Hubert Comon-Lundh1 and Véronique Cortier2

1 ENS Cachan& CNRS & INRIA Saclay Ile-de-France

2 LORIA, CNRS

Abstract

Security protocols are short programs that aim at securing communication over a public network.

Their design is known to be error-prone with flaws found years later. That is why they deserve

a careful security analysis, with rigorous proofs. Two main lines of research have been (indepen-

dently) developed to analyse the security of protocols. On the one hand, formal methods provide

with symbolic models and often automatic proofs. On the other hand, cryptographic models

propose a tighter modeling but proofs are more difficult to write and to check. An approach

developed during the last decade consists in bridging the two approaches, showing that sym-

bolic models are sound w.r.t. symbolic ones, yielding strong security guarantees using automatic

tools. These results have been developed for several cryptographic primitives (e.g. symmetric

and asymmetric encryption, signatures, hash) and security properties.

While proving soundness of symbolic models is a very promising approach, several technical

details are often not satisfactory. Focusing on symmetric encryption, we describe the difficulties

and limitations of the available results.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Verification, security, cryptography

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.29

1 Introduction

Security protocols aim at securing communications over public networks. They are typically

designed for bank transfers over the Internet, establishing private channels, or authenticat-

ing remote sites. They are also used in more recent applications such as e-voting procedures.

Depending on the application, they are supposed to ensure security properties such as confi-

dentiality, privacy or authentication, even when the network is (at least partially) controlled

by malicious users, who may intercept, forge and send new messages. While the specifi-

cation of such protocols is usually short and rather natural, designing a secure protocol is

notoriously difficult and flaws may be found several years later. A famous example is the

“man-in-the-middle” attack found by G. Lowe against the Needham-Schroder public key

protocol [41]. A more recent example is the flaw discovered in Gmail (and now fixed) by

Armando et. al. [9].

∗ This work has been supported by the ANR-07-SeSur-002 AVOTÉ project.

© Hubert Comon-Lunch, Véronique Cortier;
licensed under Creative Commons License NC-ND

28th Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr; pp. 29–44

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.29
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30 How to prove security of communication protocols?

During the two last decades, formal methods have demonstrated their usefulness when

designing and analyzing security protocols. They indeed provide with rigorous frameworks

and techniques that allow to discover new flaws. For instance, the two previously mentioned

flaws have been discovered while trying to prove the security of the protocol in a formal

setting. Following the seminal work of Dolev and Yao [33], many techniques have been

developed for analysing the security of protocols, often automatically. For example, the

AVISPA platform [8] and the ProVerif tool [20] are both efficient and practical tools for

automatically proving security properties or finding bugs if any. The security of protocols

is undecidable in general [34]. Checking the secrecy and authentication-like properties is

however NP-complete when the number of sessions is fixed [44]. Several extensions have been

designed, considering more security properties or more security primitives [2, 25, 28, 24, 37].

Bruno Blanchet has developed an (incomplete) procedure based on clause resolution [19] for

analyzing protocols for an unbounded number of sessions. All these approaches rely on a

common representation for messages: they are symbolically modeled by terms where each

function symbol represents a cryptographic primitive, some of their algebraic properties

being reflected in an equational theory. Then protocols are modeled using or adapting

existing frameworks such as fragments of logic, process algebras or constraint systems.

While the symbolic approaches were successful in finding attacks, the security proofs

in these models are questionable, because of the level of abstraction: most cryptographic

details are ignored. This might be a problem: for instance, it is shown in [45] that a protocol

can be proved in a formal, symbolic, model, while there is an attack, that also exploits

some finer details of the actual implementation of the encryption scheme. In contrast,

cryptographic models are more accurate: the security of protocols is based on the security

of the underlying primitives, which in turn is proved assuming the hardness of various

computational tasks such as factoring or computing discrete logarithms. The messages are

bitstrings. The proofs in the computational model imply strong guarantees (security holds

in the presence of an arbitrary probabilistic polynomial-time adversary). However, security

reductions for even moderately-sized protocols become extremely long, difficult, and tedious.

Recently, a significant research effort [6, 43, 13, 15, 11, 26] has been directed towards bridging

the gap between the symbolic and the cryptographic approaches. Such soundness results

typically show that, under reasonable cryptographic assumptions such as IND-CCA2 for the

encryption scheme, proofs in symbolic models directly imply proofs in the more detailed

cryptographic models. These approaches are very promising: they allow to reconcile two

distinct and independently developed views for modeling and analysing security protocols.

Second and more importantly, they allow to obtain the best of the two worlds: strong

security guarantees through the simpler symbolic models, that are amenable to automatic

proofs.

However, such soundness results also assume many other properties regarding the imple-

mentation or even regarding the key infrastructure. In this paper, we discuss these usually

under-looked assumptions, pointing the limitations of current results. In particular, we pro-

vide with several protocols (counter) examples, for which IND-CCA2 does not imply the

security, as soon as a malicious user may chose its own keys at its will. These examples

show that standard symbolic models are not sound w.r.t. cryptographic ones when using

symmetric encryption. We also discuss how to symbolically represent the length of mes-

sages and what are the implications on the implementation. All these examples will be

discussed within the the applied-pi calculus [3], but the counter-examples do not depend on

this particular process algebra: the discussion will stay at a rather informal level and can

be understood without familiarity with the applied-pi calculus.

Hubert Comon-Lundh and Véronique Cortier 31

Related work. Many soundness results have been established in various settings. We

discuss some of them in Section 3. Fewer works are dedicated to the limitations. Backes

and Pfitzmann have shown that primitives such as Exclusive Or or hash functions cannot

be soundly abstracted in their simulatability library [14]. This is related to the impossibility

of constructing some universally composable primitives [40]. This witnesses the difficulty of

designing sound and accurate models for some primitives. [1] compares CryptoVerif [21], an

automatic tool designed for performing proofs directly in the cryptographic model, and the

use of soundness results, emphasizing the current limitations of the latter.

2 Setting

We recall here briefly part of the syntax and the operational semantics of the applied π-

calculus of [3]. We are going to use a small fragment of this calculus for the formal definition

of the protocols.

2.1 Syntax

In any symbolic model for security protocols, messages are modeled by terms, which are built

on a set of function symbols Σ, that represent the cryptographic primitives (e.g. encryption,

pairing, decryption). Given an infinite set N of names and an infinite set X of variables,

T (N , X) is the set of terms:

s, t, u ::= terms

x, y, z variable

a, b, c, k, n, r name

f(s1, . . . , sk) function application f ∈ Σ and k is the arity of f .

Terms represent messages and names stand for (randomly) generated data. We assume

the existence of a length function l, which is a Σ-morphism from T (N) to N.

In what follows, we will consider symmetric encryption and pairing. Let Σ0 consist of

the binary pairing < ·, · >, the two associated projections π1, π2, the binary decryption dec

and the ternary symbol {·}·

·
for symmetric encryption: {x}r

k stands for the encryption of x

with the key k and the random r. Σ0 also contains constants, in particular a constant 0l of

length l for every l.

The syntax of processes is displayed in Figure 1. In what follows, we restrict ourselves

to processes with public channels: there is no restriction on name channel. We assume

a set P of predicate symbols with an arity. Such a definition, as well as its operational

semantics coincides with [3], except for one minor point introduced in [26]: we consider

conditionals with arbitrary predicates. This leaves some flexibility in modeling various levels

of assumptions on the cryptographic primitives.

In what follows, we may use expressions of the form let . . . in . . . as a syntactic sugar

to help readability.

2.2 Operational semantics

We briefly recall the operational semantics of the applied pi-calculus (see [3, 26] for details).

E is a set of equations on the signature Σ, defining an equivalence relation =E on T (N),

which is closed under context. =E is meant to capture several representations of the same

message. This yields a quotient algebra T (N)/ =E , representing the messages. Predicate

symbols are interpreted as relations over T (N)/ =E . This yields a structure M.

STACS’11

32 How to prove security of communication protocols?

Φ1, Φ2 ::= conditions

p(s1, . . . , sn) predicate application

Φ1 ∧ Φ2 conjunction

P, Q, R ::= processes

c(x).P input

c(s).P output

0 terminated process

P ‖ Q parallel composition

!P replication

(να)P restriction

if Φ then P else Q conditional

Figure 1 Syntax of processes

In what follows, we will consider the equational theory E0 on Σ0 defined by the equations

corresponding to encryption and pairing:

dec({x}z
y, y) = x π1(< x, y >) = x π2(< x, y >) = y

These equations can be oriented, yielding a convergent rewrite system: every term s has

a unique normal form s ↓.

We also consider the following predicates introduced in [26].

M checks that a term is well formed. Formally, M is unary and holds on a (ground)

term s iff s ↓ does not contain any projection nor decryption symbols and for any {u}r
v

subterm of s, v and r must be names. This forbids compound keys for instance.

EQ checks the equality of well-formed terms. EQ is binary and holds on s, t iff M(s), M(t)

and s ↓= t ↓: this is a strict interpretation of equality.

Psamekey is binary and holds on ciphertexts using the same encryption key: M |= Psamekey(s, t)

iff ∃k, u, v, r, r′.EQ(s, {u}r
k) ∧ EQ(t, {v}r′

k).

EL is binary and holds on s, t iff M(s), M(t) and s, t have the same length.

◮ Example 2.1. The Wide Mouth Frog [22] is a simple protocol where a server transmits a

session key Kab from an agent A to an agent B. This toy example is also used in [1] as a

case study for both CryptoVerif and soundness techniques. For the sake of illustration, we

propose here a flawed version of this protocol.

A → S : A, B, {Na, Kab}Kas

S → B : A, {Ns, Kab}Kbs

The server is assumed to share long-term secret keys with each agent. For example, Kas

denotes the long-term key between A and the server. In this protocol, the agent A establishes

a freshly generated key Kab with B, using the server for securely transmitting the key to B.

A session la of role A played by agent a with key kas can be modeled by the process

A(a, b, kas, la)
def
= (νr, na) cout(< la, < a, < b, {< na, kab >}r

kas
>>>) · 0

Hubert Comon-Lundh and Véronique Cortier 33

Similarly a session of role S played for agents a, b with corresponding keys kas and kbs, can

be modeled by

S(a, b, kas, kbs, ls)
def
= (νns, r) cin(x). if EQ(π1(x), ls) then let y = π2(dec(π2(π2(π2(x))), kas)) in

if π1(π2(x)) = a ∧ π1(π2(π2(x)) = b ∧ M(y) then

cout(< ls, < a, {< ns, y >}r
kbs

> >) · 0

else cout(⊥) · 0 else cout(⊥) · 0

where ls is the session identifier of the process.

Then an unbounded number of sessions of this protocol, in which A plays a (with b) and

s plays S (with a, b and also with b, c) can be represented by the following process

Pex = ν(kas, kbs) (!((νkab, la)cout(la).A(a, b, kas, la, r))

‖ !((νls)cout(ls).S(a, b, kas, kbs, ls)) ‖ !((νls)cout(ls).S(a, c, kas, kcs, ls)))

To reflect the fact that c is a dishonest identity, its long-term key kcs shared with the server

does not appear under a restriction and is therefore known to an attacker.

The environment is modeled through evaluation context, that is a process C = (να)([·]‖P)

where P is a process. We write C[Q] for (να)(Q ‖ P). A context (resp. a process) C is

closed when it has no free variables (there might be free names).

Possible evolutions of processes are captured by the relation →, which is the smallest

relation, compatible with the process algebra and such that:

(Com) c(x).P ‖ c(s).Q → {x 7→ s} ‖ P ‖ Q

(Cond1) if Φ then P else Q → P if M |= Φ

(Cond2) if Φ then P else Q → Q if M 6|= Φ

∗

−→ is the smallest transitive relation on processes containing −→ and some struc-

tural equivalence (e.g. reflecting the associativity and commutativity of the composition

operator ‖) and closed by application of contexts.

◮ Example 2.2. Continuing Example 2.1, we show an attack, that allows an attacker to

learn kab, the key exchanged between a and b. Indeed, an attacker can listen to the first

message < la, < a, < b, {< na, kab >}r1

kas
>>> and replace it with < la, < a, < c, {<

na, kab >}r1

kas
>>>. Thus the server would think that a wishes to transmit her key kab to

c. Therefore it would reply with < a, {< ns, kab >}r2

kcs
>. The attacker can then very easily

decrypt the message and learn Kab. This attack corresponds to the context

Cattack
def
= [·] ‖ cout(xla

).cout(xls
).cout(xma

). //listens to sessions ids and the first message

let y = π2(π2(xma
)) in

cin(< xls
, < a, < c, y >>>). //replays the message, with b replaced by c

cout(xms
). //listens to the server’s reply

let y′ = dec(π2(π2(xms
)), kcs) in cin(π2(y′)).0 //outputs the secret

Then the attack is reflected by the transitions Cattack[Pex]
∗

−→ cout(kab) ‖ Q for some process

Q, yielding the publication of the confidential key kab.

STACS’11

34 How to prove security of communication protocols?

2.3 Observational equivalence

Observational equivalence is useful to describe many properties such as confidentiality or

authentication as exemplified in [5]. It is also crucial for specifying privacy related properties

as needed in the context of electronic voting protocols [32].

◮ Definition 2.3. The observational equivalence relation ∼o is the largest symmetric relation

S on closed extended processes such that ASB implies:

1. if, for some context C, term s and process A′,

A
∗

−→ C[c(s) · A′] then for some context C ′, term s′ and process B′, B
∗

−→ C ′[c(s′) · B′].

2. if A
∗

−→ A′ then, for some B′, B
∗

−→ B′ and A′SB′

3. C[A]SC[B] for all closed evaluation contexts C

◮ Example 2.4 (Group signature). The security of group signature has been defined in [7].

It intuitively ensures that an attacker should not be able to distinguish two signatures per-

formed with two distinct identities when they belong to the same group. It can be modeled

as observational equivalence as follows. Let P (x, i) be the protocol for signing message x

with identity i. Let P0 = c(y).P (π1(y), π1(π2(y))) and P1 = c(y).P (π1(y), π2(π2(y))). In-

tuitively, the adversary will send < m, < i0, i1 >> where m is a message to be signed and

i0, i1 are two identities. P0 signs m with i0 while P1 signs m with i1. Then P preserves

anonymity iff P0 ∼o P1.

2.4 Computational interpretation

We assume given an encryption scheme (G, E , D) where G is the generating function for

keys, E is the encryption function and D the decryption function. We also assume given a

pairing function. The encryption, decryption, and pairing functions and their corresponding

projectors form respectively the computational interpretation of the symbols {·}, dec, <, >

, π1, π2. We assume that the decryption and projection functions return an error message ⊥

when they fail. Then, given an interpretation τ of names as bitstrings, [[·]]τ is the (unique)

Σ-morphism extending τ to T (N); [[t]]τ is the computational interpretation of t. When τ is

randomly drawn, according to a distribution that depends on a security parameter η, we

may write [[t]]η for the corresponding distribution and [[t]] for the corresponding family of

distributions. Then here are possible interpretations of the predicates:

[[M]] is the set of bitstrings, which are distinct from ⊥. Intuitively [[M]] implements M

if the encryption scheme is confusion-free (a consequence of INT-CTXT [42]).

[[EQ]] is the set of pairs of identical bitstrings, which are distinct from ⊥. It is an

implementation of EQ as soon as [[M]] implements M .

[[Psamekey]] is the set of pairs of bitstrings that have the same encryption tag.

[[EL]] is the set of pairs of bitstrings of same length.

Processes can also be interpreted as communicating Turing machines. Such machines

have been introduced in [16, 38] for modeling communicating systems. They are probabilistic

Turing machines with input/output tapes. Those tapes are intuitively used for reading and

sending messages. We will not describe them here and we refer to [26] for more details.

Now, given a process P without replication, one can interpret it as a (polynomial time)

communicating Turing machine. The computational interpretation of P is denoted by [[P]]

and is intuitively defined by applying the computational counterpart of each function and

Hubert Comon-Lundh and Véronique Cortier 35

predicate symbols. Then the replicated process !P can also be interpreted by letting the

adversary play with as many copies of [[P]] as he wants.

Indistinguishability. In computational models, security properties are often stated as in-

distinguishability of games. Two families of machines are indistinguishable if an adversary

cannot tell them apart except with non negligible probability.

A function f : N → N is negligible if, for every polynomial P , ∃N ∈ N, ∀η > N, f(η) <
1

P (η) . We write Pr{x : P (x)} the probability of event P (x) when the sample x is drawn

according to an appropriate distribution (the key distribution or the uniform distribution;

this is kept implicit).

◮ Definition 2.5. Two environments F and F ′ are indistinguishable, denoted by F ≈ F ′,

if, for every polynomial time communicating Turing Machine A (i.e. for any attacker),

|Pr{r, r : (F(r) ‖ A(r))(0η) = 1} − Pr{r, r : (F ′(r) ‖ A(r))(0η) = 1}|

is negligible. r is the sequence of random inputs of the machines in F (resp. F ′), including

keys. r is the random input of the attacker.

For example, anonymity of group signatures as discussed in Example 2.4 is defined in [7]

through the following game: the adversary chooses a message m and two identities i0 and

i1. Then in F0, the machines sign m with identity i0 while in F1, the machines sign m with

identity i1. Then the anonymity is defined by F0 ≈ F1. Note that, for i = 1, 2, Fi can be

defined as [[Pi]], implementation of the process Pi of the Example 2.4.

More generally, security properties can be defined by specifying the ideal behavior Pideal of

a protocol P and requiring that the two protocols are indistinguishable. For example, in [4],

authenticity is defined through the specification of a process where the party B magically

received the message sent by the party A. This process should be indistinguishable from the

initial one.

3 Soundness results

Computational models are much more detailed than symbolic ones. In particular, the adver-

sary is very general as it can be any (polynomial) communicating Turing machine. Despite

the important difference between symbolic and computational models, it is possible to show

that symbolic models are sound w.r.t. computational ones.

3.1 A brief survey

There is a huge amount of work on simulatability/universal composability, especially the

work of Backes et. al. and Canetti [23, 13, 15, 11]. When the ideal functionality is the

symbolic version of the protocol, then the black-box simulatability implies the trace mapping

property [11], therefore showing a safe abstraction. Such results can be applied to trace

properties such as authentication but not to indistinguishability. In a recent paper [12],

Backes and Unruh show that the whole applied-pi calculus can be embedded in CoSP, a

framework in which they prove soundness of public-key encryption and digital signatures,

again for trace properties.

Besides [26], which we discuss in more detail below, one of the only results that prove

soundness for indistinguishability properties is [39], for some specific properties (see the end

of section 4 for more details).

STACS’11

36 How to prove security of communication protocols?

In a series of papers starting with Micciancio and Warinschi [43] and continued with e.g.

[31, 36], the authors show trace mapping properties: for some selected primitives (public-key

encryption and signatures in the above-cited papers) they show that a computational trace

is an instance of a symbolic trace, with overwhelming probability. But, again, this does not

show that indistinguishability properties can be soundly abstracted, except for the special

case of computational secrecy that can be handled in [31] and also in [29] for hash functions

in the random oracle model.

We refer to [30] for a more complete survey of soundness results.

3.2 Observational equivalence implies indistinguishability

The main result of [26] consists in establishing that observational equivalence implies indis-

tinguishability:

◮ Theorem 3.1. Let P1 and P2 be two simple processes such that each Pi admits a key

hierarchy. Assume that the encryption scheme is joint IND-CPA and INT-CTXT. Then

P1 ∼o P2 implies that [[P1]] ≈ [[P2]].

This result assumes some hypotheses, some of which are explicitly stated above and

informally discussed below (the reader is referred to [26] for the full details). There are

additional assumptions, that are discussed in more details in the next section.

Simple processes are a fragment (introduced in [26]) of the applied-pi calculus. It intuitively

consists of parallel composition of (possibly replicated) basic processes, that do not involve

replication, parallel composition or else branches. Simple processes capture most protocols

without else branch, for an unbounded number of sessions. For example, the process Pex

introduced in Example 2.1 is a basic process.

The most annoying restriction is the absence of conditional branching. Ongoing works

should overcome this limitation, at the price of some additional computational assumptions.

But the extension to the full applied π-calculus is really challenging, because of possible

restrictions on channel names. Such restrictions indeed allow “private” computations, of

which an attacker only observes the computing time (which is not part of the model).

Key hierarchy ensures that no key cycles can be produced on honest keys, even with the

interaction of the adversary. This hypothesis is needed because current security assumptions

such as IND-CPA do not support key cycles (most encryption schemes are not provably

secure in the presence of key cycles). In [26], it is assumed that there exists a strict ordering

on key such that no key encrypts a greater key.

Checking such conditions, for any possible interaction with the attacker, is in general

undecidable, though a proof can be found in many practical cases. (And it becomes decid-

able when there is no replication [27]).

No dynamic corruption assumes that keys are either immediately revealed (e.g. corrupted

keys) or remain secret. Showing a soundness result in case of dynamic key corruption is

a challenging open question, that might require stronger assumptions on the encryption

scheme.

IND-CPA and INT-CTXT are standard security assumptions on encryption schemes. The

IND-CPA assumption intuitively ensures that an attacker cannot distinguish the encryption

of any message with an encryption of zeros of the same length. INT-CTXT ensures that an

Hubert Comon-Lundh and Véronique Cortier 37

adversary cannot produce a valid ciphertext without having the encryption key. IND-CPA

and INT-CTXT are standard security assumptions [18].

4 Current limitations

We discuss in this section the additional assumptions of Theorem 3.1. Let us emphasize

that such assumptions are not specific to this result: other soundness results have similar

restrictions and/or provide with a weaker result.

4.1 Parsing

Parsing the bitstrings into terms is used in the proof of the soundness results; this function

has actually to computable in polynomial time, since this is part the construction of a

Turing machine used in a reduction. Therefore, Theorem 3.1 assumes that the pairing, key

generation and encryption functions add a typing tag (which can be changed by the attacker),

that indicates which operator has been used and further includes which key is used in case of

encryption. This can be achieved by assuming that a symmetric key k consists of two parts

(k1, k2), k1 being generated by some standard key generation algorithm and k2 selected at

random. Then one encrypts with k1 and tags the ciphertext with k2.

These parsing assumptions are easy to implement and do not restrict the computational

power of an adversary. Adding tags can only add more security to the protocol. However,

current implementations of protocols do not follow these typing hypotheses, in particular

regarding the encryption. Therefore Theorem 3.1 requires a reasonable but non standard

and slightly heavy implementation in order to be applicable.

The parsing assumption might be not necessary. There are ongoing works trying to drop

it.

4.2 Length function

As explained in Section 2, Theorem 3.1 assumes the existence of a length function l, which

is a morphism from T (N) to N. This length function is needed to distinguish between

ciphertexts of different lengths. For example, the two ciphertext {< n1, n2 >}k and {n1}k

should be distinguishable while {< n1, n2 >}k and {< n1, n1 >}k should not. There are

however cases where it is unclear whether the ciphertexts should be distinguishable or not:

νk.cout({< n1, n2 >}k)
?

∼o νk.cout({{n1}k}k).

Whether these two ciphertexts are distinguishable typically depends on the implementation

and the security parameter: their implementation may (or not) yield bitstrings of equal

length. However, for a soundness result, we need to distinguish (or not) these ciphertexts

independently of the implementation.

In other words, if we let length be the length of a bitstring, we (roughly) need the equivalence:

l(s) = l(t) iff ∀τ. length([[s]]τ) = length([[t]]τ)

This requires some length-regularity of the cryptographic primitives. But even more,

this requires length to be homogenous w.r.t. the security parameter η. To see this, consider

the case where length is an affine morphism:

length([[{t1}r
k]]τ) = length([[t1]]τ) + γ × η + α

length([[< t1, t2 >]]τ) = length([[t1]]τ) + length([[t2]]τ) + β

length(τ(n)) = δ × η

STACS’11

38 How to prove security of communication protocols?

where β cannot be null since some bits are needed to mark the separators between the two

strings [[t1]] and [[t2]]. (Also, γ, δ > 0.)

Now, if we consider an arbitrary term t, length([[t]]τ) = n1×γ×η+n1×α+n2×β+n3×δ×η.
length([[s]]τ)
length([[t]]τ) must be independent of η, hence there must exist α′, β′ ∈ N, β′ > 0 such that

α = α′ × η and β = β′ × η .

This implies in particular that the pairing function always adds η bits (or a greater

multiple of η) to the bitstrings. Similarly, a ciphertext should be the size of its plaintext

plus a number of bits which is the a multiple of η.

While it is possible to design an implementation that achieves such constraints, this is

not always the case in practice and it may yield a heavy implementation, in particular in

conjunction with the parsing assumptions. Moreover, on the symbolic side, adding a length

function raises non trivial decidability issues.

Adding a symbolic length function is needed for proving indistinguishability as illustrated

by the former examples. It is worth noticing that several soundness results such as [13, 15,

31, 29, 12] do not need to consider a length function. The reason is that they focus on

trace properties such as authentication but they cannot considered indistinguishability-based

properties (except computational secrecy for some of them).

4.3 Dishonest keys

Theorem 3.1 assumes the adversary only uses correctly generated keys. In particular, the

adversary cannot choose his keys at its will, depending on the observed messages. The

parties are supposed to check that the keys they are using have been properly generated.

The assumption could be achieved by assuming that keys are provided by a trusted server

that properly generates keys together with a certificate. Then when a party receives a key,

it would check that it comes with a valid certificate, guaranteeing that the key has been

issued by the server. Of course, the adversary could obtain from the server as many valid

keys as he wants.

However, this assumption is strong compared to usual implementation of symmetric keys

and it is probably the less realistic assumptions among those needed for Theorem 3.1. We

discuss alternative assumptions at the end of this section. It is worth noticing that in all

soundness results for asymmetric encryption, it is also assumed that the adversary only uses

correctly generated keys. Such an assumption is more realistic in an asymmetric setting as a

server could certify public keys. However, this does not reflect most current implementations

for public key infrastructure, where agents generate their keys on their own.

We now explain why such an assumption is needed to obtain soundness.The intuitive

reason is that IND-CCA does not provide any guarantee on the encryption scheme when

keys are dishonestly generated.

◮ Example 4.1. Consider the following protocol. A sends out a message of the form {c}Kab

where c is a constant. This can be formally represented by the process

A = (νr)cout(< c, {c}r
kab

>).0

Then B expects a key y and a message of the form {{b}y}Kab
where b is the identity of B,

in which case, it sends out a secret s (or goes in a bad state).

A → B : (νr) c, {c}r
Kab

B : k, {{b}k}Kab
→ A : s

Hubert Comon-Lundh and Véronique Cortier 39

This can be formally modeled by the process

B = cin(z). if EQ(b, dec(dec(π2(z), kab), π1(z)) then cout(s) else 0

Then symbolically, the process (νkab)(νs)A‖B never emits s. However, a computational

adversary can forge a key k such that any bitstring can be successfully decrypted to b

using k. In particular, at the computational level, we have dec(c, k) = b. Thus by sending

< k, {c}r
kab

> to B, the adversary would obtain the secret s.

This is due to the fact that security of encryption schemes only provides guarantees on

properly generated keys. More precisely, given an IND-CCA2 (authenticated) encryption

scheme (G, E , D), it is easy to build another IND-CCA2 (authenticated) encryption scheme

(G′, E ′, D′), which allows to mount the previous attack: consider G′ = 0 · G (all honest keys

begin with the bit 0), E ′(m, i.k) = E(m, k) for i ∈ {0, 1} and D′ defined as follows:

D′(c, k) = D(c, k′) if k = 0 · k′

D′(c, k) = k′ if k = 1 · k′

It is easy to check that (G′, E ′, D′) remains IND-CCA2 and allows an adversary to choose a

key that decrypts to anything he wants.

To capture this kind of computational attacks, an idea (from M. Backes [10]) is to enrich

the symbolic setting with a rule that allows an intruder, given a ciphertext c and a message

m, to forge a key such that c decrypts to m. This could be modeled e.g. by adding a

functional symbol fakekey of arity 2 together with the equation

dec(x, fakekey(x, y)) = y

Going back to Example 4.1, this would allow a symbolic intruder to send the message

< fakekey(c, b), {c}r
kab

> to the B process and the process (νkab)(νs)A‖B would emit s.

This solution appears however to be insufficient to cover the next examples.

◮ Example 4.2 (hidden cyphertext). The same kind of attacks can be mounted even when

the ciphertext is unknown to the adversary. We consider a protocol where A sends <<

A, k >, {{k′}r′

k }r
kab

> where k and k′ are freshly generated keys. B recovers k′ and sends it

encrypted with kab. In case A receives her name encrypted with kab, A emits a secret s.

A → B : (νk, k′, r1, r2) A, k, {{k′}r1

k }r2

Kab

B → A : (νr3) {k′}r3

Kab

A : {A}Kab
→ B : s

Then symbolically, the process (νkab)(νs)A‖B would never emit s while again, a com-

putational adversary can forge a key k such that any bitstring can be successfully decrypted

to a using k.

This attack could be captured, allowing the forged key to be independent of the cipher-

text. This can be modeled by the equation

dec(x, fakekey(y)) = y

where fakekey is now a primitive of arity 1. Some attacks may however require the decryption

to depend from the cyphertext as shown in the next example.

◮ Example 4.3 (simultaneous cyphertexts). Consider the following protocol where A sends to

B p cyphertexts c1, . . . , cp. Then B encrypts all ciphertexts with a shared key kab together

STACS’11

40 How to prove security of communication protocols?

with a fresh value nb and commits to p other nonces N1, . . . , Np. Then A simply forwards

the cyphertext together with a fresh key k. Then B checks whether each cyphertext ci

decrypts to Ni using the key k received from A, in which case he sends out a secret s.

A → B : c1, . . . , cp

B → A : {Nb, c1, . . . , cp}Kab
, N1, . . . , Np

A → B : {Nb, c1, . . . , cp}Kab
, k

B : {Nb, {N1}k, . . . , {Np}k}Kab
, k → A : s

Then symbolically, the process (νkab)(νs)A‖B would never emit s since the Ni are gener-

ated after having received the ci and the nonce Nb protects the protocol from replay attacks.

However, having seen the ci and the Ni, a computational adversary can forge a key k such

that each bitstring ci can be successfully decrypted to Ni using k. More precisely, given an

IND-CCA2 (authenticated) encryption scheme (G, E , D), it is easy to build another IND-

CCA2 (authenticated) encryption scheme (G′, E ′, D′), which allows to mount the previous

attack. Indeed, consider G′ = 0·G (all honest keys begin with the bit 0), E ′(m, i.k) = E(m, k)

for i ∈ {0, 1} and D′ defined as follows:

D′(c, k) = D(c, k′) if k = 0 · k′

D′(c, k) = n if k = 1 · c1, n1, · · · c, n · · · cp, np

D′(c, k) = ⊥ otherwise

For dishonest keys, the decryption function D′(c, k) searches for c in k and outputs the

following component when c is found in k. It is easy to check that (G′, E ′, D′) remains IND-

CCA2 and allows an adversary to chose a key that decrypts to anything he wants, but with

different possible outputs depending on the ciphertext.

To capture this attack, we need to consider a symbol of arity 2p for any p and an equation

of the form

dec(xi, fakekey(x1, . . . , xp, y1, . . . , yp)) = yi

But this is still not be sufficient as the outcome may also depend on the ciphertext that is

under decryption and on public data. Intuitively, decrypting with an adversarial key may

produce a function depending on the underlying plaintext and on any previously known

data.

Related work. To our best understanding of [13], these examples seem to form counter-

examples of the soundness results for symmetric encryption as presented in [13]. An implicit

assumption that solves this issue [10] consists in forbidding dishonest keys to be used for

encryption or decryption (the simulator would stop as soon as it received a dishonest keys).

As a consequence, only protocols using keys as nonces could be proved secure.

The only work overcoming this limitation in a realistic way is the work of Kuesters

and Tuengerthal [39] where the authors show computational soundness for key exchange

protocols with symmetric encryption, without restricting key generation for the adversary.

Instead, they assume that sessions identifiers are added to plaintexts before encryption. This

assumption is non standard but achievable. It would however not be sufficient in general

as shown by the examples. In their case, such an assumption suffices because the result is

tailored to key exchange protocols and realization of a certain key exchange functionality.

5 Conclusion

Among all the limitations we discuss in this paper, the main one is to consider only honestly

generated keys (or a certifying infrastructure), which is completely unrealistic. There are

Hubert Comon-Lundh and Véronique Cortier 41

(at least) two main ways to overcome this assumption. A first possibility, already sketched

in the paper, consists in enriching the symbolic model by letting the adversary create new

symbolic equalities when building new (dishonest) keys. In this way, many protocols should

still be provably secure under the IND-CCA assumption, yet benefiting from a symbolic

setting for writing the proof.

A second option is to seek for stronger security assumptions by further requesting non-

malleability. The idea is that a ciphertext should not be opened to a different plaintext,

even when using dishonest keys. This could be achieved by adding a commitment to the

encryption scheme [35].

However all these limitations also demonstrate that it is difficult to make symbolic and

computational models coincide. Even for standard security primitives, soundness results

are very strong since they provide with a generic security proof for any possible protocol

(contrary to CryptoVerif). For primitives with many algebraic properties like Exclusive Or

or modular exponentiation, the gap between symbolic and computation models is even larger

and would require a lot of efforts.

We still believe that computational proofs could benefit from the simplicity of symbolic

models, yielding automated proofs. An alternative approach to soundness results could

consist in computing, out of a given protocol, the minimal computational hypotheses needed

for its security. This is for example the approach explored in [17], though the symbolic model

is still very complex.

Acknowledgement

We wish to thank Michael Backes and Dominique Unruh for very helpful explanations on

their work and David Galindo for fruitful discussion on non-malleable encryption schemes.

References

1 M. Abadi, B. Blanchet, and H. Comon-Lundh. Models and proofs of protocol security:

A progress report. In A. Bouajjani and O. Maler, editors, Proceedings of the 21st Interna-

tional Conference on Computer Aided Verification (CAV’09), volume 5643 of Lecture Notes

in Computer Science, pages 35–49, Grenoble, France, June-July 2009. Springer.

2 M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational the-

ories. Theoretical Computer Science, 387(1-2):2–32, November 2006.

3 M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In Proc.

of the 28th ACM Symposium on Principles of Programming Languages (POPL’01), pages

104–115, January 2001.

4 M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi calculus. Infor-

mation and Computation, 148(1), 1999.

5 M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. In

Proc. of the 4th ACM Conference on Computer and Communications Security (CCS’97),

pages 36–47. ACM Press, 1997.

6 M. Abadi and P. Rogaway. Reconciling two views of cryptography. In Proc. of the Interna-

tional Conference on Theoretical Computer Science (IFIP TCS2000), pages 3–22, August

2000.

7 M. Abdalla and B. Warinschi. On the minimal assumptions of group signature schemes.

In 6th International Conference on Information and Communication Security, pages 1–13,

2004.

8 A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-

kes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb,

STACS’11

42 How to prove security of communication protocols?

M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The AVISPA Tool

for the automated validation of internet security protocols and applications. In K. Etessami

and S. Rajamani, editors, 17th International Conference on Computer Aided Verification,

CAV’2005, volume 3576 of Lecture Notes in Computer Science, pages 281–285, Edinburgh,

Scotland, 2005. Springer.

9 A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L. Tobarra. Formal analysis

of saml 2.0 web browser single sign-on: breaking the saml-based single sign-on for google

apps. In 6th ACM Workshop on Formal Methods in Security Engineering (FMSE 2008),

pages 1–10, Alexandria, VA, USA, 2008.

10 M. Backes. Private communication, 2007.

11 M. Backes, M. Dürmuth, and R. Küsters. On simulatability soundness and mapping sound-

ness of symbolic cryptography. In Foundations of Software Technology and Theoretical

Computer Science (FSTTCS), 2007.

12 M. Backes, D. Hofheinz, and D. Unruh. CoSP a general framework for computational

soundness proofs. In Proceedings of the 16th ACM Conference on Computer and Commu-

nications Security (CCS 2009), pages 66–78, 2009.

13 M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style

cryptographic library. In Proc. 17th IEEE Computer Science Foundations Workshop

(CSFW’04), pages 204–218, 2004.

14 M. Backes and B. Pfitzmann. Limits of the Cryptographic Realization of Dolev-Yao-style

XOR and Dolev-Yao-Style Hash Functions. In Proc. 10th European Symposium on Research

in Computer Security (ESORICS’05), Lecture Notes in Computer Science, pages 336–354,

2005.

15 M. Backes and B. Pfitzmann. Relating cryptographic und symbolic key secrecy. In 26th

IEEE Symposium on Security and Privacy, pages 171–182, Oakland, CA, 2005.

16 M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability (RSIM) framework

for asynchronous systems. Information and Computation, 205(12):1685–1720, 2007.

17 G. Bana, K. Hasebe, and M. Okada. Secrecy-oriented first-order logical analysis of

cryptographic protocols. Cryptology ePrint Archive, Report 2010/080, 2010. http:

//eprint.iacr.org/.

18 M. Bellare and C. Namprempre. Authenticated encryption: relations among notions and

analysis of the generic composition paradigm. In Advances in Cryptology (ASIACRYPT

2000), volume 1976 of Lecture Notes in Computer Science, pages 531–545, 2000.

19 B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In Proc. of

the 14th Computer Security Foundations Workshop (CSFW’01). IEEE Computer Society

Press, June 2001.

20 B. Blanchet. An automatic security protocol verifier based on resolution theorem proving

(invited tutorial). In 20th International Conference on Automated Deduction (CADE-20),

July 2005.

21 B. Blanchet. A computationally sound mechanized prover for security protocols. IEEE

Transactions on Dependable and Secure Computing, 5(4):193–207, Oct.–Dec. 2008. Spe-

cial issue IEEE Symposium on Security and Privacy 2006. Electronic version available at

http://doi.ieeecomputersociety.org/10.1109/TDSC.2007.1005.

22 M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In Proc. of the Royal

Society, volume 426 of Series A, pages 233–271. 1989. Also appeared as SRC Research

Report 39 and, in a shortened form, in ACM Transactions on Computer Systems 8, 1

(February 1990), 18-36.

23 R. Canetti and M. Fischlin. Universally composable commitments. In CRYPTO 2001,

pages 19–40, Santa Barbara, California, 2001.

http://eprint.iacr.org/
http://eprint.iacr.org/

Hubert Comon-Lundh and Véronique Cortier 43

24 Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP Decision Procedure

for Protocol Insecurity with XOR. Theoretical Computer Science, 338(1-3):247–274, June

2005.

25 Y. Chevalier, R. Küsters, M. Rusinowitch, M. Turuani, and L. Vigneron. Deciding the

security of protocols with Diffie-Hellman exponentiation and product in exponents. In Proc.

of the 23rd Conference on Foundations of Software Technology and Theoretical Computer

Science (FSTTCS’03), 2003.

26 H. Comon-Lundh and V. Cortier. Computational soundness of observational equivalence.

In Proceedings of the 15th ACM Conference on Computer and Communications Security

(CCS’08). ACM Press, 2008.

27 H. Comon-Lundh, V. Cortier, and E. Zalinescu. Deciding security properties for crypto-

graphic protocols. Application to key cycles. ACM Transactions on Computational Logic

(TOCL), 11(4):496–520, 2010.

28 H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and insecurity

decision in presence of exclusive or. In Proceedings of the 18th Annual IEEE Symposium on

Logic in Computer Science (LICS’03), pages 271–280, Ottawa, Canada, June 2003. IEEE

Computer Society Press.

29 V. Cortier, S. Kremer, R. Küsters, and B. Warinschi. Computationally sound symbolic se-

crecy in the presence of hash functions. In N. Garg and S. Arun-Kumar, editors, Proceedings

of the 26th Conference on Fundations of Software Technology and Theoretical Computer

Science (FSTTCS’06), volume 4337 of Lecture Notes in Computer Science, pages 176–187,

Kolkata, India, December 2006. Springer.

30 V. Cortier, S. Kremer, and B. Warinschi. A Survey of Symbolic Methods in Computational

Analysis of Cryptographic Systems. Journal of Automated Reasoning (JAR), 2010.

31 V. Cortier and B. Warinschi. Computationally Sound, Automated Proofs for Security

Protocols. In Proc. 14th European Symposium on Programming (ESOP’05), volume 3444 of

Lecture Notes in Computer Science, pages 157–171, Edinburgh, U.K, April 2005. Springer.

32 S. Delaune, S. Kremer, and M. D. Ryan. Coercion-resistance and receipt-freeness in elec-

tronic voting. In Computer Security Foundations Workshop (CSFW’06), pages 28–39, 2006.

33 D. Dolev and A. Yao. On the security of public key protocols. In Proc. of the 22nd Symp.

on Foundations of ComputerScience, pages 350–357. IEEE Computer Society Press, 1981.

34 N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security

protocols. In Proc. of the Workshop on Formal Methods and Security Protocols, 1999.

35 D. Galindo, F. D. Garcia, and P. Van Rossum. Computational soundness of non-malleable

commitments. In Proceedings of the 4th international conference on Information security

practice and experience, ISPEC’08, pages 361–376. Springer-Verlag, 2008.

36 R. Janvier, Y. Lakhnech, and L. Mazaré. Completing the picture: Soundness of formal

encryption in the presence of active adversaries. In European Symposium on Programming

(ESOP’05), volume 3444 of Lecture Notes in Computer Science, pages 172–185. Springer,

2005.

37 R. Küsters and T. Truderung. On the automatic analysis of recursive security protocols

with xor. In Proceedings of the 24th International Symposium on Theoretical Aspects of

Computer Science (STACS’07), volume 4393 of LNCS, Aachen, Germany, 2007. Springer.

38 R. Küsters and M. Tuengerthal. Joint state theorems for public-key encryption and dig-

ital signature functionalities with local computations. In Computer Security Foundations

(CSF’08), 2008.

39 R. Küsters and M. Tuengerthal. Computational Soundness for Key Exchange Protocols

with Symmetric Encryption. In Proceedings of the 16th ACM Conference on Computer and

Communications Security (CCS 2009), pages 91–100. ACM Press, 2009.

STACS’11

44 How to prove security of communication protocols?

40 Y. Lindell. General composition and universal composition in secure multiparty computa-

tion. In Proc. 44th IEEE Symp. Foundations of Computer Science (FOCS), 2003.

41 G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR.

In T. Margaria and B. Steffen, editors, Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’96), volume 1055 of LNCS, pages 147–166. Springer-Verlag,

march 1996.

42 D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway language

of encrypted expressions. Journal of Computer Security, 2004.

43 D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active

adversaries. In Theory of Cryptography Conference (TCC 2004), volume 2951 of Lec-

ture Notes in Computer Science, pages 133–151, Cambridge, MA, USA, February 2004.

Springer-Verlag.

44 M. Rusinowitch and M. Turuani. Protocol Insecurity with Finite Number of Sessions and

Composed Keys is NP-complete. Theoretical Computer Science, 299:451–475, April 2003.

45 B. Warinschi. A computational analysis of the needham-schroeder protocol. In 16th Com-

puter security foundation workshop (CSFW), pages 248–262. IEEE, 2003.

	Introduction
	Setting
	Syntax
	Operational semantics
	Observational equivalence
	Computational interpretation

	Soundness results
	A brief survey
	Observational equivalence implies indistinguishability

	Current limitations
	Parsing
	Length function
	Dishonest keys

	Conclusion

