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A Note on the Sum of Uniform Random Variables1

Aniello Buonocore∗,a, Enrica Pirozzia, Luigia Caputob
2

aDipartimento di Matematica e Applicazioni, Università di Napoli Federico II3
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Abstract7

An inductive procedure is used to obtain distributions and probability densities for the sum Sn of indepen-
dent, non equally uniform random variables. Some known results are then shown to follow immediately as
special cases. Under the assumption of equally uniform random variables some new formulas are obtained
for probabilities and means related to Sn. Finally, some new recursive formulas involving distributions are
derived.

Key words: induction, recursive formulas8

2000 MSC: 60G50, 60E999

1. Introduction10

The problem of calculating the distribution of the sum Sn of n uniform random variables has been the11

object of considerable attention even in recent times. The motivation can be ascribed to various reasons12

such as the necessity of handling data drawn from measurements characterized by different level of preci-13

sion (Bradley and Gupta, 2002), or questions appearing in change point analysis (Sadooghi-Alvandi et al.,14

2009), or, more in general, the need of aggregating scaled values with differing numbers of significant figures15

(Potuschak and Müller, 2009). It appears that this problem has been taken up first in Olds (1952), where16

by somewhat obscure procedures formulas for the probability density function of Sn and its distribution17

function are derived. An accurate bibliography of articles published in the last century is found in Bradley18

and Gupta (2002), where the authors also obtain the probability density function of Sn by non probabilistic19

arguments, namely via a complicated analytical inversion of the characteristic function. Such a procedure20

was successively and successfully simplified in Potuschak and Müller (2009), where again no trace of prob-21

abilistic arguments is present. An attempt to achieve the same results by a simpler procedure appears22

in Sadooghi-Alvandi et al. (2009) where a given function is assumed to be the unknown probability density23

function, the proof of the correctness of such an ansatz being that its Laplace transform coincides with the24

moment generating function of Sn. Quite differently, the present note includes a novel proof of the above25

cited results (Proposition 2.1). This is based on an inductive procedure, suitably adapted to our general26

instance, used by Feller (1966) for the case of identically distributed variables, that further pinpoints the27

usefulness of induction procedures in the probability context. (See also Hardy et al. (1978) for some more28

illuminating examples.) In the case of identically distributed random variables, some results concerning29

certain probabilities and means of random variables related to Sn are obtained (Lemma 3.1, Theorem 3.1,30

corollaries 3.1 and 3.2, Proposition 3.4), as well as certain recurrence relations that are reminiscent of those31

holding for Stirling numbers (Propositions 3.5, 3.6, 3.7).32
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2. The general case33

Let {Xn}n∈N denote a sequence of uniform distributed independent random variables and denote Sn =∑n
i=1 Xi. Without loss of generality we assume that Xn ∼ U(0, an) with an positive real numbers. By

adopting a suitably modified procedure due to Feller (1966) we shall obtain the probability density function
fn(x) and the distribution function Fn(x) of Sn for all n ∈ N. The starting point is to write

FXn(x) =
x+ − (x − an)+

an
, ∀n ∈ N, ∀x ∈ R, (1)

where (x − c)+ = max{x − c, 0}, ∀c ∈ R. Next we shall make use of
∫ x

− ∞

[
(y − c)+

]n−1
dy =

1
n

[
(x − c)+

]n
, ∀n ∈ N, ∀c ∈ R+. (2)

In addition we note that, by convolution, probability density functions and distribution functions are related
as follows:

fn+1(x) =
∫ an+1

0

fn(x − y)fXn+1(y) dy =
Fn(x) − Fn(x − an+1)

an+1
, ∀n ∈ N, ∀x ∈ R. (3)

Claim 2.1. One has

F1(x) =
x+ − (x − a1)+

a1
, ∀x ∈ R (4)

and

f2(x) =
x+ − (x − a1)+ − (x − a2)+ + [x − (a1 + a2)]+

a1a2
, ∀x ∈ R. (5)

Proof. It follows from (1) written for S1 ≡ X1, and from (3). 234

Claim 2.2. One has

F2(x) =
(x+)2 − [(x − a1)+]2 − [(x − a2)+]2 + {[x − (a1 + a2)]+}2

2a1a2
, ∀x ∈ R (6)

and

f3(x) =
{

(x+)2 −
[
(x − a1)+

]2 −
[
(x − a2)+

]2 −
[
(x − a3)+

]2 +

+
{
[x − (a1 + a2)]

+
}2

+
{
[x − (a1 + a3)]

+
}2

+
{
[x − (a2 + a3)]

+
}2

(7)

−
{
[x − (a1 + a2 + a3)]

+
}2 }

(2a1a2a3)−1, ∀x ∈ R.

Proof. Eq. (6) follows from (5) and (2). From (6) and (3) one then obtains Eq. (7). 235

Claims 2.1 and 2.2 lead us to infer a possible general forms of the distribution function of Sn and of the36

probability density function of Sn+1, as specified in the following Proposition.37

Proposition 2.1. The distribution function Fn(x) of Sn and the probability density function fn+1(x) of
Sn+1 are given by, respectively:

Fn(x) =
1

n! An

{
(x+)n +

n∑

ν=1

(−1)ν
n∑

j1=1

n∑

j2=j1+1

· · ·
n∑

jν=jν−1+1

{
[x − (aj1 + aj2 + · · · + ajν )]+

}n
}

,

∀n ∈ N, ∀x ∈ R (8)
2
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and

fn+1(x) =
1

n! An+1

{
(x+)n +

n+1∑

ν=1

(−1)ν
n+1∑

j1=1

n+1∑

j2=j1+1

· · ·
n+1∑

jν=jν−1+1

{
[x − (aj1 + aj2 + · · · + ajν )]+

}n
}

,

∀n ∈ N, ∀x ∈ R. (9)

Proof. We proceed by induction. Claims 2.1 and 2.2 show that Eqs. (8) and (9) hold for n = 1 and n = 2.
Let us now assume that they hold for n = r − 1 and prove that they also hold for n = r. To this purpose,
we re-write Eq. (9) for n = r − 1 and x = y and then integrate both sides over (− ∞, x). By virtue of (2),
Eq. (8) with n = r then follows. To obtain Eq. (9) for n = r we make use of (3) and of the just obtained
expression of Fr(x). Hence,

fr+1(x) =
1

r! Ar+1

{
(x+)r +

r∑

ν=1

(−1)ν
r∑

j1=1

r∑

j2=j1+1

· · ·
r∑

jν=jν−1+1

{
[x − (aj1 + aj2 + · · · + ajν )]+

}r

+

−
[
(x − ar+1)+

]r + (10)

−
r∑

ν=1

(−1)ν
r∑

j1=1

r∑

j2=j1+1

· · ·
r∑

jν=jν−1+1

{
[x − (aj1 + aj2 + · · · + ajν + ar+1)]

+
}r

}
.

Eq. (10) identifies with Eq. (9) written for n = r since the curly brackets contains all and only all the38

following terms:39

1. [(x)+]r;40

2. [(x − a1)+]r , [(x − a2)+]r , . . . , [(x − ar+1)+]r;41

3. for 1 < ν ≤ r

(−1)ν
r∑

j1=1

r∑

j2=j1+1

· · ·
r∑

jν=jν−1+1

{
[x − (aj1 + aj2 + · · · + ajν )]+

}r

+

−(−1)ν−1
r∑

j1=1

r∑

j2=j1+1

· · ·
r∑

jν−1=jν−2+1

{[
x − (aj1 + aj2 + · · · + ajν−1 + ar+1)

]+
}r

≡ (−1)ν
r+1∑

j1=1

r+1∑

j2=j1+1

· · ·
r+1∑

jν=jν−1+1

{
[x − (aj1 + aj2 + · · · + ajν )]+

}r

;

4. (−1)r+1
{
[x − (a1 + a2 + · · · + ar+1]

+
}r

.42

This complete the induction. 243

3. A special case44

Let us assume that the random variables in {Xn}n∈N are identically distributed.45

Proposition 3.1. When an = a > 0 for all n ∈ N then

Fn(x) =
1

n! an

n∑

ν=0

(−1)ν

(
n

ν

) [
(x − νa)+

]n
, ∀n ∈ N, ∀x ∈ R (11)

and

fn+1(x) =
1

n! an+1

n+1∑

ν=0

(−1)ν

(
n + 1

ν

) [
(x − νa)+

]n
, ∀n ∈ N, ∀x ∈ R. (12)

3
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Proof. Eq. (11) follows from (8) after noting that now An = an and that

aj1 + aj2 + · · · + ajν = νa

for ν = 0, 1, . . . , n. Indeed, in the sum on ν in (8), the term in curly bracket becomes [(x − νa)+]n, so that

n∑

j1=1

n∑

j2=j1+1

· · ·
n∑

jν=jν−1+1

{
[x − (aj1 + aj2 + · · · + ajν )]+

}n

=
(

n

ν

)
·
[
(x − νa)+

]n
.

Eq. (12) follows from (9) by a similar argument.1 246

Hereafter, for simplicity we shall take an = a = 1 for all n ∈ N. Then, from Eqs. (3) there follows

fn+1(x) = Fn(x) − Fn(x − 1), ∀n ∈ N, ∀x ∈ R (13)

so that
fn+1(k) = Fn(k) − Fn(k − 1), ∀n ∈ N, k ∈ {0, 1, . . . , n + 1}, (14)

whereas from Eqs. (11) and (12) one obtains

Fn(k) =
1
n!

k∑

ν=0

(−1)ν

(
n

ν

) [
(k − ν)+

]n
, ∀n ∈ N, k ∈ {0, 1, . . . , n} (15)

and

fn(k) =
1

(n − 1)!

k∑

ν=0

(−1)ν

(
n

ν

) [
(k − ν)+

]n−1
, ∀n ∈ N, k ∈ {0, 1, . . . , n}. (16)

Proposition 3.2. When an = a = 1 for all n ∈ N then

Fn(x) =
k∑

j=1

fn+1(x + j − k), ∀n ∈ N, k ∈ {1, 2, . . . , n}, k − 1 ≤ x ≤ k. (17)

Proof. Starting from (13), by iteration it follows that

Fn(x) = fn+1(x) + Fn(x − 1) = fn+1(x) + fn+1(x − 1) + Fn(x − 2)

= · · · =
k∑

j=1

fn+1(x + j − k) + Fn(x − k).

Since x − k ≤ 0, one has Fn(x − k) = 0, which completes the proof. 247

Proposition 3.3. When an = a = 1 for all n ∈ N then

∫ k

k−1

Fn(x) dx = Fn+1(k), ∀n ∈ N, k ∈ {1, 2, . . . , n}. (18)

1Note that Eqs. (11) and (12) obtained by us as a special case of (8) and (9) are in agreement with a result due to Feller
(1966).

4
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Proof. Making use of (17) one obtains
∫ k

k−1

Fn(x) dx =
k∑

j=1

∫ k

k−1

fn+1(x + j − k) dx =
k∑

j=1

Fn+1(x + j − k)
∣∣∣∣
k

k−1

=
k∑

j=1

[Fn+1(j) − Fn+1(j − 1)] = Fn+1(k) − Fn+1(0).

The proof is then a consequence of Fn(0) = 0 for all n ∈ N. 248

Consider now the event Sn,k = {k − 1 ≤ Sn ≤ k} and let Pn,k := P (Sn,k). From (14) it follows that

Pn,k = Fn(k) − Fn(k − 1) = fn+1(k), ∀n ∈ N, k ∈ {1, 2, . . . , n}. (19)

Lemma 3.1. When an = a = 1 for all n ∈ N then

P (Sn+1 ≤ k, Sn,k) = Fn+1(k) − Fn(k − 1), ∀n ∈ N, k ∈ {1, 2, . . . , n}. (20)

Proof. Let n ∈ N and 1 ≤ k ≤ n. Then,

P (Sn+1 ≤ k, Sn,k) = P (Xn+1 ≤ k − Sn, Sn,k) =
∫∫

T

fXn+1(x)fn(y) dx dy

where T denotes the domain in the x-y plane defined by 0 < x < 1 and k − 1 < y < k − x. Hence, by
integration along the y-axis from k − 1 to k − x, for all x ∈ (0, 1) we obtain

P (Sn+1 ≤ k, Sn,k) =
∫ 1

0

dx

∫ k−x

k−1

fn(y) dy =
∫ 1

0

Fn(k − x) dx − Fn(k − 1)

=
∫ k

k−1

Fn(x) dx − Fn(k − 1). (21)

Eq. (20) follows from (21) and (18). 249

Lemma 3.1 will be used to prove the following theorem.50

Theorem 3.1. When an = a = 1 for all n ∈ N then

P (Sn+1 ≤ k|Sn,k) =
k

n + 1
, ∀n ∈ N, k ∈ {1, 2, . . . , n}. (22)

Proof. Let k = 1. ∀n ∈ N, from (15) there follows Fn(1) = 1/n!, whereas Fn(0) = 0. Hence, making use
of (19) one obtains

P (Sn+1 ≤ 1|Sn,1) =
P (Sn+1 ≤ 1, Sn,1)

Pn,1
=

Fn+1(1) − Fn(0)
Fn(1) − Fn(0)

=
n!

(n + 1)!
=

1
n + 1

. (23)

This proves (22) for k = 1. From (23) it follows that

1
n + 1

≡ P (Sn+1 ≤ 1|Sn,1) = E [P (Xn+1 ≤ 1 − y|Sn,1, Sn = y)] = 1 − E [Sn|Sn,1]

which ultimately implies
E [Sn|Sn,1] =

n

n + 1
.

Since X1, X2, . . . , Xn are uniform iid random variables, the mean of each of them conditional on Sn,1 is51

1/(n+1). Hence, given that Sn,1 occurs, the means of S1, S2, . . . , Sn partition [0, 1] into n+1 equally wide52

intervals. Therefore, for 1 < k ≤ n, if Sn,k occurs, the interval that is partitioned into n + 1 equally wide53

intervals is now [0, k]. This implies that Xn+1 cannot exceed k/(n + 1) to insure that Sn+1 remains below54

k. 255

5
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Corollary 3.1. When an = a = 1 for all n ∈ N then

E [Sn|Sn,k] =
n

n + 1
k, ∀n ∈ N, k ∈ {1, 2, . . . , n}. (24)

Proof. Due to Theorem 3.1 one has

k

n + 1
≡ P (Sn+1 ≤ k|Sn,k) = E [P (Xn+1 ≤ k − y|Sn,k, Sn = y)] = k − E [Sn |Sn,k]

which ultimately yields Eq. (24). 256

Corollary 3.2. When an = a = 1 for all n ∈ N then

E
[
Sn1Sn,k

]
=

n

n + 1
kPn,k, ∀n ∈ N, k ∈ {1, 2, . . . , n}. (25)

Proof. Since

E [Sn|Sn,k] =
E

[
Sn1Sn,k

]

Pn,k
,

Eq. (25) follows from (24). 257

Proposition 3.4. When an = a = 1 for all n ∈ N then

n

n∑

k=1

kfn+1(k) = (n + 1)
n∑

k=1

Fn+1(k), ∀n ∈ N, k ∈ {1, 2, . . . , n}. (26)

Proof. Let n ∈ N. From (19) and (25) we obtain

n

2
= E [Sn] =

n∑

k=1

E
[
Sn1Sn,k

]
=

n

n + 1

n∑

k=1

kfn+1(k). (27)

Making use of (18), we are easily led to

E [Sn] ≡
∫ n

0

xfn(x) dx = xFn(x)
∣∣∣∣
n

0

−
∫ n

0

Fn(x) dx = n −
n∑

k=1

∫ k

k−1

Fn(x) dx = n −
n∑

k=1

Fn+1(k).

Hence,
n

2
=

n∑

k=1

Fn+1(k). (28)

Eq. (26) finally follows by equating the right hand sides of (27) and (28). 258

The forthcoming recursive formulas are a consequence of Theorem 3.1.59

Proposition 3.5. When an = a = 1 for all n ∈ N then

Fn+1(k) = Fn(k)
k

n + 1
+ Fn(k − 1)

n + 1 − k

n + 1
, ∀n ∈ N, k ∈ {1, 2, . . . , n + 1}. (29)

6
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Proof. Let n ∈ N and 1 ≤ k ≤ n + 1. From (19) and (20) one obtains

P (Sn+1 ≥ k, Sn,k) = Pn,k − P (Sn+1 ≤ k, Sn,k) = Fn(k) − Fn(k − 1) − Fn+1(k) + Fn(k − 1),

or
P (Sn+1 ≥ k, Sn,k) = Fn(k) − Fn+1(k). (30)

On the other hand,

P (Sn+1 ≥ k, Sn,k) = P (Sn+1 ≥ k|Sn,k)Pn,k = [1 − P (Sn+1 ≤ k|Sn,k)] Pn,k.

Hence, from (19) and (22) one derives

P (Sn+1 ≥ k, Sn,k) = Fn(k) − Fn(k − 1) − k

n + 1
Fn(k) +

k

n + 1
Fn(k − 1). (31)

Eq. (29) then immediately follows after equating the right hand sides of (30) and (31). 260

Note that (29) trivially holds also for k = 0, yielding 0 = 0.61

Remark 3.1. Since

E
[
Sn1Sn,k

]
=

∫ k

k−1

xfn(x) dx = xFn(x)
∣∣∣∣
k

k−1

−
∫ k

k−1

Fn(x) dx

= kFn(k) − (k − 1)Fn(k − 1) − Fn+1(k).

Eq. (25) can be alternatively obtained via (29).62

Proposition 3.6. When an = a = 1 for all n ∈ N then

Pn+1,k = Pn,k
k

n + 1
+ Pn,k−1

n + 2 − k

n + 1
, ∀n ∈ N, k ∈ {1, 2, . . . , n + 1}. (32)

Proof. Let n ∈ N and 1 ≤ k ≤ n + 1. By difference of Eqs. (29) written for k and for k − 1, one obtains

Pn+1,k = Pn,k
k

n + 1
+ Fn(k − 1)

1
n + 1

+ Pn,k−1
n + 1 − k

n + 1
− Fn(k − 2)

1
n + 1

,

whence (32) follows after noting that Fn(k − 1) − Fn(k − 2) = Pn,k−1. 263

Proposition 3.7. When an = a = 1 for all n ∈ N then

fn+1(k) = fn(k)
k

n
+ fn(k − 1)

n + 1 − k

n
, ∀n ∈ N, k ∈ {1, 2, . . . , n + 1}. (33)

Proof. Let n ∈ N and 1 ≤ k ≤ n + 1. From (19) and (32) it follows that

fn+1(k) = Pn,k = Pn−1,k
k

n
+ Pn−1,k−1

n + 1 − k

n
.

By making again use of (19), Eq. (33) is finally obtained. 264
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