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Abstract

This paper presents a new non-overlapping domain decomposition method for the Helmholtz

equation, whose effective convergence is quasi-optimal. These improved properties result from a

combination of an appropriate choice of transmission conditions and a suitable approximation of the

Dirichlet to Neumann operator. A convergence theorem of the algorithm is established and numerical

results validating the new approach are presented in both two and three dimensions.

1 Introduction

In this paper, we are interested in non-overlapping Domain Decomposition Methods (DDMs) for the
Helmholtz equation. Such methods were introduced by Lions [36] for the Laplace equation and extended
to the Helmholtz equation by Després [19, 20, 21]. Essentially, the method consists in combining the
continuity conditions (of the field and its normal derivative) on the artificial interfaces between subdo-
mains, in order to obtain Robin boundary conditions and to solve the overall problem by iterating over
the subdomains [39, 47, 45]. Robin conditions (also called absorbing or impedance boundary conditions)
are chosen to couple the subdomains because using the natural conditions leads to divergent iterative
algorithms [12].

Improving the convergence properties of the iterative process constitutes the key in designing effective
algorithms, in particular in mid and high frequency. The optimal convergence is obtained by defining the
transmission conditions, on each interface, using the Dirichlet-to-Neumann (DtN) operator corresponding
to the problem sharing the same interface [41, 40]. This however leads to a very expensive procedure
in practice. The first contribution following the original method of Després, using particular non-local
transmission conditions, was made in [17] with a relative success regarding the effective convergence. A
great variety of techniques based on local transmission conditions have also been proposed to improve the
convergence: these include the class of FETI-H methods [24, 25, 26, 14], the optimized Schwartz approach
[27], and the evanescent modes damping algorithm [15, 16, 12]. However, the related impedance operators
do not accurately approximate the exact DtN operator on all the modes of the solution, which makes the
resulting iterative methods suboptimal.

In this paper, we propose a new square-root based transmission condition, localized using Padé ap-
proximants, which accurately approximates the DtN operator and allows to design an algorithm with

∗Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, NJIT, Univ. Heights. 323
Dr. M. L. King Jr. Blvd, Newark, NJ 07102, USA.

†Institut Elie Cartan Nancy (IECN), Nancy University, INRIA Corida Team, B.P. 239, F-54506 Vandoeuvre-lès-Nancy
Cedex, France.
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Liège, Belgium.

1



Γ

Σij = ΣjiΓ∞

ni

Ωi

nj

Ωj

Figure 1: Example of a two-dimensional non-overlapping domain decomposition method.

quasi-optimal convergence properties. Indeed, we will show that the rate of convergence is optimal on
the evanescent modes and is significantly improved compared to current techniques for the remaining
modes. In the effective convergence, this results in a DDM independent of the wavenumber as well as
the mesh discretization. Moreover, we will see how the resulting approximate DtN operator is easy to
implement in a basic finite element solver.

The paper is organized as follows. In Section 2, we introduce the scattering problem as well as the non-
overlapping DDM. We present in the third Section a non-local square-root operator which approximates
the exact DtN transmission operator. Section 4 develops a convergence analysis for this approximate
transmission condition on a model problem. Section 5 details the complex Padé approximation of the
square-root operator to get a local representation. Section 6 presents the finite element implementation
of the resulting DDM. Numerical results on both two- and three-dimensional problems are presented in
Section 7.

2 Scattering Problem and Non-Overlapping Domain Decompo-

sition Method

Let us consider the three-dimensional time-harmonic scattering problem of an incident acoustic wave by
an obstacle K. We want to compute the scattered field u solution to the exterior Helmholtz equation
with a Dirichlet boundary condition1:











∆u+ k2u = 0 in R
3\K,

u = f on Γ = ∂K,

lim
|x|→∞

|x|(∂|x|u− ıku) = 0.
(1)

The boundary data f is fixed by a plane wave: f = −eıkα·x, with x = (x1, x2, x3) ∈ R
3 and ı =

√
−1.

The incidence angle α is normalized on the unit sphere (|α| = 1) and k denotes the wavenumber, related

1The Dirichlet boundary condition models a sound-soft obstacle; Neumann (sound-hard) or Fourier-Robin (impedance)
boundary conditions may also be set, which would not fundamentally change the rest of the paper.
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to the wavelength λ of the incident wave through k = 2π/λ. The last equation of system (1) is the
Sommerfeld radiation condition at infinity, which imposes that the scattered wave is outgoing.

To solve (1), we combine Absorbing Boundary Conditions (ABCs) with Lions-Després’ non-overlapping
domain decomposition method. The ABC method consists in truncating the infinite domain by introduc-
ing a fictitious boundary Γ∞ to get a bounded computational region. Then, system (1) is approximated
by











∆u+ k2u = 0 in Ω,

u = f on Γ,

∂nu+ Bu = 0 on Γ∞,

(2)

where Ω is the bounded domain enclosed by the fictitious boundary Γ∞ and Γ (see Figure 1) and where
the operator B represents an approximation of the DtN operator (for example B = −ık) on Γ∞. The
vector n is the outwardly directed unit normal to Γ∞. Let us remark that all what follows can be adapted
to the case of other truncation techniques, like e.g. perfectly matched layers (PMLs) [13, 18, 44, 48].

The first step of the Lions-Després domain decomposition method [36, 19] consists in splitting Ω into
several subdomains Ωi, i = 1, . . . , Ndom, such that (see Figure 1):

• Ω =
⋃Ndom

i=1 Ωi (i = 1, . . . , Ndom),

• Ωi ∩ Ωj = ∅, if i 6= j, (i, j = 1, . . . , Ndom),

• ∂Ωi ∩ ∂Ωj = Σij = Σji (i, j = 1, . . . , Ndom) is the artificial interface separating Ωi and Ωj as long
as its interior Σij is not empty.

The second step consists in reducing the solution of the initial problem (2) by solving the local transmission
problems















∆u
(n+1)
i + k2u

(n+1)
i = 0 in Ωi,

u
(n+1)
i = fi on Γi,

∂ni
u
(n+1)
i + Bu(n+1)

i = 0 on Γ∞
i ,

(3a)

∂ni
u
(n+1)
i + Su(n+1)

i = g
(n)
ij on Σij , (3b)

and then in forming the quantities to be transmitted through the interfaces

g
(n+1)
ij = −∂nj

u
(n+1)
j + Su(n+1)

j = −g
(n)
ij + 2Su(n+1)

j on Σij , (4)

where ui = u|Ωi
, ni (resp. nj) is the outward unit normal to the boundary of Ωi (resp. Ωj), i =

1, . . . , Ndom, j = 1, . . . , Ndom, Γi = ∂Ωi ∩ Γ, Γ∞
i = ∂Ωi ∩ Γ∞ and S an invertible operator. Let us

note that the boundary condition on Γi (resp. Γ∞
i ) does not take place if the interior of ∂Ωi ∩ Γ (resp.

∂Ωi ∩ Γ∞) is the empty set. We will assume in all that follows that the DDM is well-posed, in the sense
that each subproblem (3a)-(3b) is itself well-posed, i.e., away from interior resonances.

Solving at each step all the local transmission problems through (3)-(4) may be recast as one appli-
cation of the iteration operator A : ×Ndom

i,j=1L
2(Σij) → ×Ndom

i,j=1L
2(Σij) [11] defined by

g(n+1) = Ag(n) + b, (5)

where g(n) is the set of boundary data (g
(n)
ij )1≤i,j≤Ndom

, and b is given by the Dirichlet boundary condition.
Therefore, (3)-(4) can be seen as an iteration of the Jacobi method (or fixed point iteration) applied to
the linear system:

(I −A)g = b, (6)

where I is the identity operator. Following this idea, any Krylov solver could also be applied to solve
this equation. Indeed, we will see that the GMRES algorithm significantly improves the iterative process
over the successive approximations procedure (5).

3



3 Square-Root Based Transmission Condition

It is well-known that the convergence of the domain decomposition method for scattering problems
strongly depends on the choice of the transmission operator S. Indeed, to each choice of operator S cor-
responds an iteration operator A with particular spectral properties. Several techniques were developed
to improve the convergence by modifying the original algorithm introduced by Després in [19]. In this
last reference, the low-order approximation of the DtN operator

S0u = −ıku (7)

is used. For this choice of operator S, it can be shown [15] that the resulting iteration operator only
acts on the part of the spectrum corresponding to the propagating modes while the eigenvalues related
to the evanescent modes have unit modulus [15]. This directly impacts the convergence (divergence)
properties of the resulting iterative scheme. Two families of techniques have been proposed to overcome
this problem. First, algorithms based on the optimization of the rate of convergence were introduced by
Gander et al. [27], where improved local second-order approximations of the DtN map with optimized
coefficients are used. In this case, the local transmission operators take the following general form for a
generic transmitting boundary Σ:

Soo2u = −αdivΣ(A∇Σu) + au, (8)

where A and a are a surface tensor (which can be zero, leading to the usual Després approach) and a
surface function, respectively, that can be optimized according to the rate of convergence. The operator
divΣ in (8) is the surface divergence of a tangent vector field on Σ and ∇Σ is the tangential gradient of a
surface field. Second, the Evanescent Modes Damping Algorithm (EMDA) was introduced by Boubendir
in [15, 16], with the explicit aim to damp the evanescent modes:

SXu = −ıku+ Xu (9)

where X is a self-adjoint positive operator. We only consider here the usual case where X is a real-valued
positive coefficient.

In this paper we propose a new “square-root” transmission operator [6] that takes the following form:

Ssq,εu = −ık

√

1 + divΣ(
1

k2ε
∇Σ)u, (10)

where
kε = k + ıε (11)

is a complexified wavenumber, and where the square-root
√
A of an operator A is classically defined

through the spectral decomposition of A [46]. Furthermore, the notation
√
z designates the principal

determination of the square-root of a complex number z with branch-cut along the negative real axis.
We will show in what follows that

1. the nonlocal operator Ssq,ε can be accurately localized using complex Padé approximants, and
suitably combined with finite element methods;

2. the convergence of the resulting DDM is quasi-optimal: the rate of convergence corresponding to
the evanescent modes is zero, and significantly improved for the remaining modes. This results in
an effective solution where the iterative procedure is quasi independent of both the wavenumber
and the level of accuracy of the spatial discretization (mesh refinement).
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The choice of this square-root operator is motivated by developments of Absorbing Boundary Con-
ditions (ABC) for scattering problems, where the goal is to minimize reflection at the fictitious surface
Γ∞. In the eighties, the Engquist-Majda [23] and Bayliss-Turkel [9, 2, 10] ABCs were developed, which
are written as

∂nu+Mu = 0 on Γ∞, (12)

where M is a local approximation of the DtN operator that takes a form similar to (8). While these
conditions are widely used for practical computations and most particularly for engineering purposes, it
was recently shown in [6] that they also do not model the evanescent and grazing modes, resulting in a
loss of accuracy of the method. In order to solve this problem, a high-order local ABC was introduced in
[6, 34], which uses M = Ssq,ε in (12) to model all the scattering modes: propagating, evanescent as well
as (in an approximate way) grazing. This ABC can be localized with complex Padé approximants, and
the coefficient ε in (11) can then be chosen to minimize spurious reflections at the boundary.

Without giving too much details about the derivation of the operator Ssq,ε in (10), let us briefly
explain where it comes from (see [6] for more details). To obtain (10), we compute for a general surface
Σ the principal symbol σ1(= −ık

√

1− |ξ|2/k2) [46] of the exact DtN operator Λ [2]. (The covariable
ξ = (ξ1, ξ2) is roughly the Fourier variable locally to a point of the surface after a local mapping [2], with
|ξ|2 = ξ21 + ξ22 .) If we denote by σ the total symbol [46] of Λ, it can be proved by using a factorization
theorem [2] at the microlocal level that we have an asymptotic expansion: σ ≈ σ1 + σR, where σR is a
remaining symbol of order less than one and therefore has an associated pseudodifferential operator of the
same order. Then, we only retain the principal symbol σ1 and do the approximation: Λ ≈ Op(σ1), where
Op(σ1) designates the pseudodifferential operator with symbol σ1. In practice, for a general surface, it
is difficult to write more precisely the corresponding operator. However, it can be proved [7] that, up

to lower order symbols, the principal symbol of the square-root operator −ık
√

1 + divΣ(
1
k2
ε
∇Σ) is equal

to σ1, for ε = 0. Therefore, since we do the approximation modulo a lower order operator, we can

approximate Λ by −ık
√

1 + divΣ(
1
k2
ε
∇Σ) and get the corresponding square-root transmission boundary

condition. The damping parameter ε is then introduced to regularize the square-root operator with the
aim to model more correctly the frequencies within the transition zone (called glancing zone in microlocal
analysis [2]). Let us remark that the derivation is similar to Beam Propagation Methods (BPMs) for
bent optical waveguides [7, 37, 30], and that the theoretical factorization theorem used in the preceeding
derivation allows to split the outgoing and incoming parts of the wave field through transmission boundary
conditions [2, 7].

The Després and EMDA transmission operators (7) and (9) are particular cases of Impedance Bound-
ary Conditions (IBC) [43]. The second order (8) and the new square-root operator (10) (as well as its Padé
localization) fall into the realm of so-called Generalized Impedance Boundary Conditions (GIBC) [43]. In
what follows we will thus refer to the transmission conditions related to the Després and EMDA algorithms
by IBC(0) and IBC(X ), respectively, and to the square-root transmission condition by GIBC(sq,ε).

4 Convergence Analysis for a Model Problem

In order to study the convergence of the proposed DDM with square-root transmission operator, we
analyze the model problem depicted in Figure 2. This model problem couples two subdomains: a disk-
shaped bounded subdomain Ω1 of radius R0 and an unbounded domain Ω0 = R

2 \ Ω1:

Ω0 := {x ∈ R
2, |x| > R0}, Ω1 := {x ∈ R

2, |x| < R0}, (13)

with ∂Ω0 = ∂Ω1 = Σ. We study the spectral properties of the iteration operator obtained from the
domain decomposition algorithm coupling these two subdomains. Studying the coupling of bounded and
unbounded subdomains will allow us to understand the main properties that one could not analyze by
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Figure 2: Model problem with two subdomains and a circular interface.

considering two bounded (e.g. a square domain divided in two) or two unbounded (e.g. two half-planes)
subdomains. The considered model problem essentially contains the main difficulties encountered when
solving exterior scattering problems. Note that a closely related problem where the unbounded domain is
replaced by an annulus-shaped bounded domain with an ABC on the exterior boundary could also have
been selected. However, this would only lead to more complex expressions without providing additional
insight.

4.1 Convergence Theorem

For the considered model problem, the domain decomposition method with square-root transmission
condition consists in solving separately at each iteration the following problems















∆u0 + k2u0 = 0 in Ω0,

∂n0
u0 + Ssq,εu0 = g0 on Σ,

lim
|x|→∞

|x|1/2(∂|x|u0 − ıku0) = 0,
(14)

and
{

∆u1 + k2u1 = 0 in Ω1,

∂n1
u1 + Ssq,εu1 = g1 on Σ,

(15)

where g0 and g1 are defined as in equation (4). The convergence analysis can be developed by studying
the spectral properties of the iteration operator A defined by (5), where

A := ΠT , (16)

and where the two operators T and Π are defined as [15]:

T g(n) :=

( T1 0

0 T0

)





g
(n)
1

g
(n)
0



 and Π :=

(

0 I
I 0

)

, (17)

with
T1g(n)1 := −g

(n)
1 + 2Ssq,εu

(n+1)
1 , T0g(n)0 := −g

(n)
0 + 2Ssq,εu

(n+1)
0 . (18)
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Since we have a circular geometry, we can analyze the error mode-by-mode by using a Fourier-Hankel
series expansion in the polar coordinates system (r, θ). Let us set

uℓ(r, θ) =

+∞
∑

m=−∞

uℓ,m(r)eımθ and gℓ(r, θ) =

+∞
∑

m=−∞

gℓ,m(r)eımθ, ℓ = 0, 1. (19)

Since {eımθ}m∈Z defines an orthonormal basis of L2(Σ), problems (14) and (15) lead to solve the decoupled
problems



















1

r
∂r(r∂ru0,m)− m2

r2
u0,m + k2u0,m = 0 for r > R0,

−∂ru0,m + Ssq,ε
m u0,m = g0,m for r = R0,

lim
r→+∞

r1/2 (∂ru0,m − ıku0,m) = 0,

(20)

and






1

r
∂r(r∂ru1,m)− m2

r2
u1,m + k2u1,m = 0 for r < R0,

∂ru1,m + Ssq,ε
m u1,m = g1,m for r = R0.

(21)

In the polar coordinate system the surface divergence and the tangential gradient appearing in (10)
reduce to the curvilinear derivative R−1

0 ∂θ. Hence, for a mode m, we get the analytical expression of the
square-root transmission operator:

Ssq,ε
m = −ık

√

1− m2

k2εR
2
0

:= −ık(Rm + ıXm). (22)

The solution of the first and last equation of the exterior problem (20) is given by u0,m(r) =

αmH
(1)
m (kr), where H

(1)
m denotes the Hankel function of the first kind and order m. For the interior

problem (21) the solution of the first equation reads u
(1)
m (r) = βmJm(kr), where Jm is the Bessel function

of order m.
Writing the modal decomposition of the operators T0 and T1 as T0 =

∑+∞
m=−∞ T0,meımθ and T1 =

∑+∞
m=−∞ T1,meımθ, one can show using the second equations of (20) and (21) that:

Tℓ,m =
−kZℓ,m + Ssq,ε

m

kZℓ,m + Ssq,ε
m

=
−Zℓ,m + ı(Rm + ıXm)

Zℓ,m + ı(Rm + ıXm)
, ℓ = 0, 1, (23)

with

Z0,m =
H

(1)′

m (kR0)

H
(1)
m (kR0)

and Z1,m = −J ′
m(kR0)

Jm(kR0)
. (24)

Since the convergence properties of the DDM are strongly related to the spectrum of the iteration
operator A, we study the spectrum of the modal matrices

Am =

(

0 T0,m
T1,m 0

)

(25)

for each mode, where A =
∑+∞

m=−∞ Ameımθ. Let us begin by considering that the iteration equation (6)
is solved using the Jacobi algorithm. Then, according to Theorem 1 below (see [15]), convergence occurs
if and only if the spectral radius ρ(A) = maxm∈Zρ(Am) is smaller than one:

Theorem 1 Let s ∈ R be such that (g0, g1) ∈ V := H−s(Σ) × H−s(Σ). The domain decomposition
algorithm converges in V if and only if for all m, ρ(Am) < 1, with ρ(Am) the largest modulus of the two
eigenvalues of the 2× 2 matrix Am.
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In our case, the two eigenvalues of Am are: λ±
m = ±

√

T0,mT1,m. Hence, it is sufficient to prove that
|T0,mT1,m| < 1 for each mode m to guarantee the convergence of the iterative method. Before proving
this inequality, let us first establish the following lemma.

Lemma 2 Consider the function F defined by

F(R,X ,Z) =
−Z + ı(R+ ıX )

Z + ı(R+ ıX )
, (26)

where the real coefficients R and X are positive (R > 0, X > 0) and where Z is a complex number, with
ℜ(Z) := −x and ℑ(Z) := y. Then, under the conditions x > 0 and y > 0, we have

|F(R,X ,Z)| < 1. (27)

Proof. By writing Z = −x+ ıy, we obtain

|F(R,X ,Z)|2 =
(x−X )2 + (R− y)2

(x+ X )2 + (R+ y)2
< 1, (28)

since (R− y)2 < (R+ y)2 and (x−X )2 ≤ (x+ X )2.
To prove the convergence of the algorithm, we first study separately the two coefficients T0,m and

T1,m, related to the exterior and interior problems respectively. The behavior of the coefficients depends
on the choice of the damping parameter ε appearing in the definition of the square-root operator (22)
through (11).

Proposition 3 For ε > 0 and any m ∈ Z, we have:

|T0,m| < 1. (29)

If ε = 0 and m 6= ±kR0, then the inequality (29) also holds.

Proof. For any mode m, the coefficient Z0,m can be written as

Z0,m =
H

(1)′

m (kR0)H
(1)
m (kR0)

|H(1)
m (kR0)|2

, (30)

with ℑ(H(1)′

m (kR0)H
(1)
m (kR0)) > 0 and ℜ(H(1)′

m (kR0)H
(1)
m (kR0)) < 0 (see [15] for the proof).

Let us first assume that ε = 0. If one has a propagating mode, i.e., |m| < kR0, then Ssq,0
m = −ıkRm.

For the evanescent modes such that kR0 < |m|, Ssq,0
m = kXm. In these two cases, we deduce that

|T0,m| < 1 by using lemma 2 if there is no mode m such that m = ±kR0.
Let us now consider the damped version ε > 0 of the transmission operator Ssq,ε

m . We first recall
that if a and b are two real numbers such that b 6= 0, then

√
a+ ıb = p+ ıq, where p and q are two real

numbers given by

p =
1√
2

√

√

a2 + b2 + a, q =
sign(b)√

2

√

√

a2 + b2 − a. (31)

Expanding Ssq,ε
m = −ık(Rm + ıXm) as

Ssq,ε
m = −ık

√

R2
0((k

2 − ε2)2 + 4k2ε2)−m2(k2 − ε2) + 2ım2kε

R2
0((k

2 − ε2)2 + 4k2ε2)
, (32)

and knowing that k > 0 and ε > 0, we get that Rm > 0 and Xm > 0. Using (31) and Lemma 2, this
allows us to conclude that |T0,m| < 1, for any m ∈ Z and ε > 0.

Concerning the interior problem, we have the following result.
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Proposition 4 If ε ≥ 0 and |m| > kR0, we have

|T1,m| < 1. (33)

If ε = 0 and |m| ≤ kR0, we have
|T1,m| = 1. (34)

Proof. We observe that Z1,m is real. Let us first consider the case when ε = 0. If |m| ≤ kR0, then
Xm = 0 and we trivially have |T1,m| = 1. When |m| > kR0, we study the sign of Z1,m. Since

Z1,m = −J
′

m(kR0)

Jm(kR0)
= −

u′
1,m(R0)

ku1,m(R0)
,

by using the variational formulation of problem (21) we obtain

ℜ
(

R0u
′
1,m(R0)u1,m(R0)

)

=

∫ R0

0

{

r|u′
1,m|2 + (

m2

r2
− k2)|u1,m|2r

}

dr.

Hence, for all |m| > kR0, we deduce that ℜ(R0u
′
1,m(R0)u1,m(R0)) > 0. Furthermore, Rm = 0 but

Xm 6= 0, meaning that |T1,m| < 1.
Let us now consider the case ε > 0. If |m| > kR0 the same procedure can be used, in which case

Rm > 0 and |T1,m| < 1.
¿From the preceding propositions we can prove the following result.

Theorem 5 For ε = 0 and if m is not a cut-off mode, i.e. |m| 6= kR0, we have the inequality

|T0,mT1,m| < 1. (35)

If ε > 0, then there exists εmax such that for 0 < ε < εmax the inequality (35) is also satisfied.

Proof. Let ε = 0 and let us assume that there is no cut-off mode. Then, the result is a consequence of
Propositions 3 and 4. If ε > 0, the inequality (35) is true if m corresponds to an evanescent mode. How-
ever, we cannot conclude directly for the propagating ones because of the operator T1. These propagating
modes are in finite number and for ε = 0 we have (35). Therefore, we can then deduce by continuity on
ε that there exists εmax such that for 0 < ε < εmax, the inequality (35) is satisfied.

The preceding theorem ensures convergence of the Jacobi domain decomposition algorithm with the
square-root operator when 0 < ε < εmax. The analysis is not valid for the cut-off mode |m| = kR0 when
ε = 0: indeed, the operator Ssq,ε is then not invertible, which makes the domain decomposition algorithm
ill-posed. In the actual implementation of the DDM it is thus important to consider ε > 0 in order to
guarantee the well-posedness of the DDM. In addition, as we will show, ε > 0 contributes in improving
the convergence in the transition zone between the propagating and evanescent modes.

4.2 Quasi-Optimality

Since

H(1)
m (t) ≈ −2m(m− 1)!

iπtm
and Jm(t) ≈ − tm

2mm!
for |m| ≫ |t|, (36)

we get, for |m| ≫ kR0,

Z0,m ≈ − m

kR0
and Z1,m ≈ m

kR0
(37)

and thus
lim

m−→∞
λ±
m = ± ıε

−2k − ıε
for ε > 0. (38)
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Figure 3: Spectral radius of the iteration operators and optimal choice of the damping coefficient ε.

This shows that there is a clustering of the eigenvalues for |m| ≫ kR0. Obviously, the limit is zero if
ε = 0. Therefore, the rate of convergence is optimal for the evanescent modes. This property remains
true for ε > 0 since k ≫ ε.

To demonstrate the efficiency of the algorithm on the rest of the modes, let us choose k = 6π, R0 = 1
and a maximal number of modes mmax = [10kR0] (where [10kR0] denotes the integer part of 10kR0),
and let us compare the new algorithm with the Després and EMDA algorithms. We report in Figure
3(a) the modal spectral radius ρ(Am) with respect to m for the transmitting boundary conditions IBC(0)
(Després), IBC(k/2) (EMDA) and GIBC(sq, 0). As is well-known, IBC(0) has a spectral radius equal to
1 for the evanescent modes, which is improved by IBC(k/2). For the new transmission condition with
ε = 0, we clearly observe an optimal convergence rate for the evanescent part, which is coherent with our
previous comment. We also observe a significant improvement over the Després and EMDA algorithms
on the propagating modes.

The damping parameter ε can be optimized to further improve the spectrum of the iteration operator
corresponding to the modes in the transition zone. If we denote by ρsq,ε the spectral radius of Am when
the GIBC(sq,ε) transmission condition is used, we look for εopt such that

ρsq,εopt = min
ε>0

ρsq,ε. (39)

As mentioned above, the square-root operator is a suitable approximation of the DtN operator for the
propagating and the evanescent modes. By construction, it appears that the maximal error between
the exact DtN operator and its square-root approximation Ssq,ε is obtained for the modes m satisfying
m = ±[kR0] [6]. These specific modes are better known as grazing modes in the context of scattering
problems. For such problems it was shown in [6] that the optimal value of the damping parameter
is εopt = 0.4k1/3H2/3, where H is the mean curvature on Σ. The resulting modal spectral radius for
GIBC(sq,εopt) is shown in Figure 3(a), where the improvement around m = kR0 is clearly visible. We
can see in Figure 3(b) that the spectral radius of the iteration operator is indeed minimum for ε = εopt.
From Figure 3(b) one can also observe that Xopt = k/2 (the value chosen for EMDA in [15, 16]) is a
fairly good choice to minimize the spectral radius for IBC(X ). In this example, Xopt = 3k/4 could also
be a good choice.
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Figure 4: Eigenvalues distribution in the complex plane for (I −A) and different transmission operators.

4.3 Krylov Subspace Solvers

Now, let us analyze the solution of (6) by using a Krylov subspace method like GMRES. It is well-known
that fast convergence of the GMRES solver is related to the existence of clustering of its eigenvalues. Let
us recall that the equation that we solve is given by the operator: (I − A). Therefore, its eigenvalues
are: µ±

m = 1 ∓ λ±
m for each mode m ∈ Z. We report in Figure 4 the spectrum of the iteration operator

for IBC(0), IBC(k/2) and GIBC(sq,εopt). We consider again kR0 = 6π for a maximal number of modes
mmax = [10kR0]. For all transmission operators the spectrum lies in the right half-plane, which makes
the GMRES converging. However, for IBC(0) many eigenvalues spread out in the complex plane. A
slightly better clustering occurs for IBC(k/2), while there is an excellent clustering of the eigenvalues for
GIBC(sq, εopt). In particular, only a few eigenvalues related to the propagating modes do not cluster but
are very close to (1, 0). Furthermore, the eigenvalues related to the evanescent modes seem to cluster at
(1, 0). According to (38), we show that the clustering is at point

C∗ =
k + ıεopt
k + ıεopt/2

(40)

(in our case C∗ = 1.0008+0.0282ı). Since the eigenvalues cluster for the evanescent modes, we can expect
that in the numerical implementation the GMRES convergence rate will be independent of the density
of discretization points per wavelength nλ [3, 4, 5]. This will be indeed the case as seen in Section 7.

5 Localization of the Square-Root Operator by Complex Padé

Approximants

The square-root operator (10) is a nonlocal operator (a pseudo-differential operator of order +1). There-
fore, it is impractical in a finite element setting since it would lead to consider full matrices for the
transmission boundaries. Fortunately, a localization process of this operator can be efficiently done by
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Figure 5: Eigenvalue distribution in the complex plane for the exact and Padé-localized square-root
transmission operator of order 4 (left) and 8 (right).

using partial differential (local) operators to have a sparse matrix representation. In [35, 34, 6], this
is realized by a rotating branch-cut approximation of the square-root and then applying complex Padé
approximants of order Np [38]:

√

1 + divΓ∞(
1

k2ε
∇Γ∞)u ≈ Rα

Np
(divΓ∞(

1

k2ε
∇Γ∞))u

= C0u+

Np
∑

ℓ=1

AℓdivΓ∞(k−2
ε ∇Γ∞)(1 +BℓdivΓ∞(k−2

ε ∇Γ∞))−1u,

(41)

which corresponds to the complex Padé approximation

√
1 + z ≈ Rα

Np
(z) = C0 +

Np
∑

ℓ=1

Aℓz

1 +Bℓz
. (42)

Let us mention some similar ideas in the approximation of the square-root with the approach described
in [29]. The complex coefficients C0, Aℓ and Bℓ are given by

C0 = eı
α
2 RNp

(e−ıα − 1), Aℓ =
e−

ıα
2 aℓ

(1 + bℓ(e−ıα − 1))2
, Bℓ =

e−ıαbℓ
1 + bℓ(e−ıα − 1)

. (43)

In (43) α is the angle of rotation, (aℓ, bℓ), ℓ = 1, ..., Np, are the standard real Padé coefficients

aℓ =
2

2Np + 1
sin2(

ℓπ

2Np + 1
) , bℓ = cos2(

ℓπ

2Np + 1
), (44)

and RNp
is the real Padé approximant of order N :

√
1 + z ≈ RNp

(z) = 1 +

Np
∑

ℓ=1

aℓz

1 + bℓz
. (45)
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For a variational representation, the approximation of the Padé-localized square-root transmission oper-
ator (10)-(45) is realized by using auxiliary coupled functions [35, 34, 6]

SNp,α,εu = −ık(C0u+

Np
∑

ℓ=1

AℓdivΓ∞(
1

k2ε
∇Γ∞ϕℓ)) on Γ∞, (46)

where the functions ϕℓ, ℓ = 1, .., Np, are defined on Γ∞ as the solutions of the following surface PDEs:

(1 +BℓdivΓ∞(
1

k2ε
∇Γ∞))ϕℓ = u. (47)

The resulting transmitting boundary condition is again a Generalized Impedance Boundary Condition,
and is denoted by GIBC(Np, α, ε) for the Padé approximation with Np auxiliary functions, for an angle
of rotation α and a damping parameter ε. The lowest-order approximation would be SNp,α,ε = −ıkI
which also corresponds to the original approximation S0 of S, i.e., IBC(0).

Let us analyze on the model problem of Section 4 the effect of the Padé approximation on the rate of
convergence. For a mode m, the transmission operator acts as

SNp,α,ε
m = −ıkRα

Np
(− m2

k2εR
2
0

). (48)

In the following the angle of rotation α is always taken equal to π/4, which was found to be the op-
timal choice through numerical experiments. We report in Figure 5 the spectrum of GIBC(sq, εopt),
GIBC(4, π/4, εopt) and GIBC(8, π/4, εopt). As previously noticed, there is an excellent clustering of the
eigenvalues for GIBC(sq, εopt). As expected, the larger Np, the better the approximation of the spectrum
of the square-root. Moreover, Np allows to adjust the spectrum accuracy for large modes m (evanescent
modes). Hence, it can be conjectured that Np must be taken with respect to the density of discretization
points per wavelength nλ. We will see in the numerical simulations (see Section 7) that relatively small
values of Np (Np = 2, 4, 8) give optimal convergence results.

6 Finite Element Implementation

Let us now describe the implementation of the domain decomposition algorithm with Padé-type trans-
mission condition in a finite element context. Recall first that the iterative method consists in solving
problems (3) and computing the transmitted quantities (4). We restrict this description only to a problem
posed in a domain, noted here Ω, with no exterior interface nor interface connected to the scatterer. This
simply implies that Γi = ∅, Γ∞

i = ∅ and ∂Ω is an artificial interface. The extention to the other cases

is direct. For the sake of clarity, we abbreviate the notations u
(n+1)
i , g

(n)
ij and g

(n+1)
ij , used in problem

(3) and equation (4), by u, gin and gout respectively. An iteration then leads to solving first the interior
boundary value problem in terms of u with coupling auxiliary functions {ϕℓ}ℓ=1,...,Np

according to the
use of Padé approximation of order Np:



























∆u+ k2u = 0 in Ω,

∂nu− ıkC0u− ık

Np
∑

ℓ=1

Aℓdiv∂Ω(
1

k2ε
∇∂Ωϕℓ) = gin on ∂Ω,

−u+Bℓdiv∂Ω(
1

k2ε
∇∂Ωϕℓ) + ϕℓ = 0, ℓ = 1, ..., Np, on ∂Ω,

(49)

where C0, Aℓ and Bℓ are given by (43). The auxiliary functions {ϕℓ}ℓ=1,...,Np
are introduced to deal

with the use of the Padé approximation of order Np. Considering now test-functions v ∈ H1(Ω) and
vℓ ∈ H1(∂Ω), ℓ = 1, ..., Np, we get the coupled variational formulation
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∫

Ωi

(∇u · ∇v − k2uv) dΩ− ıkC0

∫

∂Ω

uvd∂Ω

+ık

Np
∑

ℓ=1

Aℓ

∫

∂Ω

1

k2ε
∇∂Ωϕℓ · ∇∂Ωv d∂Ω = −

∫

∂Ω

ginv d∂Ω,

−
∫

∂Ω

uvℓ d∂Ω−Bℓ

∫

∂Ω

1

k2ε
∇∂Ωϕℓ · ∇∂Ωvℓ d∂Ω

+

∫

∂Ω

ϕℓvℓ d∂Ω = 0, ℓ = 1, ..., Np.

(50)

Following the solution of (50), we update the boundary data through the relation

gout = −gin − 2ıkC0u− 2ık

Np
∑

ℓ=1

Aℓdiv∂Ω(
1

k2ε
∇∂Ωϕℓ), on ∂Ω. (51)

Let us now consider a covering Ωh of Ω using nt tetrahedral (or triangular in two-dimensions) finite
elements with nv vertices. Parameter h is the usual finite element notation for the maximal side length
of the tetrahedrals. All the notations are extended with h as subscript for the discrete version of the
domains as well as unknowns. We choose here linear finite element approximations but the extension to
higher-order elements is straightforward. For scattering problems, it is common to introduce the density
of discretization points per wavelength: nλ = λ/h. The local density of discretization points is therefore:
nλ = λ/h. Let us denote by S

Ωh and M
Ωh respectively the stiffness and mass matrices for linear elements

associated with the domains Ωh. The matrices have size nv × nv. Furthermore, we introduce S
∂Ωh and

M
∂Ωh as the respective stiffness and mass matrices related to the transmitting surface ∂Ωh. If these

correspond to a generalized stiffness matrix for a surface function β, then it is quoted S
∂Ωh

β . All these

matrices have a size n∂
t × n∂

t . Let us denote by u ∈ C
nv the local unknown vector and ϕℓ ∈ C

n∂
t the

surface unknown auxiliary vectors obtained with linear finite elements. The discrete test-vectors and
right hand side are also bold typed. Then, the discretization of the variational problem (49) leads to the
solution of the coupled linear system















(SΩh − k2MΩh − ıkC0M
∂Ωh)u+ ık

Np
∑

ℓ=1

AℓS
∂Ωh

k−2
ε

ϕℓ = −M
∂Ωhgin

−M
∂Ωhu− (BℓS

∂Ωh

k−2
ε

−M
∂Ωh)ϕℓ = 0, ℓ = 1, ..., Np.

(52)

The size of this linear system is (nv +(1+Np)n
∂
t )× (nv +(1+Np)n

∂
t ). Each augmented system is solved

directly by a LU factorization method since each matrix has a moderate size. The boundary data update
can be done by vector addition using relation (4).

7 Numerical Results

This section is devoted to numerical simulations validating the new domain decomposition algorithm
using the Padé-localized square-root transmission condition. We use the finite element method with
linear (P1) basis functions implemented in GetDP/Gmsh [22, 28] to approximate the local problems (3),
as explained in Section 6. The convergence criterion for all the presented examples is identical: the
iterations are stopped when the initial residual has decreased by a factor of 10−6.

7.1 Two-Dimensional Examples

The two-dimensional examples concern the scattering of a plane wave by a unit sound-soft circular
cylinder. The second-order Bayliss-Turkel [9, 2, 10] artificial boundary condition is set on a fictitious
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Figure 6: Two-dimensional test cases: reconstruction of the scattered field on the global domain after a
DDM computation with k = 4π and Ndom = 5.
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Ndom Jacobi GMRES
2 12 9
5 45 24
10 152 52
15 +500 74

k Jacobi GMRES
π 102 41
2 π 62 36
3 π 52 38
4 π 64 38

Table 1: Number of iterations vs. number of subdomains for k = π (left) and Number of iterations vs.
wavenumber for Ndom = 8 (right) when using the Jacobi or GMRES algorithm, for the “circle-concentric”
decomposition.

circular boundary with radius 4 (see Figure 6).

7.1.1 Jacobi vs. GMRES

We begin by analyzing the behavior of the iterative methods (successive approximations, i.e. Jacobi, or
GMRES [42]) when the domain is partitioned into Ndom concentric subdomains. We call this partitioning
the “circle-concentric” decomposition (see Figure 6(a)). The “size” Li of the subdomain Ωi, defined as
the difference between its exterior and interior radius, is equal to 3/Ndom.

Le us start by considering a wavenumber k = π and a density of discretization points per wavelength
nλ = 12. We report in Table 1 (left) the number of iterations required using Jacobi and GMRES.
Concerning the complex Padé approximation, we fix Np = 8 auxiliary equations and θ = π/4. The

damping parameter ε is optimized according to εopt = 0.6k1/3R
−2/3
j (where Rj is the radius of the j-th

interface). Let us precise that the “size” of the overall domain is L = 3 = 1.5λ. This means that in
the case of Ndom = 10 (resp. Ndom = 15) subdomains, the size of one subdomain is about 0.15λ (resp.
about 0.1λ) which is very small. For these cases, the EMDA algorithm solved by the Jacobi method
diverges while our approach converges. As it can be seen, the algorithm scales according to Ndom, and
as expected, the GMRES outperforms the Jacobi method.

Consider now a partition of the initial domain into Ndom = 8. The discretization is again fixed by

nλ = 12. The same parameters (Np = 8, θ = π/4 and εopt = 0.6k1/3R
−2/3
j ) are kept to approximate the

transmission operator given by (41). We report in Table 1 (right) the number of iterations for converging
according to the wavenumber k. As we can see, the convergence is quasi independent of the wavenumber
k. This is known to be a very difficult goal to attain when designing iterative schemes for scattering
problems. In particular, this means that our Padé-type transmission condition with GMRES DDM is
well-suited for high frequency scattering problems—we will analyze this behaviour further in Section 7.1.2.

¿From these first numerical results we clearly see that the GMRES algorithm outperforms the suc-
cessive approximations (Jacobi), especially when the number of subdomains is large. In what follows we
will thus only report results for the GMRES algorithm.

7.1.2 Influence of the Wavenumber, the Discretization Density and the Number of Sub-

domains

Let us consider Ndom = 5 subdomains. Figure 7(a) shows the number of iterations to reach convergence
with respect to the wavenumber k, for two densities of discretization points per wavelength nλ. For EMDA
with IBC(k/2), the number of iterations increases with respect to k and nλ. Concerning GIBC(Np, π/4,
εopt), we can see that the convergence rate is independent of both the wavenumber and density of
discretization points per wavelength. Furthermore, in this case, Np = 2 provides already an optimal
convergence compared with Np = 8. Let us recall that one of the important points here is that we use
complex approximants. Using real Padé approximants would lead to much higher values of Np, hence
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Figure 7: Convergence for the “circle-concentric” decomposition.
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Figure 8: Convergence for the “circle-pie” decomposition.
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Number of Unknowns Factorization Time (s)
IBC(k/2) 20812 0.37

GIBC(1, π/4, k/4) 21053 0.37
GIBC(2, π/4, k/4) 21294 0.38
GIBC(4, π/4, k/4) 21776 0.39
GIBC(8, π/4, k/4) 22740 0.40
GIBC(16, π/4, k/4) 24668 0.45
GIBC(32, π/4, k/4) 28524 0.53

Table 2: Number of degrees of freedom and computational time for the initial factorization for one
subdomain of the “circle-pie” decomposition, with Ndom = 5, k = 8π and nλ = 10.

penalizing the computational cost of the overall method. Let us also mention that increased values
of nλ are not only necessary for accuracy purposes but are also imposed to avoid pollution effects in
the calculation of the solution at high wavenumbers [31, 33, 32, 8]. Figure 7(b) gives the number of
iterations with respect to the density of discretization points per wavelength nλ, for two wavenumbers
k. A convergence independent of the mesh size can be achieved provided that Np is sufficiently large,
although a very small value (Np = 2) already provides a quasi-optimal result.

In Figure 7(c) we report the number of iterations of the GMRES DDM with respect to the number
of subdomains Ndom. We directly see that all the methods scale, for IBC as well as GIBC transmission
conditions. Again, for GIBC(Np,π/4,εopt), the scaling does not depend on k (and Np), while this is not
the case for IBC(k/2).

As a partial conclusion, we can state that using the GMRES algorithm with GIBC(Np,π/4,εopt) in the
DDM leads to a quasi-optimal convergence: the convergence rate is independent of both the wavenumber
k and the density nλ. Furthermore, the method scales with the number Ndom of subdomains. These
conclusions are confirmed by analyzing the behavior of our algorithms for the “circle-pie” decomposition
(see Figure 6(b)). Since we have straight interfaces we cannot consider our optimized value of εopt
anymore. However, numerical simulations show that εopt = k/4 is a suitable choice. In figures 8(a)-
8(c), we represent the same three sets of curves as for the “circle-concentric” decomposition. We get
a convergence independent of the wave number k and density of discretization nλ (by taking Np large
enough but relatively small). Again, the algorithm scales with respect to Ndom. More generally, the
convergence results are even better for the “circle-pie” than for the “circle-concentric” decomposition.

Let us remark here that in the context of the Krylov iterative solution of integral equations for acoustic
scattering, quasi optimal convergence independent of the wavenumber and density of discretization points
per wavelength was obtained in [3, 4, 5] by considering Generalized Combined Field Integral Equations
including the square-root operator.

7.1.3 Computational Cost

The overall computation time of the DDM depends on the number of iterations and the cost of solving
(52) for each subdomain. As explained in Section 6, we use a direct sparse linear solver, and the main
cost in solving (52) is thus the initial computation of the LU factorization of the augmented matrices of
size N = (nv + (1 +Np)n

∂
t )× (nv + (1 +Np)n

∂
t ). We report in Table 2 the number of unknowns N and

the factorization time for one subdomain in the case of the “circle-pie” decomposition, with Ndom = 5,
k = 8π and nλ = 10. The factorization is performed using MUMPS [1] on a 2.66 GHz MacBook Pro
laptop computer. For the typical values of Np required to obtain quasi-optimal convergence (Np = 2 or
Np = 8), we see that the computational overhead is small (less than 10%).
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Figure 9: Submarine problem with 5 subdomains: iso-surfaces of the real part of the scattered field for
k = 14π.

7.2 Three-Dimensional Example

We now test our algorithm on a more realistic three-dimensional example: the scattering by a submarine.
The geometry is represented in Figure 9. For comparison purposes, we choose a unit length submarine.
The incident wave is a plane wave with α = (cosπ/8, 0, sinπ/8)T . We consider two high wave numbers,
k = 14π and k = 28π, a density of discretization points per wavelength nλ = 10 and we fix Ndom = 5
subdomains. The scattered field computed with the GMRES DDM and Padé-type transmission boundary
condition is represented on Figure 9. Figure 10 reports the residual decay for different transmission
conditions and parameter values. Since we have a plane interface here, we cannot consider our optimized
value of εopt. As for the “circle-pie” decomposition analyzed in Section 7.1, numerical simulations show
that εopt = k/4 is a suitable choice. We see that GIBC(Np, π/4, εopt) leads to a very good convergence
rate of the GMRES, and is clearly better than EMDA (with IBC(k/2)). For this three-dimensional case,
an optimal value of Np to get the quasi-optimality is Np = 8.

8 Conclusion

We have proposed a quasi-optimal non overlapping domain decomposition algorithm for the Helmholtz
equation. It is based on a suitable approximation of the DtN operator. A convergence analysis for a
model problem has been developed, showing the main features of our algorithm. Several numerical tests
in both two- and three dimensions validates the numerical quasi-optimality of the proposed algorithm.
Extension to Maxwell’s equations is currently being developed.
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Figure 10: Convergence of the GMRES DDM solvers for the submarine problem.
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