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Jumps in Binomial AR(1) Processes

Christian H. Weiß

University of Würzburg, Inst. of Mathematics, Dep. of Statistics, Germany.

Abstract

We consider the binomial AR(1) model for serially dependent processes of binomial
counts. After a review of its definition and known properties, we investigate marginal
and serial properties of jumps in such processes. Based on these results, we propose
the jumps control chart for monitoring a binomial AR(1) process. We show how to
evaluate the performance of this control chart and give design recommendations.

Key words: Binomial AR(1) model; jumps; control chart; average run length.

1 Introduction

The field of count data time series analysis has become an area of emerging
interest both in research and professional practice. Because of the broad field
of potential applications, see Weiß (2008), a number of time series models for
counts have been proposed in literature, which are able to describe different
types of marginal distribution and autocorrelation structure. In particular,
ARMA-type models based on an appropriate type of thinning operation have
become quite popular in recent years, see Weiß (2008). In this article, we
consider the binomial AR(1) model, which was first proposed by McKenzie
(1985) and further investigated by Weiß (2009a). It is able to model processes
of binomial counts with a serial dependence structure being similar to that of
a usual AR(1) model. Furthermore, the binomial AR(1) model has an intuitive
structure and is easy to interpret.

Definition 1 (Binomial AR(1) Model) Let p ∈ (0; 1) and ρ ∈
(

max { − p
1−p

, − 1−p
p

} ; 1
)
.

Define β := p · (1 − ρ) and α := β + ρ. Fix n ∈ N.

Email address: christian.weiss@mathematik.uni-wuerzburg.de (Christian
H. Weiß).
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The process (Xt)N0, defined by the recursion

Xt = α ◦ Xt−1 + β ◦ (n − Xt−1) for t ≥ 1, where X0 ∼ B(n, p),

where all thinnings are performed independently of each other, and where the
thinnings at time t are independent of (Xs)s<t, is referred to as the binomial
AR(1) process.

The condition on ρ guarantees that α, β ∈ (0; 1). The following Summary 1
provides further important properties, which have been shown by McKenzie
(1985); Weiß (2009a).

Summary 1 (Properties of Binomial AR(1) Model) Let (Xt)N0 be a pro-
cess following the binomial AR(1) model of Definition 1. Then (Xt)N0 is a
stationary Markov chain with marginal distribution B(n, p), i. e.,

pk := P (Xt = k) =
(

n
k

)
pk(1 − p)n−k,

and transition probabilities

pk|l := P (Xt = k | Xt−1 = l) =

min {k,l}∑
m=max {0,k+l−n}

(
l
m

) (
n−l
k−m

)
αm(1 − α)l−m βk−m(1 − β)n−l+m−k.

The autocorrelation function is given by ρ(k) = ρk for k ≥ 0. The most
important regression properties are

E[Xt | Xt−1] = ρ · Xt−1 + nβ,

V [Xt | Xt−1] = ρ(1 − ρ)(1 − 2p) · Xt−1 + nβ(1 − β).

If X1, . . . , XT with T ∈ N is a segment from a stationary binomial AR(1)
process, and if Ni is the number of Xt equal to i and pi := P (Xt = i), then
Pearson’s statistic

X2
g :=

n∑

i=0

(Ni − Tpi)
2

Tpi

D→
n∑

j=1

1 + ρj

1 − ρj
· Z2

j for T → ∞,

where Z1, . . . , Zn are independent standard normal random variables.

The binomial AR(1) model of Definition 1 is easy to interpret, see Weiß
(2009a). Suppose we have a system of n units, which are, independently of
each other, either in state 1 or state 0. Let Xt−1 be the number of units being
in state 1 at time t − 1. Then α ◦ Xt−1 is the number of units, which are still in
state 1 at time t, with individual transition probability α. β ◦ (n − Xt−1) is the
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number of units, which moved from state 0 to state 1 at time t, with individ-
ual transition probability β. So for large positive values of ρ, it is much more
likely that a unit remains in state 1 than to move from state 0 to state 1. Due
to this simple interpretation, the binomial AR(1) model applies well to many
real-world situations. Imagine, for instance, a computer pool with n machines,
which are either occupied (state 1) or not (state 0). Here, Xt is the number
of machines being occupied at time t, consisting of machines which have been
occupied before, and machines which are newly occupied. Analogously, one
might think of hotel rooms in a certain hotel being occupied at day t, clerks in
a counter room serving a customer, telephones in a call center being occupied,
etc.

Summary 2 (Model Estimation) Let X0, . . . , XT be a segment from a bi-
nomial AR(1) process with unknown parameters p and ρ, see Definition 1.
Weiß (2009a) proposes the following approaches for parameter estimation:

• Yule-Walker approach: Estimate p by the arithmetic mean 1
n(T+1)

· ∑T
t=0 Xt,

and ρ by the first order empirical autocorrelation.
• Conditional least squares approach: Estimate p and ρ by minimizing the

conditional sum of squares

CSS(p, ρ) :=
∑T

t=1

(
Xt − ρ · Xt−1 − np(1 − ρ)

)2
.

• Maximum likelihood approach: Estimate p and ρ by numerically maximizing
the logarithmic likelihood function

ℓ(p, ρ) := ln pX0 +
∑T

t=1 ln pXt |Xt−1, see Summary 1.

2 Jumps in Binomial AR(1) Processes

An interesting feature of a binomial AR(1) process are jumps Jt := Xt − Xt−1.
The extent of these jumps reflects the extent of serial dependence, defined
through the parameter ρ: If ρ is small, then quite large jumps can be observed.

Theorem 2 (Jumps in Binomial AR(1) Processes: Marginal Properties)
Let (Xt)N0 be a process following the binomial AR(1) model of Definition 1.
Then the moment generating function (mgf) of (Jt)N is given by

µJ(z) =
(
1 − 2p(1 − p)(1 − ρ) ·

(
1 − cosh (z)

))n

.

All odd order moments of Jt are equal to 0. Variance and excess are given by

2σ2
X · (1 − ρ) and

1

2n
·
((

p(1 − p)(1 − ρ)
)−1 − 6

)
, respectively.

3
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The proof of Theorem 2 is provided by Appendix A.1. Obviously, the variance
of the jumps Jt increases for decreasing ρ. Hence, see Section 3, we expect
a control chart monitoring the jumps Jt to be sensitive to decreases in ρ
(which would imply that it becomes more likely that a unit leaves the state 1,
see Section 1). Furthermore, the distribution of the jumps Jt is symmetric
around 0 and the excess of Jt decreases for increasing n. So the shape of this
distribution is similar to that of a normal distribution for large n, a feature
that shall prove to be useful for designing a control chart for jumps Jt, see
Section 3.

Theorem 3 (Jumps in Binomial AR(1) Processes: Serial Properties)
Let (Xt)N0 be a process following the binomial AR(1) model of Definition 1.
Then the autocorrelation and the partial autocorrelation function of (Jt)N are
given by

ρJ(k) = − 1 − ρ

2
·ρk−1 and ρpart,J(k) = − 1 − ρ

2 + (k − 1) · (1 − ρ)
for k ≥ 1.

The proof of Theorem 3 is provided by Appendix A.2.

3 An Application: Jumps Control Chart

The discipline of statistical process control (SPC) provides methods for mon-
itoring processes along time. The monitored process (Xt)N0 is said to be in
(statistical) control if it is stationary, following a particular process model.
Otherwise, the process is said to be out of control. Assuming that (Xt)N0 is
usually in control, SPC aims at detecting changes in the process that may
result from assignable causes at unpredictable times. The most popular tool
of SPC is the control chart, which is applied to certain control statistics (Zt)N
computed from the monitored process (Xt)N0 . A control chart is attached with
appropriately chosen upper and lower control limits UCL and LCL. The ob-
servations (Zt)N are plotted on the control chart. If a point Zt exceeds a control
limit, i. e., if Zt > UCL or Zt < LCL, then an alarm signals that the process
may be out of control. A widely accepted approach to evaluate the perfor-
mance of a control chart is to compute characteristics of its run length (RL)
distribution: The RL of a control chart is the number of plotted points until
the first alarm is triggered. In particular, the mean of the RL distribution,
the average run length (ARL), is commonly used as a quality factor for the
control chart. The chart design is chosen such that the ARL is sufficiently
large if the process is in control (the in-control ARL is commonly abbreviated
as ARL0), while the ARL should be small if the process is out-of-control. For
more details on SPC and control charts, see Montgomery (2005).

4
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As outlined in Section 1, the binomial AR(1) model has a great potential for
applications in practice, also see the case study reported by Weiß (2009a). De-
pending on the concrete situation, the practitioner is interested in monitoring
procedures, which allow to detect changes in the model parameters p and/or ρ.
Concerning changes in p, especially the moving average charts investigated by
Weiß (2009a) turned out to be effective. The jumps computed from a binomial
AR(1) process offer the potential for creating a control chart being sensitive
to a decrease in ρ, since this would increase the variance of the jumps, see
Section 2. Concerning the general interpretation and the examples given in
Section 1, such a decrease in ρ would imply that it becomes more likely that
a unit leaves the state 1, e. g., that the users of a computer pool more often
leave their machines (perhaps indicating technical problems).

3.1 Definition and Properties

According to Theorem 2, the stationary distribution of jumps Jt in a bino-
mial AR(1) process is symmetric around 0. Hence, it is reasonable to choose
symmetric control limits for a control chart monitoring the jumps, i. e., the
jumps control chart requires only one design parameter.

Definition 4 (Jumps Control Chart) The observed jumps Jt := Xt−Xt−1

are plotted on a chart with control limits ∓k for a k ∈ N, i. e., the process is
considered as being in control unless |Jt| > k.

The design parameter k of the jumps control chart 4 should be chosen such
that a certain average run length (ARL) performance is reached. The following
result is essential for this purpose.

Proposition 5 (Combined Jumps Process) Let (Xt)N0 be a binomial AR(1)
process according to Definition 1. Define the process (Jt)N of jumps by Jt :=
Xt − Xt−1. Since (Xt)N0 is Markovian of order 1, also (Xt, Jt)N is a Markov
chain, with range {0, . . . , n} × { −n, . . . , n}. The transition probabilities are
given by

p(n, j | m, i) := P (Xt = n, Jt = j | Xt−1 = m, Jt−1 = i)

= P (Jt = j | Xt = n, Xt−1 = m, Jt−1 = i) · P (Xt = n | Xt−1 = m, Jt−1 = i)

= δj,n−m · pn|m,

where δa,b denotes the Kronecker delta. The marginal probabilities are

p(n, j) := P (Xt = n, Jt = j) = P (Xt = n, Xt−1 = n − j) = pn,n−j,

where the pk,l := P (Xt = k, Xt−1 = l) equal 0 for l < 0.

5
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Since at least the bivariate process (Xt, Jt)N is a Markov chain, it is pos-
sible to compute the ARLs of the jumps chart 4 by adapting the Markov
chain approach of Brook & Evans (1972). For this purpose, it is necessary to
identify the reachable in-control states of (Xt, Jt)N, i. e., those pairs (x, j) ∈
{0, . . . , n} × { −k, . . . , k}, which can be reached by (Xt, Jt)N such that no alarm
is triggered by chart 4. It is shown in Appendix A.3 that the set C(k) of such
reachable in-control states for given design parameter 0 < k < n is given by

C(k) =
{
(x, j) ∈ {0, . . . , n} × { −k, . . . , k}

∣∣∣ j ≤ x ≤ n + j
}
,

which is of size | C(k)| = (2k + 1)(n + 1) − k(k + 1).

(1)

Using this result and the fact that (Xt, Jt)N is a discrete Markov chain accord-
ing to Proposition 5, the ARLs of the combined jumps chart can be computed
exactly by adapting the Markov chain approach of Brook & Evans (1972).

Proposition 6 (ARL Computation of Combined Jumps Chart) Let (Xt, Jt)N
be the combined jumps process of Proposition 5. Let C := C(k) be the control re-
gion of Formula (1). Define pm,i(r) for r ≥ 1 as the probability that the (r+1)st

pair leads to the first out-of-control signal, given that (X1, J1) = (m, i) ∈ C,
i. e.,

pm,i(r) := P
(
(Xr+1, Jr+1) 6∈ C, (Xr, Jr), . . . , (X2, J2) ∈ C | (X1, J1) = (m, i)

)
,

let µm,i :=
∑∞

r=1 r · pm,i(r). Assume that C is ordered in a certain manner,
define

µ := (. . . , µn,j, . . .)
⊤, Q⊤ :=

(
p(n, j | m, i)

)
(n,j),(m,i)∈C

.

Then µ is computed as the solution of the linear equation (I − Q) · µ = 1. The
ARL is obtained as ARL = 1 +

∑
(m,i)∈C µm,i · pm,m−i.

The proof of Proposition 6 is done in complete analogy to Weiß (2009b).

3.2 Design and Performance

Assume that the parameter values p0 and ρ0 of the in-control model of the
monitored binomial AR(1) process are available; in practice, these parameters
are usually estimated from given in-control data using, e. g., one of the ap-
proaches of Summary 2. To design an appropriate jumps chart for the given
in-control situation, we have to find a value of k such that a satisfactory ARL0

is reached. In practice, the desired ARL0 level is defined by considering aspects
like the process speed or the costs related to a false alarm, but in literature,
it is common to choose ARL0 ≈ 370 to make results comparable (The value

6
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370 is motivated by the in-control performance of a standard Shewhart chart
with 3-σ limits applied to i.i.d. normal observations.).

To find an appropriate value of the design parameter k, we apply Proposition 6
for the in-control model (p, ρ) = (p0, ρ0) and for varying values of k. Based
on the computed values ARL0(k), we choose k such that ARL0(k) is close to
the desired in-control performance. The search for an appropriate parameter k
can be accelerated by considering that the distribution of jumps has a shape
similar to that of a normal distribution, see the discussion after Theorem 2. As
an example, if one is interested in reaching an in-control ARL of about 370,
then it is known from normal theory (3-σ limits) that the design parameter k
should be close to

3 ·
√

2 · np0(1 − p0) · (1 − ρ0).

So compared to the conditional and residuals control chart for a binomial
AR(1) process proposed by Weiß (2009a), which can also be used for detecting
a decrease in ρ, the new jumps control chart is more easy to design and allows
to compute ARLs exactly, without the need for simulations.

Next, we study the ARL performance of the jumps chart. Using Proposition 6
for the ARL computations, the performance of the jumps control chart 4
concerning a decrease in ρ compared to the in-control value ρ0 is investigated.
Some of the results are summarized in Figure 1, where the respective in-
control situations (n, p0, ρ0) and chart designs k can be read from the legend.
The charts considered there are designed in such a way that their in-control
performance is similar, reaching an ARL0 between 300 and 400. It becomes
clear that the jumps control chart is sensitive to such a decrease in ρ, with the
best sensitivity shown for large values of ρ0. Given a particular value of ρ0,
the sensitivity is better in situations, where n is large and where p0 has a
moderate value (around 0.5).

3.3 An Illustrative Example

To illustrate the application of the jumps chart in practice, let us assume
that the monitored binomial AR(1) process (Xt)N0 has the model parameters
(n, p, ρ) = (n, p0, ρ0) := (25, 0.2, 0.75) in its in-control state. Furthermore,
assume that it is desirable to reach an in-control ARL of about 370, which
would correspond to 3-σ limits of a standard Shewhart chart applied to i.i.d.
normal observations. Adapted to the standard deviation of the jumps, we
obtain

3 ·
√

2 · np0(1 − p0) · (1 − ρ0) ≈ 4.24.

7
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Fig. 1. ARL performance of jumps charts for different in-control models.
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Fig. 2. Data example, see Section 3.3: Counts and jumps against time t.

So we expect that an appropriate value of the design parameter k of the jumps
chart will be close to 4. And in fact, we obtain by applying Proposition 6 that

. . . , ARL0(3) ≈ 64.9961, ARL0(4) ≈ 378.012, ARL0(5) ≈ 2731.2, . . .

so we choose the design parameter k := 4. The theoretical performance of this
particular jumps chart concerning a decrease in ρ can be read from Figure 1.
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To get an impression of the performance in practice, a segment X0, . . . , X100

from a binomial AR(1) process was simulated in the following way: The obser-
vations X0, . . . , X50 stem from the in-control model, but then the parameter ρ
is shifted to a value of 0.5. The simulated data is shown in the upper part of
Figure 2. The lower part shows the computed jumps Jt on a jumps chart with
design parameter k = 4 (having the out-of-control ARL ≈ 42.4975 ≪ 378.012,
also see Figure 1). While the jumps chart does not signal an alarm during the
in-control phase (before the vertical line), the out-of-control situation is de-
tected quickly, with the first alarm being triggered at time t = 55.

4 Conclusions

We discussed the binomial AR(1) model for serially dependent processes of
binomial counts. After having reviewed its definition and known properties,
we investigated marginal and serial properties of jumps in such processes. It
turned out that the shape of the marginal distribution is similar to that of
a normal distribution. This fact is useful for designing the newly proposed
jumps control chart for monitoring a binomial AR(1) process. We showed how
to compute the ARLs of this control chart and investigated its sensitivity
concerning a decrease in ρ compared to the in-control value ρ0. Especially for
large values of ρ0, a decrease in ρ is detected effectively.

Acknowledgements. The author thanks the referee for useful comments on an
earlier draft of this article.
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A Proofs

A.1 Proof of Theorem 2

Let (Xt)N0 be a process following the binomial AR(1) model of Definition 1 with pa-
rameters n, ρ, p. Then the bivariate probability generating function (pgf) pXt,Xt−1(z0, z1)
of Xt and Xt−1 is obtained as

pXt,Xt−1(z0, z1) =
(
(1 − p)(1 − β + βz0) + pz1 · (1 − α + αz0)

)n
. (A.1)

Since pX(z) = (1 − p + pz)n according to Summary 1, this follows from

pXt,Xt−1(z0, z1) = E[z0
α◦Xt−1+β◦(n−Xt−1) · z1

Xt−1 ]

= E
[
z1

Xt−1 · E[z0
α◦Xt−1+β◦(n−Xt−1) | Xt−1]

]

= (1 − β + βz0)n · E
[(

1−α+αz0
1−β+βz0

)
Xt−1 · z1

Xt−1
]

= (1 − β + βz0)n · pX

(
1−α+αz0
1−β+βz0

· z1

)

= (1 − β + βz0)n ·
(
1 − p + pz1 · 1−α+αz0

1−β+βz0

)n
.

Using the expression (A.1) for the bivariate pgf, we obtain the mgf of (Jt)N. Here,
we use the relations α = β +ρ, β = p(1 − ρ), 1 − α = (1 − p)(1 − ρ), see Definition 1:

µJt(z) = pXt,Xt−1(e
z , e−z) =

(
(1 − p)(1 − β + βez) + pe−z · (1 − α + αez)

)n

=
(
(1 − p)(1 − β) + αp + (1 − p)β · ez + p(1 − α) · e−z

)n

=
(
1 − 2p(1 − p)(1 − ρ) + (1 − p)p(1 − ρ) · ez + p(1 − p)(1 − ρ) · e−z

)n

=
(
1 − 2p(1 − p)(1 − ρ) ·

(
1 − 1

2(ez + e−z)
))n

.

Since the series expansion of cosh (z) contains only even terms, the same is true for
µJ(z), i. e., all odd order moments of Jt are equal to 0. Even order moments are
obtained from the relation µJ

(k)(0) = E[Jt
k] = E

[
(Jt − E[Jt])k

]
. Defining f(z) via

10
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µJ(z) =: f(z)n and n(k) := n · · · (n − k + 1), one computes the derivatives

µ′
J(z) = n · f(z)n−1 · f ′(z),

µ′′
J(z) = n(2) · f ′(z)2 · f(z)n−2 + n · f ′′(z) · f(z)n−1,

µ
(3)
J (z) = n(3) · f ′(z)3 · f(z)n−3 + 3n(2) · f ′(z) · f ′′(z) · f(z)n−2 + n · f (3)(z) · f(z)n−1,

µ
(4)
J (z) = n(4) · f ′(z)4 · f(z)n−4 + 6n(3) · f ′(z)2 · f ′′(z) · f(z)n−3

+ 3n(2) · f ′′(z)2 · f(z)n−2 + 4n(2) · f ′(z) · f (3)(z) · f(z)n−2 + n · f (4)(z) · f(z)n−1.

Since cosh′ (z) = sinh (z) and sinh′ (z) = cosh (z), we have

f (2k−1)(z) = 2p(1−p)(1−ρ)·sinh (z), f (2k)(z) = 2p(1−p)(1−ρ)·cosh (z), for k ∈ N.

Since cosh (0) = 1 and sinh (0) = 0, it follows that

f(0) = 1, f (2k−1)(0) = 0, f (2k)(0) = 2p(1 − p)(1 − ρ), for k ∈ N.

Hence, V [Jt] = µJ
′′(0) = 0 + n · 2p(1 − p)(1 − ρ) · 1, and

µ
(4)
J (0) = 0 + 0 + 3n(2) ·

(
2p(1 − p)(1 − ρ)

)2 · 1 + 0 + n · 2p(1 − p)(1 − ρ) · 1.

So the excess E
[
(Jt − E[Jt])4

]
/V [Jt]2 − 3 of Jt equals

3(n−1)
n +

(
2np(1 − p)(1 − ρ)

)−1 − 3 = 1
2n ·

((
p(1 − p)(1 − ρ)

)−1 − 6
)
.

A.2 Proof of Theorem 3

Since V [Jt] = 2σ2
X · (1 − ρ) and σ2

X := V [Xt] = np(1 − p), we obtain that

ρJ(k) = 1
2σ2

X
·(1−ρ)

· Cov[Xt − Xt−1 , Xt−k − Xt−k−1]

= 1
2(1−ρ) ·

(
2ρ(k) − ρ(k + 1) − ρ(k − 1)

)
= ρk−1

2(1−ρ) · (2ρ − ρ2 − 1),

which proves the expression for ρJ(k). So it remains to prove the expression for the
partial autocorrelation function. For this purpose, we adopt the notations of the
following Definition 7:

Definition 7 (Partial Autocorrelation) Let (Xt)Z be a weakly stationary pro-
cess with 0 < γ(0) < ∞, denote ρ(k) := Corr[Xt,Xt−k] for k ∈ N0, with ρ(0) = 1.
For k ∈ N, define the matrix

Rk :=
(
ρ(|i − j|)

)
1≤i,j≤k

.

For each k ∈ N, we define (ak1, . . . , akk)⊤ as the solution of the equation

Rk (ak1, . . . , akk)⊤ =
(
ρ(1), . . . , ρ(k)

)⊤
.

Then ρpart(k) := akk is referred to as the kth order partial autocorrelation.

11
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According to Box et al. (1994), the akj of Definition 7 follow the recursive scheme

ak+1,k+1 =
ρ(k + 1) − ∑k

i=1 aki · ρ(k + 1 − i)

1 − ∑k
i=1 aki · ρ(i)

,

ak+1,j = akj − ak+1,k+1 · ak,k−j+1 for j = 1, . . . , k.

(A.2)

We shall use the recursive scheme (A.2) and prove the following result (by induc-
tion):

akj = − (1 − ρ) ·
(
1 + (k − j)(1 − ρ)

)

2 + (k − 1)(1 − ρ)
for 1 ≤ j ≤ k and k ∈ N, (A.3)

with ρpart,J(k) = akk. For k = 1, we simply obtain ρpart,J(1) = ρJ(1) = − 1−ρ
2 , which

coincides with (A.3) in this case. So assume that (A.3) has been shown for all k ≤ n
with some n ∈ N, consider k = n + 1. We shall use the following recursive scheme,
see formula (A.2):

ρpart,J(n + 1) = an+1,n+1 =
ρJ (n+1)−

∑n

i=1
ani ·ρJ(n+1−i)

1−
∑n

i=1
ani ·ρJ(i)

,

an+1,j = anj − an+1,n+1 · an,n+1−j for j = 1, . . . , n.

Applying the geometric sum formulae, one obtains the following results:

∑n
i=1 ani · ρJ(n + 1 − i) = (1−ρ)2

2
(
2+(n−1)(1−ρ)

) · ∑n
i=1

(
1 + (n − i)(1 − ρ)

)
· ρn−i

= 1−ρ

2
(
2+(n−1)(1−ρ)

) ·
(
1 + ρ − (n + 1) · ρn + (n − 1) · ρn+1

)
,

∑n
i=1 ani · ρJ(i) = (1−ρ)2

2
(
2+(n−1)(1−ρ)

) · ∑n
i=1

(
1 + (n − i)(1 − ρ)

)
· ρi−1

= n(1−ρ)2

2
(
2+(n−1)(1−ρ)

) .

Therefore, it results that

ρJ(n + 1) − ∑n
i=1 ani · ρJ(n + 1 − i) = −(1−ρ2)

2
(
2+(n−1)(1−ρ)

) , and

1 − ∑n
i=1 ani · ρJ(i) =

(1+ρ)·
(
2+n(1−ρ)

)

2
(
2+(n−1)(1−ρ)

) ,

from which the expression for an+1,n+1 = −(1 − ρ)
/(

2 + n(1 − ρ)
)

follows. Next,
one shows the identity

2 + (1 − ρ) ·
(
2(n − j) + n + 1

)
+ (1 − ρ)2 ·

(
n(n − j) + j − 1

)

=
(
2 + (n − 1) · (1 − ρ)

)
·
(
1 + (n + 1 − j) · (1 − ρ)

)

12
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by simply multiplying out the product on the right-hand side and collecting the
resulting terms. Using this identity, one obtains

an+1,j = anj − an+1,n+1 · an,n+1−j

(A.3)
with k=n = −(1−ρ)(

2+(n−1)(1−ρ)
)

·
(
2+n(1−ρ)

)

·
((

1 + (n − j)(1 − ρ)
)

·
(
2 + n(1 − ρ)

)
+ (1 − ρ) ·

(
1 + (j − 1)(1 − ρ)

))

= −(1−ρ)(
2+(n−1)(1−ρ)

)
·
(
2+n(1−ρ)

)

·
(
2 + (1 − ρ) ·

(
2(n − j) + n + 1

)
+ (1 − ρ)2 ·

(
n(n − j) + j − 1

))

identity = −(1−ρ)(
2+(n−1)(1−ρ)

)
·
(
2+n(1−ρ)

) ·
(
2 + (n − 1)(1 − ρ)

)
·
(
1 + (n + 1 − j)(1 − ρ)

)
,

which completes the proof.

A.3 Proof of Formula (1)

Since Jt = Xt − Xt−1, we have Jt = j iff Xt = j + Xt−1. Since 0 ≤ Xt−1 ≤ n, the
restriction j ≤ Xt ≤ n + j follows. The size |C(k)| follows from evaluating the sum

|C(k)| =
∑k

j=−k

(
min {n, n + j} − max {0, j} + 1

)

=
( ∑−1

j=−k (n + j) +
∑n

j=0 n
)

−
(∑0

j=−k 0 +
∑k

j=1 j
)

+ (2k + 1)

=
(
k · n − 1

2k(k + 1) + (k + 1) · n
)

−
(
0 + 1

2k(k + 1)
)

+ (2k + 1)

= (2k + 1) · n − k(k + 1) + (2k + 1) = (2k + 1)(n + 1) − k(k + 1).
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