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Abstract

We consider local smoothing of datasets where the desigrespahed-dimensional§ > 1) torus and the response
variable is real-valued. Our purpose is to extend leastreguacal polynomial fitting to this situation. We give both
theoretical and empirical results.
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1. Introduction

A circular observation can be regarded as a point on the unit circle dineation in the plane. Once an initial
direction and an orientation of the unit circle have beersehng any circular observation may be represented by an
angled e [0, 2r). Typical examples include flight direction of birds from aift of release, wind and ocean current
direction, energy demand over a period of 24 hours when tlesarements are taken over a time interval much longer
than the day and when the times of the day are recorded. Alairobservation is periodic, i.ed, = 6 + 2mx for
m € Z. This periodicity sets apart circular statistical anadyfsom standard real-line methods. Recent accounts are
given by Jammalamadaka & SenGupta (2001) and Mardia & Jugg9(1

A much less studied subject is local regression in the cas@r@flar predictors and real-valued responses. Its
practical relevance is easily seen when considering thiysiaaf meteorological data, or more generally in earth
and environmental sciences. Silverman (1986, sec. 2.yg)ests fitting data replicated along the interva?f, 4r),
with a smoothing degree depending on the original sampée 3ilze only alternative approach appears to be periodic
smoothing splines, introduced by Cogburn & Davis (1974)th\ag specific and reasonably simple appears to exist
for the high-dimensional case, although this seems neededny applications. For example, it could be of interest
to predict ozone concentration given the wind direction8aath and at noon. In this example, the number of angles
isd = 2, but this could easily be extended by considering moretimes or time points for the explanatory wind
directions; see Mardia & Jupp (1999, pp. 1-12) for furthearaples.

In this paper we extend least squares local polynomial dittRuppert & Wand 1994, for example) to the case
when a design poirtis a vector of anglesi(, - - - ,04)" € [0, 27)9, and the response is real-valued. Geometricélly,
identifies a point of @-dimensional torus made of the cartesian productaiit circles. Our strategy is twofold. We
i) introduce a class of circular weight functions {@rnel3, andii) locally approximate the design density and the
regression function by thgth degree polynomial

d p
o+, > Bysiri(- - 6)). (1)
j=1 t=1

Pointii) is motivated by the fact that theft#rence between two angular observations needs to be miairZakr, m €
Z. Moreover, because s#)(« 6 asé tends to 0, the polynomial (1) satisfies a Taylor series fmegation.
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In Section 2 we define the kernels suitable for our polynofiitiithg, and explore theirféiciency properties. In
Section 3 we consider the local linegr £ 1) regression estimator, along with conditional mean segharror and
optimal smoothing. We also extend the analysis, for unétarpredictors, to generpl Finally, Section 4 contains a
small simulation study to illustrate the finite sample bébawof the results.

2. Circular kernels

2.1. Definitions
We introduce our kernels in the one-dimensional settingh@un approach seems adequate in that we will use as
weight functions products of univariate kernels, as thas@eometry allows for.

Definition 1. (Circular kernels of order r) A circular kernel, of order r and concentration (smoothimgrameter
k> 0, is a function K : [0, 27) — R such that

i) itadmits, atd € [0, 2r), a convergent Fourier series representatibif2r){1 + 2 3152, yj(x) cos(o)};

ii) denotingn;(K,) := " sin (6)K,(6)d6, then
no(Ke) =1, nj(Ko) =0 for 0< j<r, and n(K,) #0;

i) as« increasesf_fE K.(8)dg tends tol for € € (0, ).

Conditioni) specifies that the kernel is symmetric around the null meattion. The quantity;(K,) in i) plays
a similar role as thgth moment of a symmetric kernel in the linear theory, being zj is odd.

Remark 1. Most of the usual circular densities, which are symmetriowttihe null mean direction, are included in
Definition1 as second-order kernels — this includes the kernel unifamfr-@/{« + 1}, 7/{x + 1}). Dirichlet and Fejér
kernels

sin((k + 1/2}6) F.(0) = 1 [sin@x+16/2)F
2rsin@/2) T 2nk+ )| sin@/2) |

are both circular kernels. In particular, Phas orderx + 1 if « is odd, andk + 2 otherwise, while Ehas order2.

Dk(e) = eN

Remark 2. Our order definition is consistent with the techniques usedbtaining higher order kernels starting
from second-order ones. As an instance, we apply a techmifjuejeuneé Sarda (1992), to get a result useful in
Theorem 4. Given a second-order circular kerngl ket E, be a matrix of order + 1 with (i, j) entry given by
ni+j-2(K¢), andU, be the same aB, with the first column replaced Ky, sin(), - - - ,sirf())7. Then

Ul

K (©) = EKK(H),

is a circular kernel of order + 1 when¢ is odd, and of ordef + 2 otherwise.

Remark 3. The univariate setting allows for a comparison with presauwrk. Our kernels include kernels on the
sphere which are functions efl — cos@)} studied by Beran (1979), Hall et al. (1987), Bai et al. (1988¥ Klemela
(2000). However, the kernels,PF, and the wrapped Cauchy are not of this latter form, yet futfd tonditions of
Definition 1.

2.2. Kernel ¢iciency
We discuss thef@ciency of our kernels in the density estimation setting lovaleasy comparisons with the
standard theory.

Definition 2. (Kernel circular density estimator) Let®;, - -- ,®, be a random sample from a bounded, continuous
circular density f. Given a circular kernel Kthe kernel estimator of f @&e [0, 2r) is defined as

6.0 = =) K(0-9). @
i=1
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The diiciency theory of euclidean kernels (p. 42 Silverman 1986 ,efaample) is based on the fact that the
bandwidth and the kernel have separable contributionstoéan integrated squared emtiBE[(] : = f E[(§-9)3 =
f(E[g] -2+ fVar[g], whereg gives the kernel estimate of the curyat a point of the domain. Unfortunately, this
is not the case for thRISE of (2). In fact, we have

Theorem 1. Given a random sampl@y, - - - , ®, drawn from a density f, lef(- ; «) be the kernel circular density
estimator equipped with the second-order kerngliK

i) limnseoyj(x) = 1, for each je 7+,
i) limpeon™t P ij(K) =0
ii) f” is continuous and square-integrable;
then

. 1+2%7, Y2k
WISE[ (0] = a5l [ (P @R a2 o)
0

16 2nn
Proof. See Appendix. |

Remark 4. The MISE of Hall et al. (1987) is very similar to that above. For examptonsider the von Mises
kernel, for whichy;(x) := I'j(x)/Zo(x), Z(-) being the modified Bessel function of the first kind and ordddging
the notation of (3.7) in Hall et al. (1987), we havei(gca(k) = Zo(2¢)/[27{Zo(x)}?] = {1+ 2 %2, ¥5(x)}/(27) and
1-co(k)Ci(x) = 1 — I1(k)/To(x) = 1 - y1(x), consequently their asymptotiti SE differs from the leading terms in
the aboveMISE of an order of @x™%).

In our dficiency analysis we need

Result 1. Let®,,---,0, be a random sample from a circular density f having Fourieieseexpansion ®) =
1/(2m)[1 + 2 X524 {ej cos(j0) + 6 sin(jo)}] for 6 € [0, 27). Then

MISE[f(- ;)| = % Z‘{yj(K) ~1P2(@? + %) + % Z;y,?(x)(l —a?-5?).
i= j=

Without loss of generality we can suppose that the meantiireis 0, and we consider only densities and kernels
which are fully specified by their concentration parameterspectively denoted asand. For the above decom-
position, when considering the (relativeieiency of two circular kernels, the smoothing parametersatdcancel”
and so their equivalence needs first to be established asvfolFor fixegp andn, we can obtair to minimizeMISE
for a given kernel function. Thefleciency of one kernel relative to another may then be measwr¢aking the ratio
of the minimizedVISEs.

As the Dirichlet kernel (k) = 1;j<q) is of higher order fok > 1 — and so expected to be asymptotically more
efficient — we have measured thffieiency of other kernels relative to this one. In Figure 1 wevglthe relative
efficiency of the von Miseswrapped normgi (k) = sz), and Fejér (k) = Ljjcq(k + 1 - j)/(x + 1)) kernels for
n = 5,25,125 625 for the von Mises and wrapped Cauchy & pi;éj = 0) distributions. Not surprisingly, the
wrapped Normal and von Mises kernels are very similar, artl boe better than the Fejér kernel. For snmalthe
von Mises kernel is morefigcient that the Dirichlet kernel; markedly so for the Cauckstribution, or for data with
low concentration.

3. Local polynomial regression

3.1. Linear fitting with von Mises based kernels
Consider the datas¢{®;, Y;),i = 1,---,n}, where®; := (0j1,---,0)7, andY; € R are both observable, ab-
solutely continuous, random variables taking values resmgy in [0, 27)¢ andR. ¢From now on we will assume
that
Yi = (@) + 7(Oi)ei, i=1---,n
3
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Figure 1: Relative #iciency of Fejer (—), wrapped normal (- - - - - ), and von Miges ) kernels to the Dirchlet kernel, for various valuesnof
With respect to the underlying true density, the left groopresponds to the von Mises distribution with= 71(v)/Zo(v), while the right group
corresponds to the wrapped Cauchy distribution.

whereo?(-) is the conditional variance &f andg;s are real-valued random variables with zero mean and umétnee.
Our objective is to construct an estimatoma() as a function of the dataset when b@ifs ande;s arei.i.d..
Let Po(-;B) = Bo + Z?:l,b’j sin( — 6;), and suppose thah(y) =~ Py(y;B) for ¢ in a neighborhood of. Here

Po(60; B) = Bo, which motivates estimating(6) by So. Recalling that for very small values 6fwe have sinf) = 6,
then a Taylor series expansion justifies bggfand the valueg;, j = 1,---,d, as estimates of the partial derivatives
Bj = om()/0;. Viewed as local least squares estimatggs; - - , 84 minimize XL, (Y; — Po(Oi; B)}°W(O;, ) where
w(@;, §) is the weight function, (a symmetric, continuous funciistegrating to 1) which, if strictly positive, decreases
with some distance betwe®) andd. Now we provide an explicit expression {84 together with itd_, properties.

Lety:= (Y1, -+, YT be the response vector,
1 sin@i1—61) - Sin@1qg - 6by)
9:=|: : : :
1 sin@n—-61) -+ SiN@ng— 6d)
the design matrix, and

W := diag {Kc(@1 - 0), - - - , Kc(On — 6)}

the weight matrix, wher€ := «I, | denoting the identity matrix of ordef, and
d
K@ -0) = [ [K®;-6p), i=1-.n @)
j=1
The local linear kernel estimator of(6) is given by the first entry of the vector
n
B:=arg min ) (Yi - §0)’Kc(®, - 6),
i=1

whereg := (8o, B, - ,Ba)T. Assuming the non-singularity @"W®, standard weighted least squares theory yields
B =(0"™We)0™Wy, and
m(g; C) = e/ (0'WO) '0"Wy, )
4



wheree; is a d + 1) x 1 vector having 1 as thgh entry and 0 elsewhere.
Given its dficiency, as well as its prevalence in kernel smoothing ofut#icdata, we firstly give results when the
von Mises kerneV, () := expk cos()}/{2rIo(x)} is used to define thé-dimensional weight function.

Theorem 2. Given the datasef(®;, Y;),i = 1,---,n}, where®;s are i.i.d. observations from the circular design
density f, and )6 are i.i.d. real-valued random variables , take the locakkr kernel regression estimatdy(- ; C)
equipped with the weight functiors{®; — 0) := ]‘[‘j’:1 Vi(®ij — 0;). Assume that
D) liMpsek™t =0;
i) liMmpsen k%2 = 0;
iii) the conditional variancer? is continuous, and the density f is continuousffedentiable;
iv) all second-order derivatives of the regression funetio are continuous.

Then atf € [0, 2)¢ the conditional mean squared error 36 ; C) is given by

T1(x)
k2 o(k)

+ 0p (K_Z + n_le/Z) , (5

Io(2¢) |" o?(6)
ZH{IO(K)}Z] nf(6)

2
el ;0 - m@) 1030 = 3 { 0 b0

whereH (@) denotes the Hessian matrix of méat
Proof. See Appendix. O

Once more, in the proof of the above theorem a major techisisaé is that the concentration parameteannot
be “separated” from the kernel.

Remark 5. Sincex corresponds to the inverse of the squared bandwidth of thédean smoother, the remainder
term in (5) is consistent with that obtained by Rupgeivand (1994).

Finally, the optimal smoothing degree is given by

Corollary 1. The concentration parameter which minimizes the asyngpioéan squared erroi,e. the first two
summands in RHS of formula (5), is

tr*{Hm(@)}n f(8))22%'x |49
d2a4(0)

Proof. See Appendix. |

3.2. Generalizations and extensions
The results of Theorem 2 can be generalized to the class ohdearder circular kernelk,. Given the square-
integrable functiory, defineR(g) := [ ¢?, then

Theorem 3. Given the datase{®;, Yi),i = 1,---,n}, where®;s are i.i.d. observations from the circular design
density f, and 6 are i.i.d. real-valued random variables, take the locakkr kernel regression estimatéy- ; C)
equipped with the weight function in (3) with. Keing a second-order circular kernel. Assume conditiongfi)
Theorem 1, and iii) of Theorem 2, together with

i) limhoenR(Kc) = 0.
Then, a# € [0, 27)Y,
R(Kc)a?(6)
nf(6)
Proof. See Appendix. |

L 1C) - mO) | @3, 04] = 2(1 - 72 (A Ho(0)) + + 05(1).

It would be of interest to determine the optimal smoothingrée in this case, but since the fogentsy;s
depend o in a specific way for each kernel, the result in Corollary 1dsthto generalize. Concerning the extension
to higher-degree polynomials and whatever second-ordarlar kernel, we have

5



Theorem 4. Given the datase{(®;,Y;),i = 1,---,n}, where®;s are i.i.d. observations from the circular one-
dimensional density f, and¥are i.i.d. real-valued random variables, take the locdl gegree polynomial regression

estimatoni(- ; k) equipped with a second-order circular kerngl. KAssume conditions i) of Theorem 1, iii) and iv) of
Theorem 2. Moreover, assume that

i) for the kernelK(p in Remark2, limn_., " R(K(g) = 0
i) m(P*3 is continuous in a neighborhood éf

Then, for any € [0, 2r),

P+ i€ i .
ELf(0: ) ~ M(6) | O, O] = { np”g“”; {"*&i‘:(e; ?ei)(i)gmm} A z;:n;::
p+28WA () \ TFE)(prD)! (p+2)! P\ '
and
Var[m(6 : k) | Oy, - - -, Bn] = R(K(p) fEG; {1+ 0p(1)}.
Proof. See Appendix. O

4. Simulation results

We briefly explore the asymptotic result given by Theorem Zisimulation study. We first investigate the
dependence of the mean squared errof,orand« whend = 1 and choose a sharp-peaked response

m(®) = 2+ sin (@ - 1.27) + 3exp{ 10(15(9 n)) }

with & ~ N(0, 1), 0(®;) = 1/2, and®;, i = 1, - - -, n coming from a von Mises density with meamnd concentration
parameter 1. We estimate(d) at 9 = 0,2,3 and compare the average squared error of (4) with the asyimpt
mean squared error given in Theorem 2 ovdor n = 50 andn = 500. The results are displayed in Figure 2,
and the asymptotic nature of the result is clear. Note thav#iues of the second derivativerafat 6 = 0, 2,3 are
—0.59,0.98, 14089, respectively, which explains the poorer performanee-as.

Secondly, we explore the dependencealoim this case we use the model

d
m(6) = éZsinHi d(d ) Zcos@. COosY; (d=2)
i=1

where@ = (61, ,609)", 02(®) = 1/2,i = 1,---,n, andf is a product of (independent) von Mises densities with
mean zero and concentration parameter 1. We estim@®eatd = (0,--- ,0)" and ¢/2,---,n/2)" for a range ok,

for n = 500. Figure 3 shows good agreementdot 2 between the average squared error and the asymptotic mean
squared error. However, we note increasingly poor behawsd increases, indicating that the asymptotic nature of
the result also depends dnand again illustrating the well-known phenomenon oftbese of dimensionality

Appendix
Proof of Theorem 1 ExpressK,(6) in terms of a Fourier series, and, recalling that for veryabmalues ofu

sin(u) = u, use the expansiof(u + 6) = f(6) + sin(u) f’(6) + 1/2 sirf(u) f(6) + O{sin*(u)}. Then, starting from (2),
make a change of variable and use assumplitmget

. 21
E[f(6; )] = fo Ko — 0)F()dy

21
=f Ke(u) f(u+ 6)du
0

= f(0) *2 1 v2()} £ (6) + o(1).
6
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Now, recalling assumptioris andii), we have
~ 1~ ) 1 a2
Varlf0] = 5 [ 1K - 0P - 3 [ELF@: 0]
nJo n

21
-2 [T @P@) + owidu- 110 +ow)?

_ %ﬂ {1 + 2%%(@} £(6) + o(1).

Proof of Theorem 2 Put
S@I_g = {sin(@)il - 91), e ,sin(@id - Hd)}T, i= 1,---,n

and useDgy(6) to denote the first-order partial derivatives vector offilnectiong até. To derive the conditional bias,
we firstly note that (4) yields
E[/(#;C) | O1,--- ,0,] = ](0"WO)'0'Wm, (6)

wherem := {m(@;), - - -, m(Op)}T, andW := diag {Vc(®1 - 6), - - - , V(O — 0)}. Using the expansion

Sp,_sHm(6)So,-0

+ Rm(6) ,

m:(-)[ m(6) ] 1

Dm(a) 5 !
Sg)nfeH m(0)Se,-¢

whereRy,(0) denotes the remainder, we have that the first term in thersigaof (6) ism(@). Thus
Sb,-oHm(0)Soe,-0
l 1
E[f(6; C) - m(6) | O3+, O] = S€[(@"WO)'0'W : + R(6)
S5, _sHm(8)So, 0

Observe that

T y Zinzl VC(G)i - 0) Zinzl VC(G)i - 0)ST‘_9 ]
o Wog [ N Ve(® - S0 s T1y Ve(® - 0)So 05, ™
and S H O
@TW ©1-6 m 1-0 ~ [ in:l VC(G)i - O)Sgingm(g)S@fe ] (8)
| 2 Ve(©i - ) {Sh,_,Hm(8)So,0} So,0

Sgn_gHm(e)S@n,g
then, using the expansion
f(u+6) = £(6) + S\ D1(6) + O(S[S) ,
and recalling assumptidh, a change of variables leads to these approximations

1 n
- ; Ve(®; - 6) = f{o - Ve(a - 6) f(a)da + 0p(1)

= 1(6) + 0p(L);

1 n
Ly Ve(@r - )50, = f Vo(a - 6)S,-of(@)da + 0y(1)
i1 [0,27)d

_ 1)
To(k)
8

C'D¢(h) + 0p(C11);




1 n
- D Ve(©i - 6)So, S}, 4 = Ve(a - 6)Sy_S!_, f(a)da + op(1)
i=1 [0,27)d

_I1(®)

—1 -1y.
= 70 C 1O+ oY

L3 Ve, ~ OS], Hn(0)So,0 = f Ve(@ = 0)S]_oHm(6)Ss-of (@)der + 0(1)
i—1 [0,27)d

_ Ii(x)
 kZo(k) !

(Hm(@)}1(0) +0p () ;

% zl] Ve(©i - 6) {Sp,_sHm(6)Se, -4} So,-s = f[o oy V@0 {ST_oHm(6)Su-0} Su-o f (@)dar + 0p(2)
= 0p(C?D);
wherel is the unit vector of lengtd. Hence, recalling assumptignwe have
el (n'0'WO) = [ (F(B) 1+ 0p(1) ~Di(O)T(FO)2 +0p(D) |,

thus

1 ]1(K) _
AP tr {Hm(8)} + op(k ™).

For the conditional variance, according to multivariatealdinear regression theory

E[M(6; C) —m(6) | Oy, -- -, O] =

Var[(; C) | ©1, -+, Op] = €] (0"WO) '0"WEWO(@'WO) ‘e,
whereX := diag {c3(@1), - - - , 7?(0y)}. Consider that

1YL {Ve(Oi - 0)20%() Nt 3L {Ve(Oi - 0)1°S],_,02(0)

-1 T _
ne WEW@‘[ M 30 (Ve(O) - 6))2S0,_oo?(@) 1 12.,1 V(O — 0)12S0,_15)_,0%(O)

and approximate the components of the above matrix usinfptiogving relationships

1 n
n iZl:{Vc(@)i - 0)20(@) = \f[;),zﬂ)d{vc(@i — 0)120?(a) f(@)da + 0s(1)

d
_ [ZTI{ 3_(02(’3}2] o2(O) 1 (B)(L + 0p(L))
1Zn: Ve(®i - 0)1°S, _,o%(0) —f {Vc(ai - 0)12S!_,0?(a) f(a)da + 0p(1)
n - C\Yi -0 i) = (0,20 C —0 P
=0p(1);

1
£ 2 IVe(®: - 080 oS],_02(O) = [ Velw - 0,18 (@) (@)dar + 0,(1)
n [0,2”)d

F(2,k2) [ To(2x)

d-1
" TP 27T{I0(K)}2] OO +0p(1))

©

(10)



where 7 (2, x2) = {To(K))? + {71(K)}2 + 2332, 71T (k) — Tj-2(x)} is the regularized confluent hypergeometric
function of the first kind. Combining the previous resultshwthe approximations in (9), and recalling assumpiipn
we finally obtain

To(2¢) |" o2(6)

Var[in(e:; _ |29 [ 2 A 1,472y
ar[(0; C) | O, -, 0] [Zﬂ{fo(K)}z nf ) +0p(n«%9)
O
Proof of Corollary 1. Replacel;(«)/To(«) by 1 with an error of magnitud®(«~1), and use
d d/2
iim | 229" (i) :
o | 2n(To(Q)2| ~ \4n
then minimize the asymptotic MSE. O
Proof of Theorem 3. Follow the proof of Theorem 2, witKc(®; — 6) asith entry of the weight matrix,=1,--- ,n.
In particular, to derive the conditional bias firstly notath
OTWE - [ (6) + 0p(1) 1/2/1~ () D}(6) + 0p(1) ]
1/2{1 - y2(k)}D(0) + 0p(1)  1/2{1 - y2(x)}(O)! + Op(l) |’
and, in virtue of assumptioip of Theorem 1,
e (n'o'We) !« [ {f@)) ™ +0p(1) -DLO)F(6)} 2+ 0p(1) ] .
Moreover, observe that
S(TargHm(o)S@l,g
loTW : N { 1/2(1 = y2()tr{Hm(6)}£(6) + 0p(1) ]
: R Op(1) ’
S5, _oHm(6)So,-0 P
to get
N 1
E[M(6; C) —m(6) | ©1, -~ , On] = {1 = y2())tr{Hm(8)} + 0p(1).
To derive the conditional variance, observe that the upgfeentry of the matrix (10) generalizes as
1 : 2.2 2
= D Ke (@1~ 0)P0?(©1) = RIK)o(6) f ()(1 + 0p(1).
i=1
whereR(Kc) = {R(K))! = {(21) (1 +2 %5, yJ.Z(K))}d, the diagonal blocks amy,(1), whereas letting
[Y3(K) + Y2(K) + 2 252, ¥i (tyi(6) — yj-2(HR(K )T
A(Kc) = 2 s
TT
whereyo(x) = foz" K.(0) cos(0Wé = 1, the lower-right entry is
1 n
= Z{KC(G)i - 0))°Se,-9Sh,_0 (@) = A(Kc)a?(0) f(0){1 + 0p(1)} .
i=1
Hence, it finally results
. _ R(Kc)o*(6)
Var[n(@; C) | @1, -+, On] = nt@) {1+0p(1)}.
O

Proof of Theorem 4. Follow the proof of Theorem.4 of Ruppert & Wand (1994) with these two recommendations:
in the design matrix replac&{— x)!, with sin/(®; —6), and use the expansidifu+6) = f(6)+sin(u) f’(6) + O{sir?(u)).
10



In particular, to derive the conditional bias, @) be the matrix of ordep + 1 having asi( j) entryni,j-1(K,), and
observe that, in virtue of assumptignof Theorem 1n1@™WO = f(H)Ep + f/(6)Qp + 0p(1), With E, being the
matrix defined in Remark 2, to get

rn(ne'wWe)™ = f(6) HriE;t - £(0)f()) I E, QuER" + 0p(1).,

wherery is a (p + 1) x 1 vector having 1 as first entry and O elsewhere. For the donditvariance, denoting as
T, the matrix of ordem + 1 having [ sin*1=?(u){K.(u)}*du as {, j) entry, and recalling conditioi, it follows that
nlO@™W?0 = f(6)Tp + 0p(l). O
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