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In this paper, developing laminar forced convection flow of a water-Al 2 O 3 nanofluid in a circular tube, submitted to a constant and uniform heat flux at the wall, is numerically investigated.

A single and two-phase model (discrete particles model) is employed with either constant or temperaturedependent properties. The investigation is accomplished for size particles equal to 100 nm. The maximum difference in the average heat transfer coefficient between single and two phase models results is about 11%.

Convective heat transfer coefficient for nanofluids is greater than that of the base liquid. Heat transfer enhancement increases with the particle volume concentration, but it is accompanied by increasing wall shear stress values. Higher heat transfer coefficients and lower shear stresses are detected in the case of temperature dependents models. The heat transfer always improves, as Reynolds number increases, but it is accompanied by an increase of shear stress too.

Moreover a comparison with data present in the literature is carried out.

Convective heat transfer is very important for many industrial heating or cooling equipments. The heat convection can passively be enhanced by changing flow geometry, boundary conditions or by enhancing fluid thermophysical properties. An innovative way of improving the thermal conductivities of fluids is to suspend small solid particles in the fluid. Maxwell [START_REF] Maxwell | Electricity and Magnetism[END_REF][START_REF] Maxwell | A Treatise on Electricity and Magnetism[END_REF] showed the possibility of increasing thermal conductivity of a mixture by more volume fraction of solid particles. These fluids containing colloidal suspended nanoparticles have been called nanofluids. Several investigations revealed that nanofluid heat transfer coefficient could be increased by more than 20% also in the case of very low nanoparticles concentrations [START_REF] Li | Heat transfer enhancement of nanofluids[END_REF][START_REF] Kang | Estimation of thermal conductivity of nanofluid using experimental effective particle volume[END_REF].

Nowadays there is a fast growth of research activities in this heat transfer area [START_REF] Khanafer | Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[END_REF][START_REF] Khaled | Heat transfer enhancement through control of thermal dispersion effects[END_REF][START_REF] Das | Heat Transfer in Nanofluids-A Review[END_REF][START_REF] Buongiorno | Convective Transport in Nanofluids[END_REF][START_REF] Wang | Heat transfer characteristics of nanofluids: a review[END_REF], because the impact of nanofluid technology is expected to be relevant considering that heat transfer performance of heat exchangers or cooling devices is fundamental in many industries [START_REF] Murshed | Thermophysical and electrokinetic properties of nanofluids -A critical review[END_REF]. Recently an industrial application was presented by Kulkarni et al. [START_REF] Kulkarni | Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant[END_REF], that proposed aluminum oxide nanofluids as jacket water coolant in a diesel engine for electric generation, showing that the efficiency of waste heat recovery heat exchanger increased due to nanofluid, because of its superior convective heat transfer coefficient. Moreover Nnanna et al. [START_REF] Nnanna | Assessment of thermoelectric module with nanofluid heat exchanger[END_REF] developed a nanofluid heat exchanger for electronic cooling devices. They showed how the system performance improved with respect to conventional equipments.

It was demonstrated that solid nanoparticle colloids are extremely stable and exhibit no significant settling under static conditions, even after weeks or months [START_REF] Wang | Heat transfer characteristics of nanofluids: a review[END_REF][START_REF] Eastman | Novel thermal properties of nanostructured materials[END_REF]. However, the development of nanofluids is still hindered by several factors such as the lack of agreement among experimental results from different research groups, poor characterization of suspensions and the lack of theoretical understanding of the heat transfer mechanisms [START_REF] Wang | Heat transfer characteristics of nanofluids: a review[END_REF]. Different concepts and models have been proposed to explain the enhancement of heat transfer [START_REF] Buongiorno | Convective Transport in Nanofluids[END_REF][START_REF] Xuan | Heat transfer enhancement of nanofluids[END_REF][START_REF] Xuan | Conceptions for heat transfer correlations of nanofluids[END_REF][START_REF] Keblinski | Mechanisms of heat flow in suspensions of nanosized particles (nanofluid)[END_REF][START_REF] Wang | Thermal conductivity of nanoparticle-fluid mixture[END_REF].

Theoretical and experimental investigations have been accomplished to estimate the effective thermal conductivity of nanofluids. Some experimental studies [START_REF] Choi | Anomalous thermal conductivity enhancement in nanotube suspension[END_REF][START_REF] Yoo | Study of thermal conductivity of nanofluids for the application of heat transfer fluids[END_REF] show that the measured thermal conductivity of nanofluids is much larger than the classical theoretical predictions [START_REF] Hamilton | Thermal conductivity of heterogeneous two-component systems[END_REF]. Other experimental investigations [START_REF] Putman | Thermal conductivity of nanoparticle suspensions[END_REF][START_REF] Zhang | Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles[END_REF] revealed that the thermal conductivity has not shown any anomalous enhancement and for lower volume fractions, the results agree well with the classical equations [START_REF] Hamilton | Thermal conductivity of heterogeneous two-component systems[END_REF][START_REF] Yamada | Effective thermal conductivity of dispersed materials[END_REF]. Many attempts have been made to formulate efficient theoretical models for the prediction of the effective thermal conductivity, but this topic is still seriously incomplete [START_REF] Xue | Model for effective thermal conductivity of nanofluids[END_REF][START_REF] Xuan | Aggregation structure and thermal conducting of nanofluids[END_REF][START_REF] Chon | Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement[END_REF].

Relatively, few theoretical and experimental investigations have been reported on convective heat transfer in confined flows, as also reviewed in [START_REF] Das | Heat Transfer in Nanofluids-A Review[END_REF][START_REF] Buongiorno | Convective Transport in Nanofluids[END_REF][START_REF] Wang | Heat transfer characteristics of nanofluids: a review[END_REF][START_REF] Daungthongsuk | A critical review of convective heat transfer of nanofluids[END_REF].

Experimental results were obtained on convective heat transfer for laminar and turbulent flow of a nanofluid inside a tube in [START_REF] Xuan | Heat transfer enhancement of nanofluids[END_REF][START_REF] Pak | Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[END_REF][START_REF] Xuan | Investigation on convective heat transfer and flow features of nanofluids[END_REF]. Correlations for the Nusselt number, using nanofluids composed of water and Cu, 56 nm)/water based nanofluids flowing through a copper tube in laminar regime was reported in [START_REF] Wen | Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions[END_REF]. It was observed that the improvement of the heat transfer coefficient is particularly large at the entrance region, and it decreases with the axial distance. The heat transfer performance of CNT nanofluids in a tube was investigated in [START_REF] Ding | Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)[END_REF]. Results showed that the enhancement of heat transfer coefficient is significantly higher than the increase in the effective thermal conductivity.

Numerical investigations on nanofluids are carried out using two approaches. The first approach assumes that the continuum assumption is still valid for fluids with suspended nanosize particles, while the other approach considers a two-phase model for better description of both the fluid and the solid phases. Another approach is to adopt the Boltzmann theory.

The single phase model with physical and thermal properties, all assumed to be constant with temperature, was employed in [START_REF] Maiga | Heat transfer behaviours of nanofluids in a uniformly heated tube[END_REF][START_REF] Maiga | Heat transfer enhancement by using nanofluids in forced convection flows[END_REF][START_REF] Maiga | Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension[END_REF][START_REF] Roy | Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids[END_REF]. The hydrodynamic and thermal characteristics of nanofluids, flowing through a uniformly heated tube, in both laminar and turbulent regimes with adjusted properties, was investigated in [START_REF] Maiga | Heat transfer behaviours of nanofluids in a uniformly heated tube[END_REF]. The advantages of nanofluids with respect to heat transfer were discussed in [START_REF] Maiga | Heat transfer enhancement by using nanofluids in forced convection flows[END_REF], but it was also found that the inclusion of nanoparticles introduced drastic effects on the wall shear stress. A new correlation was proposed in [START_REF] Maiga | Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension[END_REF] to describe the thermal performance of Al 2 O 3 -water nanofluids under turbulent regime and a numerical study of heat transfer for water-Al 2 O 3 nanofluids in a radial cooling system was accomplished in Roy et al. [START_REF] Roy | Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids[END_REF]. They found that addition of nanoparticles in the base fluid increases the heat transfer rates considerably.

Laminar forced convection flow of nanofluids between two coaxial and parallel disks with central axial injection was considered using temperature dependent nanofluid properties in [START_REF] Palm | Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties[END_REF]. The single phase flow model was solved numerically. Results have shown that considerable differences are obtained when using constant property nanofluids with respect to nanofluids with temperature dependent properties. It has been found that to an increase in wall heat flux corresponds an increase in the average heat transfer coefficient whilst the wall shear stress decreases when temperature-dependent nanofluid properties are used. A numerical study on fully developed laminar mixed convection of a nanofluid consisting of water and Al 2 O 3 in a horizontal curved tube was carried out in [START_REF] Akbarinia | Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes[END_REF]. Three-dimensional elliptic governing equations were used and the single phase model was employed. It was observed that the fraction of nanoparticles volume does not have a direct effect on the secondary flow, axial velocity and the skin friction coefficient. For a given Reynolds number, a negative effect of buoyancy force on the Nusselt number is obtained while the concentration of nanoparticles has a positive effect on the heat transfer enhancement and also on the reduction of skin friction.

The conjugate heat transfer problem for microheat sinks, considering two types of nanofluids, was numerically investigated in [START_REF] Koo | Laminar nanofluid flow in micro-heat sinks[END_REF]. The effect of Brownian motion on the effective fluid viscosity was considered and found to be less significant than that on the effective thermal conductivity. A numerical investigation on the cooling performance of a microchannel heat sink with nanofluids was carried out in [START_REF] Jang | Cooling performance of a microchannel heat sink with nanofluids[END_REF]. A theoretical model of thermal conductivity of nanofluids that accounts for the fundamental role of Brownian motion was used.

Results showed that nanofluids reduced both the thermal resistance and the temperature difference between the heated microchannel wall and the coolant.

The two phase approach seems a better model to describe the nanofluid flow. In fact, the slip velocity between the fluid and particles might not be zero [START_REF] Xuan | Heat transfer enhancement of nanofluids[END_REF] due to several factors such as gravity, friction between the fluid and solid particles, Brownian forces, Brownian diffusion, sedimentation and dispersion. The two-phase approach provides a field description of the dynamics of each phase or, alternatively, the Lagrangian trajectories of individual particles coupled with the Eulerian description of the fluid flow field [START_REF] Gidaspow | Multiphase Flow and Fluidization[END_REF][START_REF] Fan | Principle of Gas-Solid Flows[END_REF]. A two phase mixture model was applied to study the turbulent forced convection flow of a nanofluid in a uniformly heated tube [START_REF] Behzadmehr | Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach[END_REF] and more recently Namburu et al. [START_REF] Namburu | Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties[END_REF] investigated the turbulent convection flow of nanofluids inside a tube considering variable properties.

In this paper, developing laminar forced convection flow of a nanofluid in a circular tube is numerically investigated. Steady state of a two dimensional axial symmetric flow is considered and the circular tube is heated at uniform heat flux. The study is carried out for water with alumina particles with a spherical size of 100 nm diameter. The CFD commercial code, Fluent [START_REF]Fluent 6.2 User Manual[END_REF], is employed to solve the problem by means of finite volume method. Single phase and discrete phase approaches are employed to evaluate the developing laminar forced convection flow, taking the constant and temperature variable thermophysical properties into account. A comparison between results obtained by two different models is accomplished in terms of temperature and velocity distributions and Nusselt number profiles. The numerical simulation results are also compared with experimental data of Wen and Ding [START_REF] Wen | Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions[END_REF] and Heris et al. [START_REF] Heris | Experimental investigation of convective heat transfer of Al 2 O 3 /water nanofluid in circular tube[END_REF].

The aim of this paper is just to test the response of this model, evaluating its performance with smaller particles, because it has the great advantage to require just the thermophysical properties of the base fluid and particles as input. Nothing is required about the whole mixture, so it could be used as a first step analysis to check the performance of a new nanofluid. axis so that half of the tube is considered.

MATHEMATICAL MODELLING

The single phase model, which has been used frequently for nanofluids, is also implemented to compare its predictions with the mixture model. The following equations represent the mathematical formulation of the single phase model [32-36, 43, 46] and of the continuous phase of the two-phase model [START_REF] Das | Nanofluids science and technology[END_REF][START_REF] Minkowycz | Handbook of numerical heat transfer[END_REF]:

Conservation of mass: 0 ) ( = → V div ρ (1)
Momentum equation:
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Energy equation:
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The compression work and the viscous dissipation are assumed negligible in the energy equation; the source/sink terms S m and S e represent the integrated effects of momentum and energy exchange with base fluid, as shown in the following, and they are equal to zero in the case of single phase model.

Discrete phase is made of spherical particles following the model given by Ounis et al. [START_REF] Ounis | Brownian diffusion of submicrometer particles in the viscous sublayer[END_REF]. Accordingly, motion equation is expressed in a Lagrangian form, to obtain the following expression [START_REF] Das | Nanofluids science and technology[END_REF][START_REF] Minkowycz | Handbook of numerical heat transfer[END_REF][START_REF] Ounis | Brownian diffusion of submicrometer particles in the viscous sublayer[END_REF]:
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where F is an additional term that can eventually include important additional forces under determined circumstances (i.e. forces that arise due to rotation of reference frame, thermophoretic force, Brownian force), F D (V -V p ) is resistance force per particle mass unit. Eq. ( 4) has a general validity, because it is simply the expression of a force balance on a particle immersed in a fluid. To solve Eq. (4a), it needs to specify the drag coefficient F D and it can be done using the Stokes' law. At this point a first limitation is imposed to the model, because the Stokes' law is valid for Re d 0.1 [START_REF] Asano | Mass Transfer -From fundamentals to modern industrial applications[END_REF], where Re d is defined as: where λ is the particle mean free path. Cunningham correction is necessary to apply the Stokes' resistance law to submicrometer particles [START_REF] Das | Nanofluids science and technology[END_REF][START_REF] Ounis | Brownian diffusion of submicrometer particles in the viscous sublayer[END_REF].

Once solved Eq. ( 4), it is possible to evaluate the momentum transfer between particles and base fluid, computed by examining the change in momentum of a particle as it passes through each control volume in the model. This momentum change is calculated as [START_REF]Fluent 6.2 User Manual[END_REF][START_REF] Minkowycz | Handbook of numerical heat transfer[END_REF]:

= np p p m dt V d V m S δ (2a)
where V is the cell volume and np is the number of particles within a cell volume and those cells with np=0 are assigned a zero value for the source terms.

The same approach used for momentum equation can be employed for energy equation and for spherical particles the following equation is obtained [START_REF] Das | Nanofluids science and technology[END_REF][START_REF] Minkowycz | Handbook of numerical heat transfer[END_REF]:

( ) p p p p T T d h dt dT Cp - = 6 ρ ( 6 
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where h is calculated from the Ranz and Marshall correlation [START_REF] Ranz | Evaporation from Drops, Part I[END_REF][START_REF] Ranz | Evaporation from Drops, Part II[END_REF]:
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valid for 1<Re d •Pr 2/3 <5•10 4 , where Re d is defined in Eq. 5a.

Following the same approach used for the momentum equation, it is now possible to calculate the source term, S e , for the energy equation [START_REF]Fluent 6.2 User Manual[END_REF][START_REF] Minkowycz | Handbook of numerical heat transfer[END_REF]:

⋅ = np p p e dt dT Cp V m S δ (3a)
The main approximation of the DPM model applied to the nanoparticles is represented by the Ranz and Marshall correlation, which was developed for submicrometer particles and, moreover, in the present case Re d is slightly outside from the lower limit, being around 0.5.

Boundary conditions

At the tube inlet, profiles of uniform axial velocity V 0 , temperature T 0 (=293 K) prevail. Moreover, in the case of temperature dependent properties, the reference viscosity value for Re calculation is taken at T 0 . At the tube exit section, the fully developed conditions prevail, that is to say that all axial derivatives are zero. No-slip conditions and uniform heat flux are imposed on the tube wall. As noted earlier, both the flow and thermal fields are assumed symmetrical with respect to the vertical plane passing through the tube main axis.

Physical properties of the nanofluids for single phase model approach

The determination of nanofluid properties is, as previously mentioned, at the center of current nanofluid research. Base nanofluid properties have been published over the past few years. However, only recently have some data on temperature-dependent properties been provided, even though they are only for nanofluid effective thermal conductivity and effective absolute viscosity and for a few particle loadings.

For single phase model, the following formulas were used to compute the thermal and physical properties of the considered nanofluid:

Density

In the absence of experimental data for nanofluid densities, constant-value temperature independent values, based on nanoparticle volume fraction, are used:

p bf nf ϕρ ρ ϕ ρ + - = ) 1 ( (7)

Specific heat

Similarly, in the absence of experimental data relative to nanofluids, it has been suggested that the effective specific heat can be calculated using the following equation as reported in [START_REF] Pak | Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[END_REF][START_REF] Maiga | Heat transfer behaviours of nanofluids in a uniformly heated tube[END_REF][START_REF] Maiga | Heat transfer enhancement by using nanofluids in forced convection flows[END_REF][START_REF] Maiga | Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension[END_REF][START_REF] Roy | Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids[END_REF][START_REF] Palm | Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties[END_REF][START_REF] Das | Nanofluids science and technology[END_REF]:
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Other authors suggest an alternative approach based on heat capacity concept [START_REF] Eastman | Novel thermal properties of nanostructured materials[END_REF][START_REF] Xuan | Conceptions for heat transfer correlations of nanofluids[END_REF]:

( ) ( ) ( ) p bf nf Cp Cp Cp ρ ϕ ρ ϕ ρ + - = ) 1 ( (8b)
These two formulations may of course lead to different results for specific heat. Due to the lack of experimental data, both formulations can be considered equivalent in estimating nanofluid specific heat capacity [START_REF] Palm | Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties[END_REF]. Moreover the difference in the Cp calculation using the two approach is less than 10% for the cases considered in this present work. In this paper, Eq. (8a) is considered for the calculations.

Dynamic viscosity

In this work, dynamic viscosity dependence only on is considered in one case, then the variability with the temperature is taken into account in the other case.

In the first case, in order to evaluate nanofluid dynamic viscosity, a least-square curve fitting, based on some scarce experimental data available in [START_REF] Wang | Thermal conductivity of nanoparticle-fluid mixture[END_REF][START_REF] Masuda | Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al 2 O 3 , SiO 2 and TiO 2 ultra-fine particles)[END_REF][START_REF] Lee | Measuring thermal conductivity of fluids containing oxide nanoparticles[END_REF] was performed by Maiga et al. [START_REF] Maiga | Heat transfer behaviours of nanofluids in a uniformly heated tube[END_REF][START_REF] Maiga | Heat transfer enhancement by using nanofluids in forced convection flows[END_REF], leading to the following equation:

1 3 . 7 123 2 + + = = ϕ ϕ µ µ µ bf nf r (9a)
In the second case it is assumed that temperature dependant nanofluid properties will yield even better predictions with respect to constant properties. In the present work, the dynamic viscosity is evaluated by means of the polynomial curve fitting proposed in [START_REF] Palm | Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties[END_REF], based on the data reported in [START_REF] Putra | Natural convection of nanofluids[END_REF]. The resulting equations were used to compute the nanofluid effective viscosity, as a function of the local temperature, expressed in K as given in [START_REF] Palm | Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties[END_REF] 

⋅ + ⋅ - ⋅ = → = µ ϕ (9b)

Thermal conductivity

For the thermal conductivity determination, the same criteria used for the dynamic viscosity is considered, thereby introducing the following equations, as given in [START_REF] Maiga | Heat transfer behaviours of nanofluids in a uniformly heated tube[END_REF][START_REF] Maiga | Heat transfer enhancement by using nanofluids in forced convection flows[END_REF] [START_REF] Murshed | Thermophysical and electrokinetic properties of nanofluids -A critical review[END_REF] obtained using the model proposed by [START_REF] Hamilton | Thermal conductivity of heterogeneous two-component systems[END_REF], assuming spherical particles. Such model, which was first developed based on data from several mixtures containing relatively large particles (i.e. millimeter and micrometer size particles) is believed to be acceptable for use with nanofluids, although it may give underestimated values of thermal conductivity [START_REF] Maiga | Heat transfer behaviours of nanofluids in a uniformly heated tube[END_REF][START_REF] Maiga | Heat transfer enhancement by using nanofluids in forced convection flows[END_REF].

In the second case, temperature dependent thermal conductivity is determined by the equation suggested in [START_REF] Palm | Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties[END_REF], derived from the experimental data given in [START_REF] Putra | Natural convection of nanofluids[END_REF]. The following equations, with T in K, are considered For the first case, the thermophysical properties of base fluid are: bf =998.2 kg/m 3 ; Cp bf =4182 J/(kg K); k bf =0.597 W/(m K); µ bf =9.93x10 -4 kg/(m s) For the second case, the thermophysical properties of base fluid, with T expressed in K, are: where and Cp are independent of temperature and equal to the previous value.

Numerical method

The computational fluid dynamic code FLUENT [START_REF]Fluent 6.2 User Manual[END_REF] is employed to solve the present problem. The governing equations (1-3) are solved by control volume approach. This method is based on the spatial integration of the conservation equations over finite control volumes, converting the governing equations to a set of algebraic equations. The algebraic "discretized equations", resulting from this spatial integration process, are sequentially solved throughout the physical domain considered. FLUENT solves the systems resulting from discretization schemes using a numerical method. The residuals resulting from the integration of the governing equations (1-3) are considered as convergence indicators.

In order to ensure the accuracy as well as the consistency of numerical results, several non-uniform grids were subjected to an extensive testing procedure for each of the cases considered.

Results obtained for a particular test case showed that, for the tube flow problem under consideration, the 10 x 12 x 400 non-uniform grid appears to be satisfactory to ensure the precision of numerical results as well as their independency with respect to the number of nodes used. Such grid has 10, 12 and 400 nodes along the radial, tangential and axial directions respectively, with highly packed grid points in the vicinity of the tube wall, especially at the entrance region.

The computer model has been successfully validated with correlation reported in [START_REF] Churchill | Correlations for forced convection with uniform heating in flow over a plate and in developing and fully developed flow in a tube[END_REF] for thermally and hydraulically developing flow, showing an average error less than 2%, as reported in Fig. 1b, where local Nusselt number is calculated according to the following definition: 
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and h(z) is defined as:
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From the previous equation the h is calculated as follow:

= L av dz z h L h 0 )
( 1 [START_REF] Keblinski | Mechanisms of heat flow in suspensions of nanosized particles (nanofluid)[END_REF] and the average Nusselt number is defined as:
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RESULTS

Results were carried out employing the single phase and discrete phase models for ϕ=1% and 4%, Re=250, 500, 750 and 1050 and q=5000, 7500 and 10000 W/m 2 for both constant and temperature-dependent properties. In all cases, the size of the spherical particles is considered equal to 100 nm.

Figure 2a shows the profiles of axial velocity along tube radius up to z/L=0.2 for Re=250, q=5000 W/m 2 and ϕ=4%. It can be observed that nanofluid motion is fully developed at exit section which is located 1.00 m after the inlet section. For single phase model, when properties are not dependent on temperature, velocity profile and hydrodynamic entrance length are nearly independent on concentration value. Velocity axial profiles are nearly identical at z/L=0.2 for ϕ=0%, 1% and 4%, as shown in Fig. 2b.

Thermal entrance length depends on Prandtl number too, so when concentration increases Pr number also increases and consequently, thermal entrance length becomes greater. Dimensionless temperature of the fluid at several axial locations along the radius is reported in Fig. 3 for ϕ=0% and 4%. For both the base fluid and the nanofluid, the motion is not thermally developed. As the concentration increases the thermal entrance length rises, as it is also noticed by a higher slope of relative local heat transfer coefficient, h r , for ϕ=4% shown in Fig. 4a. This figure also clearly shows the enhancement of convective heat transfer due to the presence of nanoparticles. At the exit section, the increment of the heat transfer coefficient is 14% for constant properties and 17% for temperature dependent properties, in the case of ϕ=4%.The advantage is particularly great at the entrance section.

Relative local coefficient is always decreasing with axis location when fluid properties are constant, whereas temperature-dependent properties make h r to increase with z. This happens because, in the case of temperature dependent properties, there is a linear increase of thermal conductivity with temperature, and therefore, a better heat transfer between wall and fluid exists. Consequently, there is a decrease in the temperature difference between the wall and bulk temperature and with the heat flux on the wall being constant, there is an increase in the heat transfer coefficient, as shown in Figs. 4b and4c.

From Fig. 4a, in the case of temperature dependent properties, it is possible to observe an increase in the curves slopes, which is due to the fact that the increase in h nf is greater than h bf . If the two coefficients (h nf and h bf ) had the same increase, the curves of Fig. 4a for constant and temperature dependent properties would have overlapped.

The case with variable properties presents, with respect to the case with constant properties, the ratio h nf /h bf with a larger increase because the thermal conductivity of the nanofluid has a higher increment than the simple water.

In Fig. 5a andb radial temperature profiles at z/L=1.0 for Re=250 and q=5000 W/m 2 are reported for the investigated models for constant and non-constant properties respectively. For constant properties, Fig. 5a, temperature is strongly dependent on concentration ϕ. When concentration increases fluid temperature decreases quickly, particularly near the tube wall; furthermore, the difference between temperature values, for base fluid and for nanofluid, increases as r increases, indicating that higher heat transfer rate, with nanoparticles, is achieved. For ϕ=1%, two phase model gives lower temperatures than single phase model for r/r 0 <0.15. Moreover, the difference between temperature at the axis (r/r 0 =0) and surface (r/r 0 =1) is lower for two-phase model. When the volume concentration of particles is higher (4%), temperature profile for twophase model is very similar to the one for single phase model and, on the surface, there is a temperature increase with respect to the reference value of 29 K in both models. When properties are temperaturedependent, Fig. 5b, for ϕ=1%, temperatures difference between the two models decreases with respect to the case of constant properties and at tube wall, the temperature for two phase model is about 1 K lower than the one for single phase model. Moreover, in the core region (r/r 0 <0.2) there is a clear existence of a uniform temperature fluid zone that becomes more visible for higher value of ϕ.

Figures 6a andb show wall and bulk temperature profiles along tube axis for Re=250 and q=5000 W/m 2 for the single and two phase models and for constant and variable properties respectively. It can be noticed that the decrease of wall and bulk temperatures for a nanofluid, with respect to the base fluid, increases with the z coordinate. For a concentration of 1%, wall and bulk temperatures for the single phase model are higher than the ones for the two-phase model, whereas for ϕ=4%, temperature profiles for the two models are very similar particularly for constant properties.

These results have indicated the beneficial effects due to nanoparticles effects that may be mainly explained by the fact that, with the presence of such particles, the thermal properties of the resulting mixture have considerably improved, moreover additional effects such as gravity, drag on the particles, diffusion, Brownian forces play an important role [START_REF] Das | Nanofluids science and technology[END_REF]. In fact considering temperature constant properties, in the single phase model such effects are not considered and the increase in the average heat transfer coefficient is very similar to that of nanofluid vs. base fluid thermal conductivity. While, in the case of discrete phase model, where gravity and drag are taken into account, there is a higher increase of the average heat transfer coefficient, especially for ϕ=1%, as shown in Fig. 7a. Therefore, the nanofluid offers, as expected, higher thermal capability than the base fluid. It is also noted that with higher thermal conductivity of the mixture, the convective heat transfer between wall and fluid should consequently be more efficient.

Average heat transfer coefficient and Nusselt number are reported in Table 1 together with the relative increase of the total heat transfer rates and Nusselt number as a function of the nanoparticle volume fraction . As can be noticed, significant increases of the total heat transfer rates can be found with the use of suspended nanoparticles. For example, for = 4%, heat transfer rate and Nusselt number increase of about 20% and 16% respectively. Slight discrepancies are noticed between the models. Table 2 presents the average wall shear stress value, τ av , and the nanofluid-to-base fluid wall shear stress ratio (defined as τ r = τ nf /τ bf ) for the case Re =250 and q=5000W/m 2 and various particle concentrations. For pure water, τ av value is lower when properties are temperature-dependent because viscosity decreases with temperature. When ϕ=1%, τ av values for constant properties are higher than those for variable properties and in both cases τ av values, for two-phase model are higher than those for single phase model. When ϕ=4%, τ av values for constant properties are again higher than those for variable properties, whereas τ av values for twophase model are lower than those for single phase model. However, the difference between the values for single and two-phase models is small. The values of τ r, for ϕ=1%, are similar for the single and two-phase models, whereas for ϕ=4%, all the four models give very similar values.

Relative heat transfer coefficients are reported in table 3 for the investigated models, for the same Reynolds number (Re=250) and different heat fluxes (q=5000, 7500 and 10000W/m 2 ). The coefficients h r in the case of ϕ=1% and 4% and for non-dependent temperature properties are practically constant with heat flux and, although the coefficients are very similar, in the single phase model, they tend to increase slightly when properties are temperature dependent, while for the two-phase model, the coefficients do not change with the heat flux, but they result slightly higher when properties are constant. An analogous behaviour is observed for the relative wall shear stress τ r , as shown in Table 4. Wall shear stress decreases with heat flux in all the investigated cases because when heat transfer increases, bulk temperature rises too hence fluid viscosity decreases. As previously noticed the presence of nanoparticles increases the wall shear stress. For ϕ=1%, τ r is almost constant with heat flux, whereas for ϕ=4%, τ r slightly increases with q.

In general, τ r increases considerably with the particle volume fraction, ϕ, and this adverse effect is somehow expected, as it results from a strong increase of the mixture viscosity due to inclusion of nanoparticles.

The effect of Reynolds number on average heat transfer coefficient is shown in Figures 7a andb for the single and two phase model, at q=10000 W/m 2 . When the properties are constant, Fig. 7a, for ϕ=1%, some differences, in the range of about 8%-11%, are detected between the single and two phase model, particularly, In this paper the hydrodynamic and thermal behaviours of water-Al 2 O 3 nanofluids flowing inside a uniformly heated tube were numerically investigated in stationary conditions and for laminar flow. Four models were employed: single and two-phase models with either constant or temperature-dependent properties.

Results clearly showed that the inclusion of nanoparticles produced a considerable increase of the heat transfer with respect to that of the base liquid. Heat transfer enhancement was increasing with the concentration of particle volume. However it was accompanied by increasing wall shear stress values.

It can be said that temperature dependent models present higher values of heat transfer coefficients and Nusselt numbers because the difference between wall and bulk temperature is minimized, thereby maximizing the heat transfer. On the other hand, another positive effect is due to the decrease of shear stress, because viscosity decreases with temperature.

For each investigated concentration value, the heat transfer enhancement is higher for the greatest Reynolds number. The effect of Reynolds number is greater for temperature dependent properties. A good relationship was shown with the data from Wen and Ding [START_REF] Daungthongsuk | A critical review of convective heat transfer of nanofluids[END_REF], Maiga et al. [START_REF] Maiga | Heat transfer enhancement by using nanofluids in forced convection flows[END_REF] and Heris et al. [START_REF] Heris | Experimental investigation of convective heat transfer of Al 2 O 3 /water nanofluid in circular tube[END_REF].

As for the comparison between single and two phase models, their results are quite similar (the maximum difference detected is 11% for the average heat transfer coefficient), especially for ϕ=4% and in the case of variable properties. In our opinion, this is a good result, as this model could be used to test new nanofluids, since it requires information about just particles and base fluid, with no reference to the mixture. Therefore,it may result as a "winning first glance" approach in the study of new mixtures, considering also the low cost connected to it. 
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 2 Al 2 O 3 nanoparticles were proposed. Enhancement of heat transfer performance over the base fluid for the assigned Reynolds number is observed. Experimental results for the convective heat transfer of Al 2 O 3(27- 

Figure 1a shows the

  Figure 1a shows the geometrical configuration under consideration. It consists of a tube with a length (L) of 1.0 m and a diameter (D) of 0.01 m. The nanofluid considered is composed of water and Al 2 O 3 particles. The fluid enters with uniform temperature and axial velocity profiles at the inlet section. The tube has appropriate length in order to obtain fully developed profiles (velocity and thermal) at the outlet section (L/D=100). The condition of the axially and circumferentially uniform wall heat flux is considered in this study. Also, the flow and the thermal field are assumed to be symmetrical with respect to the vertical plane passing through the tube main

  the cases considered in the present work Re p 0.01, so the following form of the Stokes resistance law is considered[START_REF] Das | Nanofluids science and technology[END_REF][START_REF] Ounis | Brownian diffusion of submicrometer particles in the viscous sublayer[END_REF][START_REF] Asano | Mass Transfer -From fundamentals to modern industrial applications[END_REF]: factor C c is the Cunningham correction[START_REF] Das | Nanofluids science and technology[END_REF][START_REF] Ounis | Brownian diffusion of submicrometer particles in the viscous sublayer[END_REF]:

  :

  two phase model, the thermophysical properties of Al 2 O 3 are: p =3880 kg/m 3 ; Cp p =773 J/(kg K); k p =36 W/(m K)

  0

Figure 1 .

 1 Figure 1. (a) geometrical configuration under study and (b) grid validation by means of Churchill and Ozoe correlation [55].

Figure 2 .

 2 Figure 2. (a) profiles of axial velocity at several locations for Re=250, q=5000W/m 2 and ϕ=4% and (b) profiles of axial velocity at z=0.2m, for Re=250, q=5000W/m 2 and several concentration values.

Figure 3 .

 3 Figure 3. Dimensionless temperature for Re=250 and q=5000 W/m 2 at several locations and for: a) ϕ=0%; b) ϕ =4%.

Figure 4 .

 4 Figure 4. (a) Increase in nanofluid heat transfer coefficient along tube axis for Re=250 and q=5000 W/m 2 for constant and variables properties, (b) heat transfer coefficient for constant properties, (c) heat transfer coefficient for temperature dependent properties.

Figure 5 .

 5 Figure 5. Profiles of temperature along tube radius at z/L=0.99 for several concentrations and for Re=250 and q=5000 W/m 2 :a) constant properties; b) variable properties.

Figure 6 .

 6 Figure 6. Profiles of wall and bulk temperature along tube axis for several concentrations and for Re=250 and q=5000 W/m 2 : a) constant properties; b) variable properties.

Figure 7 .

 7 Figure 7. Average heat transfer coefficient as a function of Re for the single and two phase model for q=10000 W/m 2 : a) constant properties; b) variable properties.

Figure 8 .

 8 Figure 8. Nusselt number as function of Re for a) ϕ=1% and b) ϕ =4%.

Table 1 .

 1 Heat transfer coefficients for Re=250, q=5000W/m 2 and the investigated models.

	Table(s)				
	Model	φ	[W/m 2 K] h av	h nf /h bf Nu av Nu nf /Nu bf
		Cst. 0%	350.8	1	5.88	1
	H 2 O				
		Var. 0%	375.5	1	6.29	1
		Cst. 1%	363.9	1.037 5.93	1.009
	1-phase				
		Var. 1%	397.7	1.059 6.48	1.030
		Cst. 1%	395.9	1.129 6.45	1.098
	2-phase				
		Var. 1%	420.7	1.120 6.86	1.090
		Cst. 4%	413.8	1.180 6.75	1.148
	1-phase				
		Var. 4%	443.6	1.181 7.23	1.150
		Cst. 4%	422.0	1.203 6.88	1.171
	2-phase				
		Var. 4%	445.8	1.187 7.27	1.155

Table 2 .

 2 Average and relative wall shear stress for Re=250, q=5000W/m 2 and the investigated models.

	Model	φ	τ av [Pa] τ nf /τ bf
	Cst.	0% 0.0203 1
	H 2 O		
	Var.	0% 0.0145 1
	Cst.	1% 0.0232 1.145
	1-phase		
	Var.	1% 0.0171 1.180
	Cst.	1% 0.0280 1.381
	2-phase		
	Var.	1% 1.419
	Cst.	4% 0.0403 1.987
	1-phase		
	Var.	4% 0.0290 2.000
	Cst.	4% 0.0363 1.790
	2-phase		
	Var.	4% 0.0278 1.920

Table 3 .

 3 Values of h nf /h bf for Re=250, several heat fluxes and the investigated models.

		φ=1%			φ=4%
		1-phase	2-phase	1-phase	2-phase
	q			
		cst.	var. cst. var. cst.	var. cst.	var.
	[W/m 2 ]			
	5000	1.037 1.059 1.129 1.120 1.180 1.181 1.203 1.187
	7500	1.037 1.069 1.129 1.120 1.180 1.195 1.205 1.184
	10000 1.037 1.079 1.130 1.120 1.180 1.209 1.205 1.183

Table 4 .

 4 Values of  nf / bf for Re=250, several heat fluxes and the investigated models.

		φ=1%		φ=4%
		1-phase	2-phase	1-phase	2-phase
	q			
		cst. var.	cst. var.	cst. var.	cst. var.
	[W/m 2 ]			
	5000	1.145 1.180 1.380 1.419	1.987 2.000	1.790 1.920
	7500	1.145 1.203 1.383 1.431	1.987 2.054	1.790 1.966
	10000 1.145 1.234 1.380 1.447	1.987 2.135	1.791 2.012

Table 5 .

 5 Comparison between numerical data from this work and experimental data from Wen and Ding [27]. Nu Nu nf /Nu bf Nu Nu nf /Nu bf Nu Nu nf /Nu bf Nu Nu nf /Nu bf Nu Nu nf /Nu bf

	Wen & Ding	1-phase		2-phase	
	[22]		Cst.	Var	Cst.	Var
	z/D 26 12.3 1.15	8.89 1.01	9.65 1.03	10.30 1.18	10.87 1.16
	63 8	1.13	6.60 1.01	7.44 1.04	7.75 1.19	8.35 1.17
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the two phase model which leads to overestimated values. When the concentration increases, these differences tend to reduce. In fact, for ϕ=4% they are in the range of about 2%-7%, with the highest deviation for Re=1050. When properties are temperature-dependent, Fig. 7b, the differences between the single and two phase models reduce for both examined concentrations. In fact when ϕ=1%, the differences between the two models are contained between 4% and 8%, while for ϕ=4%, they are between 2% and 4%, with the highest deviation always for Re=1050.

In Fig. 8a andb, Nusselt number as function of Re for the considered concentrations is reported. In the figure a comparison with the correlation given by Maiga et al. [START_REF] Maiga | Heat transfer enhancement by using nanofluids in forced convection flows[END_REF] and the experimental data of Heris et al. [START_REF] Heris | Experimental investigation of convective heat transfer of Al 2 O 3 /water nanofluid in circular tube[END_REF] is also carried out. In Fig. 8a it is possible to observe the Nu av behaviour for ϕ=1% and, except for Re=250, a good agreement is found with the correlation given in [START_REF] Maiga | Heat transfer enhancement by using nanofluids in forced convection flows[END_REF]. Moreover, a maximum deviation of about 17%, in the case of Re=1050, for the single phase model, is estimated. The experimental data presented in [START_REF] Heris | Experimental investigation of convective heat transfer of Al 2 O 3 /water nanofluid in circular tube[END_REF] are obtained for a tube with constant wall temperature, they are therefore corrected by means of a 20% increase in Nussult number. This correction derives from the fact that Nu number in a developing laminar flow in a circular tube is averagely 20% higher for constant heat flux boundary condition with respect to constant temperature [START_REF] Bejan | Convection Heat Transfer[END_REF].

The corrected data given in [START_REF] Heris | Experimental investigation of convective heat transfer of Al 2 O 3 /water nanofluid in circular tube[END_REF] are very close to the ones obtained with the single phase model and constant properties with an error of 2.3% and 0.1%, respectively, for Re=500 and 750. In Fig. 8b, average Nusselt number for ϕ=4% is shown and also in this case, except for Re=250, a good accord with the correlation given in [START_REF] Maiga | Heat transfer enhancement by using nanofluids in forced convection flows[END_REF] is confirmed. In fact, the maximum deviation is equal to 12% for Re=750 and single phase model with constant properties.

Finally, a comparison with the experimental data from Wen and Ding [START_REF] Wen | Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions[END_REF] is carried out for Re=1050 for ϕ=1%. In Table 5, local Nusselt number and its ratio with local Nusselt number for base fluid are reported at z/D = 26 and 63 and for all the investigated models. The lower differences between experimental and numerical data are for two-phase model with temperature-dependent properties, the maximum gap being equal to 3.5% at z/D=63.