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INRA, Agroparc 84914 Avignon, France

June 4, 2009

Abstract

Skewness is often present in a wide range of applied problems. One possible approach

to model this skewness is based on the class of skew normal distributions. Fitting such

distributions remains an inference challenge in various cases. In this paper, we propose and

study novel estimators using weighted moments for the closed multivariate skew-normal

distribution.

1 Introduction

Multivariate skew-normal distributions are extensions of the normal distribution which

admit skewness whilst retaining most of the interesting properties of the Gaussian distri-
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bution. The book edited by Genton (2004) provides an overview of theoretical and applied

developments related to skewed distributions. More recently, a special issue in the journal

Communications in statistics edited by Pewsey and González-Faŕıas (2007) was centered

on the different aspects of skew distributions. In the large class of skew distributions,

we focus on the multivariate closed skew-normal distribution proposed by González-Faŕıas

et al. (2004). Such a distribution has many interesting properties inherited from the Gaus-

sian distribution. Concerning its definition, an k-dimensional random vector Y is said to

have a multivariate closed skew-normal distribution, denoted by CSNk,l(µ,Σ,D,ν,∆), if

its density function is of the form

fk,l(y) = cl φk(y; µ,Σ) Φl(Dt(y − µ); ν,∆), with c−1
l = Φl(0; ν,∆ + DtΣD), (1)

where µ ∈ Rk, ν ∈ Rl, Σ ∈ Rk×k and ∆ ∈ Rl×l are both covariance matrices, D ∈ Rk×l,

φk(y; µ,Σ) and Φk(y; µ,Σ) are the probability distribution function (pdf) and cumulative

distribution function (cdf), respectively, of the k-dimensional normal distribution with mean

vector µ and covariance matrix Σ, and Dt is the transpose of the matrix D. If D = 0, the

density (1) reduces to the multivariate normal one. When l = 1, the density of Azzalini

(2005) is obtained, i.e. the variable Y follows a CSNk,1(µ,Σ,α, 0, 1) distribution, where α

is a vector of length k.

Concerning the inference of the Azzalini skew normal distribution parameters, Azzalini

and Capitanio (1999) studied the classical maximum likelihood estimation (mle) approach.

In sections 5 and 6 of their paper, these authors noticed that they are numerous statistical

issues with the mle procedure. They wrote that an alternative estimation method is called

for. This is one motivation for this work.

One of the advantages of parametrization (1) resides in the additive stability of the

distribution. González-Faŕıas et al. (2004) proved the closure under linear transformation

of independent CSN random vectors. In particular, the sum of independent CSN vectors is

still a CSN vector.
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They also derived the moments of Y. The first moment equals to

E(Y) = µ +
Φ∗l (D

tµ; ν,∆ + DtΣD)
Φl(Dtµ; ν,∆ + DtΣD)

, (2)

where

Φ∗l (D
tµ; ν,∆ + DtΣD) =

k∑

i=1

l∑

j=1

(DtΣ)ijΦ
{j}
l (Dtµ; ν,∆ + DtΣD)ei, (3)

and ei is a (k × 1) vector with one in the ith position and zero elsewhere, and

Φ{j}l (Dtµ; ν,∆ + DtΣD) = φ([Dtµ]j ; νj , [∆ + DtΣD]jj)Φl−1([Dtµ]−j ; ν−j ,∆ + DtΣD|[Dtµ]j).

where [Dtµ]j is the jth element of Dtµ and [Dtµ]−j is the vector Dtµ without the jth

element. The variance can be expressed as

Var(Y) = Σ +
Φ∗∗l (Dtµ; ν,∆ + DtΣD)
Φl(Dtµ; ν,∆ + DtΣD)

− E(Y − µ)E(Y − µ)t, (4)

where

Φ∗∗l (Dtµ; ν,∆ + DtΣD) =
∂

∂t∂tt
Φl(Dt(µ + Σt); ν,∆ + DtΣD)|t=0. (5)

These expressions can quickly become cumbersome in practice. The main reason for this

difficulty is the absence of analytical representations for Φl(Dtµ; ν,∆ + DtΣD) and its

derivatives, even when µ = 0. To apply the CSN to real case studies, the practitioner needs

to be able to easily implement an estimation method that provides accurate estimators of

the CSN parameters. In its most general form, it is unlikely that such an objective can be

reached for the CSN because of its large number of parameters. This aim can be achieved

in some specific cases, basically when (2) and (4) can be simplified. Such cases still can offer

an added flexibility and skewness with respect to the classical Gaussian distribution. To

reach this goal in such cases our strategy is to develop a novel Method of Moments (MOM)

approach that will be described in Section 2.
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Before closing this section, we derive a lemma that will help us to compute the mean

and variance of a CSN. All our proofs can be found in the Appendix.

Lemma 1. Let Φl(·; ν,∆ + DtΣD) be a l-dimensional Gaussian cdf with mean ν ∈ Rl

and covariance matrix ∆ + DtΣD. Then,

Φ∗l (D
tµ; ν,∆ + DtΣD)

Φl(Dtµ; ν,∆ + DtΣD)
=

Φ∗l (0; ν,∆ + DtΣD)
Φl(0; ν,∆ + DtΣD)

. (6)

and
Φ∗∗l (Dtµ; ν,∆ + DtΣD)
Φl(Dtµ; ν,∆ + DtΣD)

=
Φ∗∗l (0; ν,∆ + DtΣD)
Φl(0; ν,∆ + DtΣD)

, (7)

where Φ∗l (D
tµ; ν,∆ + DtΣD) and Φ∗∗l (Dtµ; ν,∆ + DtΣD) are defined by (3) and (5),

respectively.

In practice, this lemma indicates that, although µ has still to be estimated, it can be

set equal to zero in the ratios (6) and (7).

2 Our inference method

The key concept for any MOM approach is to be able to explicitly express moments in

terms of the unknown parameters. From a CSN vector, there are at least three quantities

to estimate: the covariance matrix, the mean vector and the skewness parameters. Hence,

working with the first two moments does not provide enough equations. A possible path

is to look at higher moments but this strategy is associated with at least two drawbacks.

The mathematical expression of the third and fourth CSN moments are too complex to be

of any practical use. In addition, the estimation of the third and fourth CSN moments are

classically tainted by large variances. To avoid these hurdles, we modify a MOM approach

used in Extreme Value Theory.

Probability Weighted Moments are a class of MOM estimators introduced by Hosking

et al. (1985). Such approaches have been extended by Diebolt et al. (2008). The basic

idea is to compute and estimate moments of the type E(ZsF r(Z)) where F corresponds

to the cumulative distribution function of the univariate random variable Z and r, s are

4
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integers, usually equal to one or two. For the extreme value distributions, such quantities

have explicit analytical expressions (e.g. Hosking et al., 1985; Diebolt et al., 2008). In the

case of the CSN, the computation of these so-called Probability Weighted Moments seems

very difficult to derive because the “weight” F r(Z) is very complex for a CSN. However,

replacing F r(.) by the cumulative Gaussian distribution Φr(.;µ, σ2) greatly simplifies the

problem. This is even true for the multivariate case. The following proposition summarizes

our findings on this topic.

Proposition 2. Let Y be a CSNk,l(µ,Σ,D,0,∆) defined by (1) and h(y) = h(y1, . . . , yk)

be any real valued function such that E(h(Y)) is finite, then

E(h(Y)Φr
k(Y; 0, Ik)) =

Φrk+l(0; ν+,∆+ + Dt
+ΣD+)

Φl(0; 0,∆ + DtΣD)
E(h(Y+)), (8)

where Y+ follows a CSNk,rk+l(µ,Σ,D+,ν+,∆+) with ∆+ =




Irk 0

0 ∆


 , D+ =




Dt
∗

Dt




t

,

D∗ a k× rk matrix defined by D∗ =




Ik

. . .

Ik




t

with Ik the identity matrix of size k, and ν+

a rk + l vector defined by νt+ = (−µ, . . . ,−µ,0l).

To understand Equation (8) we consider two special cases. First, suppose that r = 1

and h(y1, . . . , yk) = yi for some i = 1, . . . , k. Then, using Lemma 1 and Equation (2) within

(8), we can write

E(YiΦk(Y; 0, Ik)) = µi
Φk+l(0; ν+,∆+ + Dt

+ΣD+)
Φl(0; 0,∆ + DtΣD)

+

[
Φ∗k+l(0; ν+,∆+ + Dt

+ΣD+)
]
i

Φl(0; 0,∆ + DtΣD)
. (9)

The left hand side of (9) can be viewed as a type of weighted moments. Concerning the

right hand side, it basically means that, if D, Σ and ∆ are chosen such as the first moment

(2) and second moment (4) have explicit expressions or can be reasonably approximated,

5



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

then the weight moment defined by (9) can also be derived. In other words, if one can

compute or approximate the first and second moments expressions, then a weighted moment

can also be obtained and a MOM approach with a third equation can be implemented.

Our second case concerns the bivariate sub vector (Yi, Yj)t for some i, j = 1, . . . , k

that follows a CSN2,l(0,Σij ,Dij ,0,∆ij) with obvious notations for the matrices. To apply

Proposition 2 we choose h(yi, yj) = yiyj and r = 2. If Φ(x) denotes a shortcut notation for

the standardized cumulative Gaussian distribution Φ1(x; 0, 1), we can then write

E(YiYjΦ(Yi)Φ(Yj)) =
Φ4+l(0; 0,∆+ij + Dt

+ijΣD+ij)
Φl(0; 0,∆ij + Dt

ijΣijDij)
E(Y+iY+j), (10)

where (Y+i, Y+j)t follows a CSN2,2+l(0,Σij ,D+ij ,0,∆+ij) and these elements can be ob-

tained from (4). Equation (10) will be useful to derive the variance properties of our

proposed estimators. In Equation (10) we took (µi, µj) = (0, 0). When this assumption

does not held, we can take advantage of Lemma 1.

If µ and ν are both assumed to be unknown, then they cannot be identified in (1)

because the expression Φl(Dt(y − µ); ν,∆) is over-parametrized in this case. Following

González-Faŕıas et al. (2004) we decide to set ν = 0 in the rest of the paper. In our

applications, we also suppose that the matrix ∆ is a function of the other three unknown

parameters µ,Σ and D. Conceptually, it may be possible to deal with the estimation of ∆

by working with a moment of the type E(YiΦ2
k(Y; 0, Ik)). But it becomes burdensome in

terms of notations and complicated in terms of optimization.

3 Examples and estimation procedures

3.1 The univariate case

Assume thatX1, . . . , Xn are n independent and identically distributed random variables(iid)

CSN1,1(µ, σ2, δ, 0,∆) with µ, σ2 and δ unknown. Define λ = σδ/
√

∆ + σ2δ2, the first and

6
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second moment expressions are easily derived from (2) and (4) with k = l = 1

E(Xi) = µ+ 2Φ∗1(0; 0,∆ + δ2σ2) = µ+
2√
2π
σλ,

and

Var(Xi) = σ2 + 2Φ∗∗1 (0; 0,∆ + δ2σ2)− (2Φ∗1(0; 0,∆ + δ2σ2))2 = σ2

(
1− 2

π
λ2

)
.

A direct application of Equation (9) gives

E(XiΦ(Xi)) = 2µ Φ2 (0; ν2+,A2) + 2Φ∗2 (0; ν2+,A2) (11)

where Φ∗2 (0; ν2+,A2) = σ2
{

Φ{1}2 (0; ν2+,A2) + δ Φ{2}2 (0; ν2+,A2)
}

and

ν2+ =



−µ

0


 , 0 =




0

0


 and A2 =




1 + σ2 σ2δ

σ2δ ∆ + σ2δ2


 . (12)

In terms of estimation, the sample mean denoted Xn = (X1 + · · ·+Xn)/n and the sample

variance s2n =
∑n

i=1(Xi −Xn)2/(n − 1) can be plugged in the above moment expressions.

The weighted moment m = E(XiΦ(Xi)) can be estimated by the unbiased statistic mn =

n−1
∑n

i=1XiΦ(Xi). The following system of three equations with unknowns µ̂, δ̂ and σ̂

follows 



Xn = µ̂+
√

2
π σ̂λ̂

s2n = σ̂2
(

1− 2
π λ̂

2
)

mn = 2µ̂ Φ2

(
0; ν̂2+, Â2

)
+ 2Φ∗2

(
0; ν̂2+, Â2

)
, (13)

where ν̂2+ and Â2 are defined by (12). Concerning the asymptotic properties of our mo-

ments, they can be described by the following proposition.

Proposition 3. Assume that X1, . . . , Xn are n iid CSN1,1(µ, σ2, δ, 0,∆) variables where

µ, σ2 and δ are unknown and define λ = σδ/
√

∆ + σ2δ2. The unbiased estimator vector
√
n
(
Xn − E(X), s2n − Var(X),mn − E(XΦ(X))

)t converges in distribution, as n goes to

7
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infinity, to a zero-mean Gaussian vector with a covariance matrix whose elements cij equal

c1,1 = σ2

(
1− 2

π
λ2

)
,

c1,2 = σ3 2√
2π

(
4
π
− 1
)
λ3,

c2,2 = σ4

(
2− 16

2π
λ2 +

16
π

(
1
2
− 1
π

)λ4

)
,

c3,3 = E(X2Φ2(X))− E2(XΦ(X)),

c1,3 = c3,1 = E(X2Φ(X))− E(X)E(XΦ(X)),

c2,3 = c3,2 = E(X3Φ(X))− Var(X)E(XΦ(X))− 2E(X)E(X2Φ(X)) + E2(X)E(XΦ(X)),

where E(Xp), p ≥ 0 can be found in Martinez (2008) and

E(X2Φ2(X)) = 2(σ2 + µ2)Φ3(0; ν3+,A3) + 4µΦ∗3(0; ν3+,A3) + 2Φ∗∗3 (0; ν3+,A3),

E(X2Φ(X)) = 2µΦ2(0; ν2+,A2) + 2Φ∗2(0; ν2+,A2),

E(X3Φ(X)) = 2Φ2(0; ν2+,A2)E(X3
+),

with ν2+ and A2 defined by (12),

ν3+ =




−µ

−µ

0



, and A3 =




1 + σ2 σ2 σ2δ

σ2 1 + σ2 σ2δ

σ2δ σ2δ ∆ + σ2δ2



.

To assess our MOM estimation scheme with simulations we focus on the Skew-Normal

model described by Azzalini and Capitanio (1999) and denoted SN(µ, σ, α). The latter

corresponds to a CSN1,1(µ, σ2, λσ−1, 0, 1−λ2) for some 0 ≤ |λ| < 1 where λ = α/
√

1 + α2.

In this case, the system (13) can be written as





Xn = µ̂+
√

2
π σ̂λ̂

s2n = σ̂2
(

1− 2
π λ̂

2
)

mn = 2µ̂ Φ2

(
0; ν̂+, Â2

)
+ 2Φ∗2

(
0; ν̂+, Â2

)
, (14)

8
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Figure 1: Density of CSN1,1(0, 1, λ, 0, 1− λ2) for λ in {0, 0.2, 0.71, 0.89, 0.97}.

where Φ2

(
0; ν̂+, Â2

)
= Φ2







0

0


 ;



− µ̂√

1+σ̂2

0


 ,




1 λ̂ σ̂√
1+σ̂2

λ̂ σ̂√
1+σ̂2

1





 and the prob-

ability Φ∗2
(
0; ν̂+, Â2

)
equals

σ̂2 φ
(
µ̂; 0, 1 + σ̂2

)
Φ

(
− σ̂

1 + σ̂2
λ̂µ̂; 0,

1 + σ̂2(1− λ̂2)
1 + σ̂2

)
+

σ̂λ̂√
2π

Φ
(
µ̂; 0, 1 + σ̂2(1− λ̂2)

)
.

For our simulations, 1000 samples of sizes n = 50 and n = 100 are generated from a

CSN1,1(0, 1, λ, 0, 1 − λ2) with λ in {0.20, 0.71, 0.89, 0.97}. These values correspond to Az-

zalini’s Skew-Normal shape parameters α in {0.2, 1, 2, 4}. Table 1 compares the Mean

Squared Errors for each parameter obtained from our weighted moment approach with the

ones derived with the mle method studied by Azzalini and Capitanio (1999). The lowest

MSE value for the two methods is represented in bold letters. This table indicates that

our approach performs better than the mle for the small sample size n = 50, especially for

the parameter σ. As the sample size increases, both methods improve and become compa-

rable (although the mle has still difficulties for σ). In contrast to larger λ’s (see Table 1),

the weighted moments and maximum likelihood methods have both difficulties to estimate

values of λ near zero. For the latter estimation procedure, this difficulty can be explained

by the singularity of the Information of Fisher matrix at λ = 0. For the weighted moment

method, the asymptotic variance of X̄n and s2n is maximal for λ = 0. The covariance matrix

of the moments does not present any singularity when λ = 0. As an example, for µ = 0,

σ = 1 and λ = 0 its determinant is equal to 0.00808 > 0.

Another way to look at the poor estimators performance for small values of λ is to

display the density distributions for various λ’s, see Figure 1 below. The black and blue

lines correspond to λ = 0 (Gaussian) and λ = 0.2, respectively. Except if the sample size

is very large, it is extremely difficult to detect any skewness from a sample drawn from a

skew-normal with λ = 0.2. In comparison, the skewness becomes more visible for λ > 0.7.

9
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Table 1: Mean Squared Error computed from 1000 samples of sizes n = 50 and n = 100 generated
from a CSN1,1(0, 1, λ, 0, 1− λ2) with λ in {0.20, 0.71, 0.89, 0.97}

To obtain the asymptotic distribution of our estimators, the classical approach is to ap-

ply the delta method in conjunction with Proposition 3 that provides the trivariate-normal

asymptotic distribution of our triplet of moments. Still, the complexity of those weighted

moment expressions makes it impossible to derive explicit formulas of the transformed

estimators via the delta-method.

The covariance matrix of the moments established in Proposition 3 allows us to build

approximate confidence intervals using a parametric bootstrap approach (Efron and Tibshi-

rani, 1993), briefly outlined as follows. From proposition 3, sample N repetition of triplets

of moments (Xn(i), s2n(i),mn(i)), i = 1, . . . , N using the estimated parameters (µ̂, σ̂, λ̂).

For each triplet, solve (13) to find a triplet (µ̃(i), σ̃(i), λ̃(i)). From these one obtains an ap-

proximate variance-covariance matrix associated to (µ̂, σ̂, λ̂) as well as confidence intervals.

For example we computed the confidence interval for the case λ = 0.89 and n = 100. With

N = 10 000, the 90% centered confidence interval was estimated to be [0.685, 0.968].

3.2 A multivariate example

Following our univariate example, we study the following k-dimensional multivariate dis-

tribution CSNk,k

(
µ,Σ, λΣ−1/2, 0, (1− λ2)Ik

)
, where µ is a location vector of size k, Σ a

k × k variance covariance matrix and λ a scalar in ]− 1, 1[. Such a parametrization corre-

sponds to ∆ + DtΣD = Ik and the moments are

E(Y) = µ +
2√
2π
λΣ1/21k, Var(Y) = Σ

(
1− 2

π
λ2

)
and

E(Φk(Y,0, Idk)) = 2kΦ2k


0;



−µ

0


 ,




Σ + Ik λΣ1/2

λΣ1/2 Ik







Figures 2 and 3 summarize, with boxplots and histograms, our MOM estimations obtained

10
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with 1000 samples of size 500 generated from a bivariate CSN2,2

(
µ,Σ, λΣ−1/2,0, (1− λ2)I2

)

random vector with µ1 = µ2 = 0, σ1 = σ2 = 1, λ = 0.89 and ρ = 0.8. The boxplots cor-

respond to the parameters µ and σ and the histograms to ρ and λ. These graphs indicate

that our approach provides reasonable results in this bivariate case.

Figure 2: Estimated values of µ̂1, µ̂2, σ̂1 and σ̂2 obtained from 1000 samples of size 500 generated
from a bivariate CSN2,2

(
µ,Σ, λΣ−1/2,0, (1− λ2)I2

)
with µ1 = µ2 = 0, σ1 = σ2 = 1, λ = 0.89

and ρ = 0.8. Solid lines represent true values.

Figure 3: Histograms of estimated values for ρ̂ (left) and λ̂ (right) from the same simulations
described in Figure 2

4 Concluding remarks

In this paper, we have introduced a new inference approach for closed skew normal distri-

bution by modifying a MOM approach used in Extreme Value Theory. In the simulation

study, we compare our estimators with mle ones in the univariate case. Our approach seems

to outperform the mle for small sample sizes. As illustrated by our bivariate example, the

basic principles of our method can be applied to some multivariate cases. In conclusion, our

goal was not to show the superiority of our approach over the mle. Instead and as advocated

by Azzalini and Capitanio (1999), we aimed at providing an alternative inference scheme

for skew normal distributions. This method could be used to initialize mle algorithms or

whenever the mle provides unreasonable values.

As shown in Section 3.1, the asymptotic covariance matrix of the moments allows us to

build confidence intervals for the estimates using a parametric bootstrap procedure. This

raises the question of the testing λ = 0 versus λ 6= 0. We showed that it was possible for

high values of λ because estimates are reliable in this case. The results shown in Table 1
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for small values of λ does not encourage us to recommend formal tests when the amount of

skewness is low.

In this context, our advice when analyzing a sample of observations is rather to perform

a simple Gaussianity test and basic visual checks (histogram, density, qq-plots, etc) before

imposing a skew-normal model. If there is no strong evidence of a departure from normality,

the assumption of a skew-normal distribution should be discouraged because neither mle

nor our method can accurately estimate the skew-normal parameters in this instance. In

other words, a skew normal model should only be assumed when some skewness is apparent

in the data or when the sample size is very large. In this latter case, our method-of-moment

should performed adequately.
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5 Appendix

Proof of Lemma 1. According to González-Faŕıas et al. (2004), if Y follows a CSNk,l(µ,Σ,D,ν,∆),

then Y + c follows a

CSNk,l(µ + c,Σ,D,ν,∆) (15)
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for any real vector c of length k. This implies the following equalities

Φ∗l (0; ν,∆ + DtΣD)
Φl(0; ν,∆ + DtΣD)

= E(CSNk,l(0,Σ,D,ν,∆)), from (2),

= E(CSNk,l(0,Σ,D,ν,∆) + µ)− µ,

= E(CSNk,l(µ,Σ,D,ν,∆))− µ, , because of (15),

=
[

Φ∗l (D
tµ; ν,∆ + DtΣD)

Φl(Dtµ; ν,ν∆ + DtΣD)
+ µ

]
− µ, from (2),

=
Φ∗l (D

tµ; ν,∆ + DtΣD)
Φl(Dtµ; ν,∆ + DtΣD)

.

With a similar argument, this time using (4), Equation (7) can be derived.

Proof of Proposition 2 . We write that

E(h(Y)Φr
k(Y; 0, Ik)) = cl

∫
. . .

∫
h(y) Φr

k(y; 0, Ik) φk(y; µ,Σ) Φl(Dt(y − µ); 0,∆)dy,

= cl

∫
. . .

∫
h(y) φk(y; µ,Σ)

[
Φrk(Dt

∗(y − µ);−[µ . . .µ]t, Irk)Φl(Dt(y − µ); 0,∆)
]
dy,

= cl

∫
. . .

∫
h(y) φk(y; µ,Σ)

[
Φrk+l(Dt

+(y − µ); ν+,∆+)
]
dy.

To complete the computation of E(h(Y)Φk(Y; 0, Ik)), we remark that the density of Y+

follows a CSNk,rk+l(µ,Σ,D+,ν+,∆+) defined in Proposition 2 is

fk,rk+l(y) =
1

Φrk+l(0; ν+,∆+ + Dt
+ΣD+)

φk(y; µ,Σ) Φrk+l(Dt
+(y − µ); ν+,∆+).

The expected result follows.

14



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

de
ns

ity

λλ= 0
λλ= 0.2
λλ= 0.71
λλ= 0.89
λλ= 0.97

Figure 1: Density of CSN1,1(0, 1, λ, 0, 1− λ2) for λ in {0, 0.2, 0.71, 0.89, 0.97}.
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Figure 2: Estimated values of µ̂1, µ̂2, σ̂1 and σ̂2 obtained from 1000 samples of size 500

generated from a bivariate CSN2,2

(
µ,Σ, λΣ−1/2,0, (1 − λ2)I2

)
with µ1 = µ2 = 0, σ1 = σ2 =

1, λ = 0.89 and ρ = 0.8. Solid lines represent true values.
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Figure 3: Histograms of estimated values for ρ̂ (left) and λ̂ (right) from the same simulations

described in Figure 2.
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Table 1: Mean Squared Error computed from 1000 samples of sizes n = 50 and n = 100
generated from a CSN1,1(0, 1, λ, 0, 1 − λ2) with λ in {0.20, 0.71, 0.89, 0.97}

Weighted Moment Method Maximum Likelihood Method

λ µ̂ σ̂ λ̂ µ̂ σ̂ λ̂
n = 50

0.20 0.997 0.209 0.702 0.781 0.878 0.638
0.71 0.086 0.043 0.031 0.091 0.24 0.034
0.89 0.032 0.024 0.010 0.049 0.14 0.024
0.97 0.024 0.022 0.0061 0.028 0.088 0.012

n = 100
0.20 0.935 0.180 0.688 0.576 0.433 0.547
0.71 0.060 0.027 0.025 0.052 0.12 0.023
0.89 0.025 0.016 0.0092 0.030 0.071 0.015
0.97 0.013 0.012 0.0021 0.012 0.054 0.0012
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