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Local polynomial regression for circular predictors

Marco Di Marzioa, Agnese Panzeraa, Charles C. Taylorb,1

aDMQTE, Università di Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy.
bDepartement of Statistics, University of Leeds, Leeds LS2 9JT, UK.

Abstract

We consider local smoothing of datasets where the design space is thed-dimensional (d ≥ 1) torus and the response
variable is real-valued. Our purpose is to extend least squares local polynomial fitting to this situation. We give both
theoretical and empirical results.

Key words: Circular data, circular kernels, von Mises weight function, weighted least squares.
2000 MSC:62G07 - 62G08 - 62G20

1. Introduction

A circular observation can be regarded as a point on the unit circle, or adirection in the plane. Once an initial
direction and an orientation of the unit circle have been chosen, any circular observation may be represented by an
angleθ ∈ [0, 2π). Typical examples include flight direction of birds from a point of release, wind and ocean current
direction, energy demand over a period of 24 hours when the measurements are taken over a time interval much longer
than the day and when the times of the day are recorded. A circular observation is periodic, i.e.,θ = θ + 2mπ for
m ∈ Z. This periodicity sets apart circular statistical analysis from standard real-line methods. Recent accounts are
given by Jammalamadaka & SenGupta (2001) and Mardia & Jupp (1999).

A much less studied subject is local regression in the case ofcircular predictors and real-valued responses. Its
practical relevance is easily seen when considering the analysis of meteorological data, or more generally in earth
and environmental sciences. Silverman (1986, sec. 2.10) suggests fitting data replicated along the interval [−2π, 4π),
with a smoothing degree depending on the original sample size. The only alternative approach appears to be periodic
smoothing splines, introduced by Cogburn & Davis (1974). Nothing specific and reasonably simple appears to exist
for the high-dimensional case, although this seems needed in many applications. For example, it could be of interest
to predict ozone concentration given the wind directions at6am and at noon. In this example, the number of angles
is d = 2, but this could easily be extended by considering more locations or time points for the explanatory wind
directions; see Mardia & Jupp (1999, pp. 1–12) for further examples.

In this paper we extend least squares local polynomial fitting (Ruppert & Wand 1994, for example) to the case
when a design pointθ is a vector of angles (θ1, · · · , θd)T ∈ [0, 2π)d, and the response is real-valued. Geometrically,θ
identifies a point of ad-dimensional torus made of the cartesian product ofd unit circles. Our strategy is twofold. We
i) introduce a class of circular weight functions (orkernels), andii) locally approximate the design density and the
regression function by thepth degree polynomial

β0 +

d∑

j=1

p∑

t=1

β jt sint(· − θ j). (1)

Pointii) is motivated by the fact that the difference between two angular observations needs to be minimalat 2mπ,m∈Z. Moreover, because sin(θ) ⋍ θ asθ tends to 0, the polynomial (1) satisfies a Taylor series interpretation.
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In Section 2 we define the kernels suitable for our polynomialfitting, and explore their efficiency properties. In
Section 3 we consider the local linear (p = 1) regression estimator, along with conditional mean squared error and
optimal smoothing. We also extend the analysis, for univariate predictors, to generalp. Finally, Section 4 contains a
small simulation study to illustrate the finite sample behaviour of the results.

2. Circular kernels

2.1. Definitions
We introduce our kernels in the one-dimensional setting. Such an approach seems adequate in that we will use as

weight functions products of univariate kernels, as the torus geometry allows for.

Definition 1. (Circular kernels of order r) A circular kernel, of order r and concentration (smoothing)parameter
κ > 0, is a function Kκ : [0, 2π)→ R such that

i) it admits, atθ ∈ [0, 2π), a convergent Fourier series representation1/(2π){1+ 2
∑∞

j=1 γ j(κ) cos(jθ)};

ii) denotingη j(Kκ) :=
∫ 2π

0
sinj(θ)Kκ(θ)dθ , then

η0(Kκ) = 1 , η j(Kκ) = 0 for 0 < j < r , and ηr (Kκ) , 0 ;

iii) as κ increases
∫ ǫ

−ǫ Kκ(θ)dθ tends to1 for ǫ ∈ (0, π) .

Conditioni) specifies that the kernel is symmetric around the null mean direction. The quantityη j(Kκ) in ii) plays
a similar rôle as thejth moment of a symmetric kernel in the linear theory, being zero if j is odd.

Remark 1. Most of the usual circular densities, which are symmetric about the null mean direction, are included in
Definition1 as second-order kernels – this includes the kernel uniform on [−π/{κ + 1}, π/{κ + 1}). Dirichlet and Fejér
kernels

Dκ(θ) :=
sin({κ + 1/2}θ)

2π sin(θ/2)
, Fκ(θ) :=

1
2π(κ + 1)

[
sin({κ + 1}θ/2)

sin(θ/2)

]2

, κ ∈ N
are both circular kernels. In particular, Dκ has orderκ + 1 if κ is odd, andκ + 2 otherwise, while Fκ has order2.

Remark 2. Our order definition is consistent with the techniques used for obtaining higher order kernels starting
from second-order ones. As an instance, we apply a techniqueof Lejeune& Sarda (1992), to get a result useful in
Theorem 4. Given a second-order circular kernel Kκ, let Eℓ be a matrix of orderℓ + 1 with (i, j) entry given by
ηi+ j−2(Kκ), andUℓ be the same asEℓ with the first column replaced by{1, sin(θ), · · · , sinℓ(θ)}T. Then

K(ℓ)(θ) :=
|Uℓ|
|Eℓ |Kκ(θ) ,

is a circular kernel of orderℓ + 1 whenℓ is odd, and of orderℓ + 2 otherwise.

Remark 3. The univariate setting allows for a comparison with previous work. Our kernels include kernels on the
sphere which are functions ofκ{1− cos(θ)} studied by Beran (1979), Hall et al. (1987), Bai et al. (1988)and Klemelä
(2000). However, the kernels Dκ, Fκ and the wrapped Cauchy are not of this latter form, yet fulfil the conditions of
Definition 1.

2.2. Kernel efficiency
We discuss the efficiency of our kernels in the density estimation setting to allow easy comparisons with the

standard theory.

Definition 2. (Kernel circular density estimator) LetΘ1, · · · ,Θn be a random sample from a bounded, continuous
circular density f . Given a circular kernel Kκ, the kernel estimator of f atθ ∈ [0, 2π) is defined as

f̂ (θ; κ) :=
1
n

n∑

i=1

Kκ(θ − Θi) . (2)

2
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The efficiency theory of euclidean kernels (p. 42 Silverman 1986, for example) is based on the fact that the
bandwidth and the kernel have separable contributions to the mean integrated squared errorMISE[ĝ] :=

∫
E[(ĝ−g)2] ≡∫

(E[ĝ] − g)2 +
∫

Var[ĝ], whereĝ gives the kernel estimate of the curveg at a point of the domain. Unfortunately, this
is not the case for theMISE of (2). In fact, we have

Theorem 1. Given a random sampleΘ1, · · · ,Θn drawn from a density f , let̂f (· ; κ) be the kernel circular density
estimator equipped with the second-order kernel Kκ, if

i) limn→∞γ j(κ) = 1, for each j∈ Z+;
ii) limn→∞n−1 ∑∞

j=1 γ
2
j (κ) = 0;

iii) f ′′ is continuous and square-integrable;

then

MISE
[
f̂ (· ; κ)

]
=

1
16
{1− γ2(κ)}2

∫ 2π

0

{
f ′′(θ)

}2 dθ +
1+ 2

∑∞
i=1 γ

2
j (κ)

2nπ
+ o(1) ,

Proof. See Appendix.

Remark 4. The MISE of Hall et al. (1987) is very similar to that above. For example, consider the von Mises
kernel, for whichγ j(κ) := I j(κ)/I0(κ), I j(·) being the modified Bessel function of the first kind and order j. Using
the notation of (3.7) in Hall et al. (1987), we have: c2

0(κ)c2(κ) = I0(2κ)/[2π{I0(κ)}2] = {1 + 2
∑∞

i=1 γ
2
j (κ)}/(2π) and

1− c0(κ)c1(κ) = 1 − I1(κ)/I0(κ) = 1− γ1(κ), consequently their asymptoticMISE differs from the leading terms in
the aboveMISE of an order of O(κ−4) .

In our efficiency analysis we need

Result 1. Let Θ1, · · · ,Θn be a random sample from a circular density f having Fourier series expansion f(θ) =
1/(2π)[1+ 2

∑∞
j=1{α j cos(jθ) + δ j sin(jθ)}] for θ ∈ [0, 2π). Then

MISE
[
f̂ (· ; κ)

]
=

1
π

∞∑

j=1

{γ j(κ) − 1}2(α2
j + δ

2
j ) +

1
nπ

∞∑

j=1

γ2
j (κ)(1− α2

j − δ2
j ) .

Without loss of generality we can suppose that the mean direction is 0, and we consider only densities and kernels
which are fully specified by their concentration parameters, respectively denoted asρ andκ. For the above decom-
position, when considering the (relative) efficiency of two circular kernels, the smoothing parameters donot “cancel”
and so their equivalence needs first to be established as follows. For fixedρ andn, we can obtainκ to minimizeMISE
for a given kernel function. The efficiency of one kernel relative to another may then be measuredby taking the ratio
of the minimizedMISEs.

As the Dirichlet kernel (γ j(κ) = 1{ j≤κ}) is of higher order forκ > 1 — and so expected to be asymptotically more
efficient — we have measured the efficiency of other kernels relative to this one. In Figure 1 we show the relative
efficiency of the von Miseswrapped normal (γ j(κ) = κ j2), and Fejér (γ j(κ) = 1{ j≤κ}(κ + 1 − j)/(κ + 1)) kernels for
n = 5, 25, 125, 625 for the von Mises and wrapped Cauchy (α j = ρ j ; δ j = 0) distributions. Not surprisingly, the
wrapped Normal and von Mises kernels are very similar, and both are better than the Fejér kernel. For smalln, the
von Mises kernel is more efficient that the Dirichlet kernel; markedly so for the Cauchy distribution, or for data with
low concentration.

3. Local polynomial regression

3.1. Linear fitting with von Mises based kernels

Consider the dataset{(Θi,Yi), i = 1, · · · , n}, whereΘi := (Θi1, · · · ,Θid)T, andYi ∈ R are both observable, ab-
solutely continuous, random variables taking values respectively in [0, 2π)d andR. ¿From now on we will assume
that

Yi = m(Θi) + σ(Θi)εi , i = 1, · · · , n
3
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Figure 1: Relative efficiency of Fejér (——), wrapped normal (- - - - -), and von Mises(· · · ) kernels to the Dirchlet kernel, for various values ofn.
With respect to the underlying true density, the left group corresponds to the von Mises distribution withρ = I1(ν)/I0(ν), while the right group
corresponds to the wrapped Cauchy distribution.

whereσ2(·) is the conditional variance ofY andεis are real-valued random variables with zero mean and unit variance.
Our objective is to construct an estimator ofm(θ) as a function of the dataset when bothΘis andεis arei.i.d..

Let Pθ(·;β) := β0 +
∑d

j=1 β j sin(· − θ j), and suppose thatm(ψ) ≃ Pθ(ψ;β) for ψ in a neighborhood ofθ. Here

Pθ(θ;β) = β0, which motivates estimatingm(θ) by β̂0. Recalling that for very small values ofθ we have sin(θ) ≃ θ,
then a Taylor series expansion justifies bothβ̂0 and the valueŝβ j , j = 1, · · · , d, as estimates of the partial derivatives
β j = ∂m(θ)/∂θ j. Viewed as local least squares estimators,β̂0, · · · , β̂d minimize

∑n
i=1{Yi − Pθ(Θi ;β)}2w(Θi , θ) where

w(Θi , θ) is the weight function, (a symmetric, continuous functionintegrating to 1) which, if strictly positive, decreases
with some distance betweenΘi andθ. Now we provide an explicit expression forβ̂0 together with itsL2 properties.

Let y := (Y1, · · · ,Yn)T be the response vector,

Θ :=



1 sin(Θ11− θ1) · · · sin(Θ1d − θd)
...

...
...

...
1 sin(Θn1 − θ1) · · · sin(Θnd − θd)



the design matrix, and
W := diag {KC(Θ1 − θ), · · · ,KC(Θn − θ)}

the weight matrix, whereC := κI, I denoting the identity matrix of orderd, and

KC(Θi − θ) :=
d∏

j=1

Kκ(Θi j − θ j) , i = 1, · · · , n. (3)

The local linear kernel estimator ofm(θ) is given by the first entry of the vector

β̂ := arg min
β

n∑

i=1

(Yi − βTΘ)2KC(Θi − θ) ,

whereβ := (β0, β1, · · · , βd)T. Assuming the non-singularity ofΘTWΘ, standard weighted least squares theory yields
β̂ = (ΘTWΘ)−1ΘTWy, and

m̂(θ; C) = eT
j (Θ

TWΘ)−1ΘTWy , (4)
4
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wheree j is a (d+ 1)× 1 vector having 1 as thejth entry and 0 elsewhere.
Given its efficiency, as well as its prevalence in kernel smoothing of circular data, we firstly give results when the

von Mises kernelVκ(·) := exp{κ cos(·)}/{2πI0(κ)} is used to define thed-dimensional weight function.

Theorem 2. Given the dataset{(Θi ,Yi), i = 1, · · · , n}, whereΘis are i.i.d. observations from the circular design
density f , and Yis are i.i.d. real-valued random variables , take the local linear kernel regression estimatorm̂(· ; C)
equipped with the weight function VC(Θi − θ) :=

∏d
j=1 Vκ(Θi j − θ j). Assume that

i) limn→∞κ−1 = 0;
ii) limn→∞n−1κd/2 = 0;
iii) the conditional varianceσ2 is continuous, and the density f is continuously differentiable;
iv) all second-order derivatives of the regression function m are continuous.

Then atθ ∈ [0, 2π)d the conditional mean squared error ofm̂(θ ; C) is given by

E[{m̂(· ; C) −m(θ)}2 | Θ1, · · · ,Θn] =
1
4

{ I1(κ)
κI0(κ)

}2

tr2{Hm(θ)} +
[ I0(2κ)
2π{I0(κ)}2

]d
σ2(θ)
n f(θ)

+ op

(
κ−2 + n−1κd/2

)
, (5)

whereHm(θ) denotes the Hessian matrix of m atθ.

Proof. See Appendix.

Once more, in the proof of the above theorem a major technicalissue is that the concentration parameterκ cannot
be “separated” from the kernel.

Remark 5. Sinceκ corresponds to the inverse of the squared bandwidth of the euclidean smoother, the remainder
term in (5) is consistent with that obtained by Ruppert&Wand (1994).

Finally, the optimal smoothing degree is given by

Corollary 1. The concentration parameter which minimizes the asymptotic mean squared error,i.e. the first two
summands in RHS of formula (5), is [

tr4{Hm(θ)}{n f(θ)}222dπd

d2σ4(θ)

]1/(4+d)

.

Proof. See Appendix.

3.2. Generalizations and extensions

The results of Theorem 2 can be generalized to the class of second-order circular kernelsKκ. Given the square-
integrable functiong, defineR(g) :=

∫
g2, then

Theorem 3. Given the dataset{(Θi ,Yi), i = 1, · · · , n}, whereΘis are i.i.d. observations from the circular design
density f , and Yis are i.i.d. real-valued random variables, take the local linear kernel regression estimatorm̂(· ; C)
equipped with the weight function in (3) with Kκ being a second-order circular kernel. Assume conditions i)of
Theorem 1, and iii) of Theorem 2, together with

i) limn→∞n−1R(KC) = 0.

Then, atθ ∈ [0, 2π)d,

E[{m̂(· ; C) −m(θ)}2 | Θ1, · · · ,Θn] =
1
16
{1− γ2(κ)}2tr2{Hm(θ)} + R(KC)σ2(θ)

n f(θ)
+ op(1).

Proof. See Appendix.

It would be of interest to determine the optimal smoothing degree in this case, but since the coefficientsγ js
depend onκ in a specific way for each kernel, the result in Corollary 1 is hard to generalize. Concerning the extension
to higher-degree polynomials and whatever second-order circular kernel, we have

5
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Theorem 4. Given the dataset{(Θi ,Yi), i = 1, · · · , n}, whereΘis are i.i.d. observations from the circular one-
dimensional density f , and Yis are i.i.d. real-valued random variables, take the local pth degree polynomial regression
estimatorm̂(· ; κ) equipped with a second-order circular kernel Kκ. Assume conditions i) of Theorem 1, iii) and iv) of
Theorem 2. Moreover, assume that

i) for the kernelK(p) in Remark2, limn→∞n−1R(K(p)) = 0;
ii) m(p+2) is continuous in a neighborhood ofθ.

Then, for anyθ ∈ [0, 2π),

E[m̂(θ; κ) −m(θ) | Θ1, · · · ,Θn] =


ηp+1(K(p))

m(p+1)(θ)
(p+1)! + op(1) , if p is odd;

ηp+2(K(p))
{

m(p+1)(θ) f ′(θ)
f (θ)(p+1)! +

m(p+2)(θ)
(p+2)!

}
+ op(1) , otherwise;

and

Var[m̂(θ : κ) | Θ1, · · · ,Θn] = R(K(p))
σ2(θ)
n f(θ)

{1+ op(1)} .

Proof. See Appendix.

4. Simulation results

We briefly explore the asymptotic result given by Theorem 2 ina simulation study. We first investigate the
dependence of the mean squared error onθ, n andκ whend = 1 and choose a sharp-peaked response

m(θ) = 2+ sin (θ − 1.2π) + 3 exp

−10

(
15

(θ − π)
2π

)2
 ,

with εi ∼ N(0, 1),σ2(Θi) = 1/2, andΘi , i = 1, · · · , n coming from a von Mises density with meanπ and concentration
parameter 1. We estimatem(θ) at θ = 0, 2, 3 and compare the average squared error of (4) with the asymptotic
mean squared error given in Theorem 2 overκ for n = 50 andn = 500. The results are displayed in Figure 2,
and the asymptotic nature of the result is clear. Note that the values of the second derivative ofm at θ = 0, 2, 3 are
−0.59, 0.98, 140.89, respectively, which explains the poorer performance atθ = 3.

Secondly, we explore the dependence ond. In this case we use the model

m(θ) =
1
d

d∑

i=1

sinθi +
1

d(d− 1)

∑

i, j

cosθi cosθ j (d ≥ 2)

whereθ = (θ1, · · · , θd)T, σ2(Θi) = 1/2, i = 1, · · · , n, and f is a product of (independent) von Mises densities with
mean zero and concentration parameter 1. We estimatem(θ) at θ = (0, · · · , 0)T and (π/2, · · · , π/2)T for a range ofκ,
for n = 500. Figure 3 shows good agreement ford = 2 between the average squared error and the asymptotic mean
squared error. However, we note increasingly poor behaviour asd increases, indicating that the asymptotic nature of
the result also depends ond, and again illustrating the well-known phenomenon of thecurse of dimensionality.

Appendix

Proof of Theorem 1. ExpressKκ(θ) in terms of a Fourier series, and, recalling that for very small values ofu
sin(u) ≃ u, use the expansionf (u+ θ) = f (θ) + sin(u) f ′(θ) + 1/2 sin2(u) f ′′(θ) +O{sin3(u)}. Then, starting from (2),
make a change of variable and use assumptioni) to get

E[ f̂ (θ; κ)] =
∫ 2π

0
Kκ(ψ − θ) f (ψ)dψ

=

∫ 2π

0
Kκ(u) f (u+ θ)du

= f (θ) +
1
4
{1− γ2(κ)} f ′′(θ) + o(1).

6
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Now, recalling assumptionsi) andii) , we have

Var[ f̂ (θ; κ)] =
1
n

∫ 2π

0
{Kκ(ψ − θ)}2 f (ψ)dψ − 1

n

{
E[ f̂ (θ; κ)]

}2

=
1
n

∫ 2π

0
{Kκ(u)}2{ f (θ) + o(1)}du− 1

n
{ f (θ) + o(1)}2

=
1

2nπ


1+ 2

∞∑

j=1

γ2
j (κ)


f (θ) + o(1) .

�

Proof of Theorem 2. Put

SΘi−θ := {sin(Θi1 − θ1), · · · , sin(Θid − θd)}T, i = 1, · · · , n
and useDg(θ) to denote the first-order partial derivatives vector of thefunctiong atθ. To derive the conditional bias,
we firstly note that (4) yields

E[m̂(θ; C) | Θ1, · · · ,Θn] = eT
1(ΘTWΘ)−1ΘTWm , (6)

wherem := {m(Θ1), · · · ,m(Θn)}T, andW := diag {VC(Θ1 − θ), · · · ,VC(Θn − θ)}. Using the expansion

m = Θ
[

m(θ)
Dm(θ)

]
+

1
2



ST
Θ1−θHm(θ)SΘ1−θ

...
ST
Θn−θHm(θ)SΘn−θ


+ Rm(θ) ,

whereRm(θ) denotes the remainder, we have that the first term in the expansion of (6) ism(θ). Thus

E[m̂(θ; C) −m(θ) | Θ1, · · · ,Θn] =
1
2

eT
1(ΘTWΘ)−1ΘTW





ST
Θ1−θHm(θ)SΘ1−θ

...
ST
Θn−θHm(θ)SΘn−θ


+ Rm(θ)


.

Observe that

ΘTWΘ =
[ ∑n

i=1 VC(Θi − θ) ∑n
i=1 VC(Θi − θ)ST

Θi−θ∑n
i=1 VC(Θi − θ)SΘi−θ

∑n
i=1 VC(Θi − θ)SΘi−θS

T
Θi−θ

]
(7)

and

ΘTW



ST
Θ1−θHm(θ)SΘ1−θ

...
ST
Θn−θHm(θ)SΘn−θ


=


∑n

i=1 VC(Θi − θ)ST
Θi−θHm(θ)SΘi−θ∑n

i=1 VC(Θi − θ)
{
ST
Θi−θHm(θ)SΘi−θ

}
SΘi−θ

 , (8)

then, using the expansion
f (u + θ) = f (θ) + ST

u D f (θ) +O(ST
uSu) ,

and recalling assumptioni), a change of variables leads to these approximations

1
n

n∑

i=1

VC(Θi − θ) =
∫

[0,2π)d
VC(α − θ) f (α)dα + op(1)

= f (θ) + op(1);

1
n

n∑

i=1

VC(Θi − θ)SΘi−θ =
∫

[0,2π)d
VC(α − θ)Sα−θ f (α)dα + op(1)

=
I1(κ)
I0(κ)

C−1D f (θ) + op(C−11) ;

8
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1
n

n∑

i=1

VC(Θi − θ)SΘi−θS
T
Θi−θ =

∫

[0,2π)d
VC(α − θ)Sα−θST

α−θ f (α)dα + op(I)

=
I1(κ)
I0(κ)

C−1 f (θ) + op(C−1);

1
n

n∑

i=1

VC(Θi − θ)ST
Θi−θHm(θ)SΘi−θ =

∫

[0,2π)d
VC(α − θ)ST

α−θHm(θ)Sα−θ f (α)dα + op(1)

=
I1(κ)
κI0(κ)

tr {Hm(θ)} f (θ) + op

(
κ−1

)
;

1
n

n∑

i=1

VC(Θi − θ)
{
ST
Θi−θHm(θ)SΘi−θ

}
SΘi−θ =

∫

[0,2π)d
VC(α − θ)

{
ST
α−θHm(θ)Sα−θ

}
Sα−θ f (α)dα + op(1)

= Op(C−21) ;

where1 is the unit vector of lengthd. Hence, recalling assumptioni) we have

eT
1

(
n−1ΘTWΘ

)−1 ⋍
[
{ f (θ)}−1 + op(1) −D f (θ)T{ f (θ)}−2 + op(1)

]
, (9)

thus

E[m̂(θ; C) −m(θ) | Θ1, · · · ,Θn] =
1
2
I1(κ)
κI0(κ)

tr {Hm(θ)} + op(κ−1) .

For the conditional variance, according to multivariate local linear regression theory

Var[m̂(θ; C) | Θ1, · · · ,Θn] = eT
1(ΘTWΘ)−1ΘTWΣWΘ(ΘTWΘ)−1e1 ,

whereΣ := diag {σ2(Θ1), · · · , σ2(Θn)}. Consider that

n−1ΘTWΣWΘ =
[

n−1 ∑n
i=1{VC(Θi − θ)}2σ2(Θi) n−1 ∑n

i=1{VC(Θi − θ)}2ST
Θi−θσ

2(Θi)
n−1 ∑n

i=1{VC(Θi − θ)}2SΘi−θσ
2(Θi) n−1 ∑n

i=1{VC(Θi − θ)}2SΘi−θS
T
Θi−θσ

2(Θi)

]
, (10)

and approximate the components of the above matrix using thefollowing relationships

1
n

n∑

i=1

{VC(Θi − θ)}2σ2(Θi) =
∫

[0,2π)d
{VC(Θi − θ)}2σ2(α) f (α)dα + op(1)

=

[ I0(2κ)
2π{I0(κ)}2

]d

σ2(θ) f (θ){1+ op(1)} ;

1
n

n∑

i=1

{VC(Θi − θ)}2ST
Θi−θσ

2(Θi) =
∫

[0,2π)d
{VC(αi − θ)}2ST

α−θσ
2(α) f (α)dα + op(1)

= op(1) ;

1
n

n∑

i=1

{VC(Θi − θ)}2SΘi−θS
T
Θi−θσ

2(Θi) =
∫

[0,2π)d
{VC(αi − θ)}2Sα−θST

α−θσ
2(α) f (α)dα + op(I)

=
F̃ (2, κ2)

4π{I0(κ)}2
[ I0(2κ)
2π{I0(κ)}2

]d−1

σ2(θ) f (θ){I + op(I)} ,

9
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whereF̃ (2, κ2) := {I0(k)}2 + {I1(k)}2 + 2
∑∞

j=2I j(κ){I j(κ) − I j−2(κ)} is the regularized confluent hypergeometric
function of the first kind. Combining the previous results with the approximations in (9), and recalling assumptionii) ,
we finally obtain

Var[m̂(θ; C) | Θ1, · · · ,Θn] =

[ I0(2κ)
2π{I0(κ)}2

]d
σ2(θ)
n f(θ)

+ op(n−1κd/2) .

�
Proof of Corollary 1. ReplaceI1(κ)/I0(κ) by 1 with an error of magnitudeO(κ−1), and use

lim
κ→∞

[ I0(2κ)
2π{I0(κ)}2

]d

=

( κ
4π

)d/2
,

then minimize the asymptotic MSE. �
Proof of Theorem 3.Follow the proof of Theorem 2, withKC(Θi − θ) asith entry of the weight matrix,i = 1, · · · , n.
In particular, to derive the conditional bias firstly note that

n−1ΘTWΘ ⋍
[

f (θ) + op(1) 1/2{1− γ2(κ)}DT
f (θ) + op(1)

1/2{1− γ2(κ)}D f (θ) + op(1) 1/2{1− γ2(κ)} f (θ)I + op(I)

]
,

and, in virtue of assumptioni) of Theorem 1,

eT
1(n−1ΘTWΘ)−1 ⋍

[ { f (θ)}−1 + op(1) −DT
f (θ){ f (θ)}−2 + op(1)

]
.

Moreover, observe that

n−1ΘTW



ST
Θ1−θHm(θ)SΘ1−θ

...
ST
Θn−θHm(θ)SΘn−θ


≃

[
1/2{1− γ2(κ)}tr{Hm(θ)} f (θ) + op(1)

Op(1)

]
,

to get

E[m̂(θ; C) −m(θ) | Θ1, · · · ,Θn] =
1
4
{1− γ2(κ)}tr{Hm(θ)} + op(1) .

To derive the conditional variance, observe that the upper-left entry of the matrix (10) generalizes as

1
n

n∑

i=1

{KC(Θi − θ)}2σ2(Θi) ⋍ R(KC)σ2(θ) f (θ){1+ op(1)},

whereR(KC) = {R(Kκ)}d = {(2π)−1(1+ 2
∑∞

j=1 γ
2
j (κ))}d, the diagonal blocks areop(1), whereas letting

A(KC) :=
[γ2

0(κ) + γ2
1(κ) + 2

∑∞
j=2 γ j(κ){γ j(κ) − γ j−2(κ)}]{R(Kκ)}d−1

4π
,

whereγ0(κ) :=
∫ 2π

0
Kκ(θ) cos(0)dθ = 1, the lower-right entry is

1
n

n∑

i=1

{KC(Θi − θ)}2SΘi−θS
T
Θi−θσ

2(Θi) ⋍ A(KC)σ2(θ) f (θ){I + op(I)} .

Hence, it finally results

Var[m̂(θ; C) | Θ1, · · · ,Θn] =
R(KC)σ2(θ)

n f(θ)
{1+ op(1)} .

�
Proof of Theorem 4.Follow the proof of Theorem 4.1 of Ruppert & Wand (1994) with these two recommendations:
in the design matrix replace (Xi−x) j , with sinj(Θi−θ), and use the expansionf (u+θ) = f (θ)+sin(u) f ′(θ)+O{sin2(u)}.
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In particular, to derive the conditional bias, letQp be the matrix of orderp + 1 having as (i, j) entryηi+ j−1(Kκ), and
observe that, in virtue of assumptioni) of Theorem 1,n−1ΘTWΘ = f (θ)Ep + f ′(θ)Qp + op(1), with Ep being the
matrix defined in Remark 2, to get

rT
1(n−1ΘTWΘ)−1 = f (θ)−1{rT

1 E−1
p − f ′(θ) f (θ)−1rT

1 E−1
p QpE−1

p } + op(1) ,

wherer1 is a (p + 1) × 1 vector having 1 as first entry and 0 elsewhere. For the conditional variance, denoting as
Tp the matrix of orderp + 1 having

∫
sini+ j−2(u){Kκ(u)}2 du as (i, j) entry, and recalling conditioni), it follows that

n−1ΘTW2Θ = f (θ)Tp + op(I). �

Aknowledgements

The authors are grateful to two anonymous referees for theirvaluable comments which led to improvements in
this article.

References

Bai, Z. D., Rao, R. C. & Zhao, L. C. (1988), ‘Kernel estimatorsof density function of directional data’,Journal of Multivariate Analysis27, 24–39.
Beran, R. (1979), ‘Exponential models for directional data’, The Annals of Statistics7, 1162–1178.
Cogburn, I. & Davis, H. T. (1974), ‘Periodic splines and spectral estimation’,The Annals of Statistics2, 1108–1126.
Hall, P., Watson, G. & Cabrera, J. (1987), ‘Kernel density estimation with spherical data’,Biometrika74, 751–762.
Jammalamadaka, S. R. & SenGupta, A. (2001),Topics in Circular Statistics, World Scientific, Singapore.
Klemelä, J. (2000), ‘Estimation of densities and derivatives of densities with directional data’,Journal of Multivariate Analysis73, 18–40.
Lejeune, M. & Sarda, P. (1992), ‘Smooth estimators of distribution and density functions’,Computational Statistics& Data Analysis14, 457–471.
Mardia, K. V. & Jupp, P. E. (1999),Directional Statistics, John Wiley, New York.
Ruppert, D. & Wand, M. P. (1994), ‘Multivariate locally weighted least squares regression’,The Annals of Statistics22, 1346–1370.
Silverman, B. W. (1986),Density Estimation for Statistics and Data Analysis, Chapman and Hall, London.

11


