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. In this paper we prove Azuma's inequality for N-demimartingales and as a corollary we obtain an exponential inequality for negatively associated random variables.

Introduction

In recent years, dependence concepts including positive and negative association introduced by [START_REF] Esary | Association of random variables with applications[END_REF] and Joag-Dev and Proschan (1983) respectively have been the focus of substantial research activity. Among the various results presented are extensions and generalizations. In particular, [START_REF] Newman | Associated random variables and martingale inequalities[END_REF] introduced the concept of a demimartingale and a demisubmartingale as a generalization of the notion of martingales and submartingales. The definition is a rather technical one and serves, among other things, the purpose of studying in a more general way the behavior of the partial sum of mean zero associated random variables.

Definition 1 A sequence of L 1 random variables {S n , n ∈ N} is called a demimartingale if for all j = 1, 2, . . . E [(S j+1 -S j )f (S 1 , . . . , S j )] ≥ 0
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for all componentwise nondecreasing functions f whenever the expectation is defined. Moreover, if f is assumed to be nonnegative, the sequence {S n , n ∈ N} is called a demisubmartingale.

Definition 2 A finite collection of random variables X 1 , . . . , X n is said to be (positively)associated if

Cov(f (X 1 , . . . , X n ), g(X 1 , . . . , X n )) ≥ 0
for any componentwise nondecreasing functions f, g on R n such that the covariance is defined. An infinite collection is associated if every finite subcollection is associated.

One can easily verify that the partial sum of mean zero positively associated random variables is a demimartingale.

Motivated by the definition of a demimartingale, the idea of a similar generalization for negatively associated random variables leads to the concept of the so called Ndemimartingales and N-demisupermartingales. Definition 3 A sequence of L 1 random variables {S n , n ∈ N} is called an N-demimartingale if for all j = 1, 2, . . . E [(S j+1 -S j )f (S 1 , . . . , S j )] ≤ 0 for all componentwise nondecreasing functions f provided the expectation is defined. Moreover, if f is assumed to be nonnegative, the sequence {S n , n ∈ N} is called an Ndemisupermartingale.

Various results and examples of N-demimartingales and N-demisupermartingales can be found in [START_REF] Christofides | Maximal Inequalities for N-demimartingales[END_REF] and Prakasa [START_REF] Rao | On some inequalities for N-demimartingales[END_REF][START_REF] Rao | On some maximal inequalities for demisubmartingales and N-demisupermartingales[END_REF].

Let us now recall the following definition of negative association. Definition 4 A finite collection of random variables X 1 , . . . , X n is said to be negatively associated if

Cov(f (X i , i ∈ A), g(X j , j ∈ B)) ≤ 0
for any disjoint subsets A and B of {1, 2, . . . , n} and for any two componentwise nondecreasing functions f, g on R A and R B respectively, provided that the covariance is defined. An infinite collection is negatively associated if every finite subcollection is negatively associated.

It is trivial to verify that the partial sum of mean zero negatively associated random variables is an N-demimartingale.

It is worth mentioning that a martingale with the natural choice of σ-algebras is both a demimartingale and an N-demimartingale. Furthermore, it can be verified that a subis a demisubmartingale, and a supermartingale is an N-demisupermartingale.

In this paper, we prove Azuma's inequality for N-demimartingales and as a corollary, we obtain an exponential inequality for the partial sum of mean zero negatively associated random variables. Finally, complete convergence results for N-demimartingales and negatively associated random variables are presented.

Azuma's inequality for N-demimartingales

The following result for martingale differences was given by [START_REF] Azuma | Weighted sums of certain dependent random variables[END_REF].

Theorem 5 Let {X n , n ∈ N} be a sequence of martingale differences such that |X i | < α < ∞ for all i = 1, 2, . . . and let S n = X 1 + • • • + X n . Then for every ε > 0, P (S n ≥ nε) ≤ exp -nε 2 2α 2 .
Given that a martingale with the natural choice of σ-algebras is an N-demimartingale, it is of interest to see whether an analog of the above inequality holds true for Ndemimartingales. The answer is given by the following result.

Theorem 6 Let {S n , n ∈ N} (with S 0 ≡ 0) be an N-demimartingale and assume that

|S i -S i-1 | ≤ c i < ∞ i = 1, 2, . . . ,
where c 1 , c 2 , . . . are positive real numbers. Then for every ε > 0,

P (S n ≥ nε) ≤ exp -n 2 ε 2 2 n i=1 c 2 i ( 1 
)
and

P (|S n | ≥ nε) ≤ 2 exp -n 2 ε 2 2 n i=1 c 2 i . (2) 
Proof. Let t ∈ R and x ∈ [-c i , c i ]. We can write

tx = 1 2 1 + x c i (c i t) + 1 2 1 - x c i (-c i t).
By the convexity of the exponential function we have:

e tx ≤ cosh(c i t) + x c i sinh(c i t).
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Then

E e tSn = E n i=1 e t(S i -S i-1 ) ≤ E n i=1 cosh(c i t) + (S i -S i-1 ) sinh(c i t) c i .
By induction we will prove that

E e tSn ≤ n i=1 cosh(c i t) ∀ t > 0. ( 3 
)
First observe that,

E e tS2 ≤ E cosh(c 1 t) + S 1 sinh(c 1 t) c 1 cosh(c 2 t) + (S 2 -S 1 ) sinh(c 2 t) c 2 = cosh(c 1 t) cosh(c 2 t) + sinh(c 1 t) sinh(c 2 t) c 1 c 2 E[S 1 (S 2 -S 1 )] ≤ cosh(c 1 t) cosh(c 2 t)
where the last inequality follows from the N-demimartingale property. Thus (3) is true for n = 2. Assume now that the statement is true for n = k. We will show that it is true for n = k + 1.

E e tS k+1 = E e t(S k+1 -S k ) .e tS k ≤ E cosh(c k+1 t)

+ (S k+1 -S k ) sinh(c k+1 t) c k+1 e tS k = cosh(c k+1 t)E e tS k + sinh(c k+1 t) c k+1 E (S k+1 -S k )e tS k ≤ k+1 i=1 cosh(c i t)
where the last inequality follows from the N-demimartingale property and the induction hypothesis. Thus (3) is established.

Since cosh(c i t) ≤ e c 2 i t 2 2 , by inequality (3) we have:

E e tSn ≤ exp t 2 n i=1 c 2 i 2 .
For ε, t > 0

P (S n ≥ nε) = P (tS n ≥ tnε) = P (e tSn ≥ e tnε ) ≤ e -tnε E e tSn ≤ exp -tnε + t 2 n i=1 c 2 i 2 .
The above upper bound is minimized by choosing t = nε/ n i=1 c 2 i and ( 1) is established. To prove inequality (2) we write:

P (|S n | ≥ nε) = P (S n ≥ nε) + P (-S n ≥ nε).
Since the collection {-S n , n ∈ N} is also an N-demimartingale (see Remark 1.4 in Christofides ( 2003)), inequality (2) follows by applying inequality (1) twice.

Remark 7

In case the N-demimartingale differences are uniformly bounded, i.e., when 1) and ( 2) have the simple form

|S i -S i-1 | ≤ c < ∞ for i = 1, 2, . . ., then (
P (S n ≥ nε) ≤ exp -nε 2 2c 2 ,
and

P (|S n | ≥ nε) ≤ 2 exp -nε 2 2c 2
respectively.

Applications

Given that the partial sum of mean zero negatively associated random variables is an N-demimartingale, we immediately have the following result.

Corollary 8 Let {X n , n ∈ N} be mean zero negatively associated random variables such that

|X k | ≤ c k k = 1, 2, . . .. Let S n = X 1 + • • • + X n .
Then for every ε > 0,

P (S n ≥ nε) ≤ exp -n 2 ε 2 2 n i=1 c 2 i , and 
P (|S n | ≥ nε) ≤ 2 exp -n 2 ε 2 2 n i=1 c 2 i .
Remark 9 Exponential inequalities for mean zero negatively associated random variables {X i , i ≥ 1} have been obtained by [START_REF] Han | Exponential inequality and almost sure convergence for the negatively associated sequence[END_REF] following a different approach, and in particular a Hoeffding inequality under the assumption that a i ≤ X i ≤ b i for all i. It is worth mentioning that for b i = c i and a i = -c i for i = 1, 2 . . ., Corollary 8 provides a much sharper bound.

As an application of Corollary 8 we give the following result which was first proven by Matula (1996).

Corollary 10 Let {X n , n ∈ N} be a sequence of negatively associated random variables with common distribution function F . Then for every ε > 0 and ∀ x ∈ R,

P (|F n (x) -F (x)| > ε) ≤ 2 exp -nε 2 2
where F n denotes the empirical distribution function.

The proof of Corollary 10, the details of which are omitted for brevity, is based on the observation that for fixed x, {I {Xn≤x} , n ∈ N} is a sequence of negatively associated random variables satisfying

|I {Xn≤x} -F (x)| ≤ 1, n = 1, 2, . . . ,
where I {Xn≤x} is the indicator function of the set {X n ≤ x}.

The following exponential inequality for mean zero negatively associated random variables is due to Matula (1996).

Theorem 11 Let {X n , n ∈ N} be mean zero negatively associated random variables such that

|X k | ≤ α ∀ k. Let S n = X 1 + • • • + X n .
Then for every ε > 0,

P (S n ≥ nε) ≤ exp -nε 2α sinh -1 nεα 2b n .
where b n = n i=1 EX 2 i .

The bounds of Corollary 8 (for the special case where c k = α for k = 1, 2, . . .) and Theorem 11 are not directly comparable given that the bound in Theorem 11 is expressed in terms of the variances of the random variables. Let y = ε/α. To compare the two bounds it is sufficient to check under what conditions the function The next two asymptotic results concern the complete convergence for bounded Ndemimartingales.

f (y) = y -sinh -1 nyα 2 2b n ,
Theorem 12 Let {S n , n ∈ N} be an N-demimartingale such that | S i -S i-1 |≤ α for all i = 1, 2, . . .. Then for r > 1 2 , n -r S n -→ 0 completely.

Proof.

∞ n=1 P (| S n |≥ n r ε) ≤ 2 ∞ n=1 exp -n 2r-1 ε 2 2α 2 = 2 ∞ n=1 exp -n 2r-1 d = 2 ∞ n=1 (exp(-d)) n 2r-1 < ∞
where d = ε 2 /2α 2 and the first inequality follows from Azuma's inequality for Ndemimartingales given in Remark 7.

Theorem 13 Let {S n , n ∈ N} be an N-demimartingale such that | S i -S i-1 |≤ c i , for all i = 1, 2, . . .. Assume that ∞ i=1 c 2 i < ∞. Then for r > 0, n -r S n -→ 0 completely.

Proof.

∞ n=1 P (| S n |≥ n r ε) ≤ 2 ∞ n=1 exp -n 2 n 2r-2 ε 2 2 n i=1 c 2 i = 2 ∞ n=1 exp -n 2r ε 2 2 n i=1 c 2 i ≤ 2 ∞ n=1 exp -n 2r ε 2 2 ∞ i=1 c 2 i = 2 ∞ n=1 (exp(-d)) n 2r < ∞
where d = ε 2 /2 ∞ i=1 c 2 i and the first inequality follows from inequality [START_REF] Christofides | Maximal Inequalities for N-demimartingales[END_REF].

As an application of Theorem 12 we immediately have the following asymptotic result for mean zero negatively associated random variables.

Corollary 14 Let {X n , n ∈ N} be mean zero negatively associated random variables such that |X k | ≤ α for k = 1, 2, . . .. Let S n = X 1 + • • • + X n . Then for r > 1 2 , n -r S n -→ 0 completely.

  y > 0 is nonnegative. Simple calculations show that if nα 2 ≤ 2b n or y ≥ 1 then f is nondecreasing and since f (0) = 0, the function is nonnegative. This means that if nα 2 ≤ 2b n or ε ≥ α the bound of Corollary 8 is sharper than the bound of Theorem 11. However, if nα 2 > 2b n and y < α 4 -4b 2 n /n 2 , i.e., if nα 2 > 2b n and ε < α -1 α 4 -4b 2 n /n 2 , the function is nonincreasing implying that Matula's bound is sharper than the bound of Corollary 8.