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Marcinkiewicz-Zygmund Strong Laws for U-statistics of
Weakly Dependent Observations

Herold G. Dehlinga, Olimjon Sh. Sharipovb,1

aFakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
bDepartment of Probability Theory and Mathematical Statistics, Institute of Mathematics
and Information Technologies, Uzbek Academy of Sciences, 29 Dormon Yoli str., Tashkent

100125, Uzbekistan

Abstract

We prove the Marcinkiewicz-Zygmund Strong Law of Large Numbers for U -
statistics of strictly stationary, absolutely regular observations (ξi)i≥1. Under
suitable moment conditions and conditions on the mixing rate, we show that

n−2+γ
∑

1≤i<j≤n

(h(ξi, ξj) − Eh(ξ, η)) → 0

for some γ ≥ 0, in the non-degenerate case, and

n−1+γ
∑

1≤i<j≤n

(h(ξi, ξj) − Eh(ξ, η)) → 0

in the degenerate case.

1. Introduction

Let (ξi)i≥1 be a strictly stationary sequence of random variables with a
common distribution function F (x), and let h: R2 → R be a symmetric function,
i.e. h(x, y) = h(y, x) for all x, y ∈ R. We define the U -statistics with kernel h
by

Un =
2

n(n − 1)

∑

1≤i<j≤n

(h(ξi, ξj) − E h(ξ, η)),

where ξ and η are independent random variables with distribution function F .
The strong law of large numbers (SLLN) for U -statistics in the case of i.i.d.

observations (ξi)i≥1 was proved independently by Hoeffding (1961) and Berk
(1966). In the case of dependent observations, the SLLN was studied by Wang
(1995), Aaronson et al (1996) and Arcones (1998). In the present paper, we
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investigate the Marcinkiewicz-Zygmund SLLN for U -statistics. In the case of
i.i.d. observations, the Marcinkiewicz-Zygmund law has been investigated by
Sen (1974), Giné and Zinn (1992) and Teicher (1998). As far as we know,
there are no results on the Marcinkiewicz-Zygmund SLLN for U -statistics of
dependent observations yet.

In this paper we will focus on absolutely regular processes. The absolute
regularity coefficients of the sequence (ξi)i≥1 are defined by

β(k) :=
1
2
sup

{ n∑

i=1

n∑

j=1

|P (Ai ∩ Bj) − P (Ai)P (Bj)|
}
,

where the supremum is taken over all partitions {A1, . . . , An} and {B1, . . . , Bn}
of Ω with Ai ∈ F l

1, Bj ∈ F ∞
l+k and all l ≥ 1. Here F l

k denotes the σ-algebra
generated by the random variables {ξi : k ≤ i ≤ l}. The process (ξi)i≥1 is called
absolutely regular if limk→∞ β(k) = 0.

Now we are ready to formulate our results. Our first theorem investigates
U -statistics with bounded kernels.

Theorem 1. Let (ξi)i≥1 be a strictly stationary, absolutely regular process with
mixing coefficients satisfying

∞∑

k=1

kβ(k) < ∞.

(i) If h(x, y) is a bounded and degenerate kernel, then we have for all p ∈ [1, 2)

lim
n→∞

n2(1− 1
p )Un = 0 a.s.

(ii) If h(x, y) is a bounded kernel, then we have for all p ∈ [1, 2)

lim
n→∞

n(1− 1
p )Un = 0 a.s.

In the second theorem, we allow unbounded kernels, satisfying some moment
conditions.

Theorem 2. Let (ξi)i≥1 be a strictly stationary, absolutely regular process and
suppose that for p ∈ [1, 2) and δ > 0 we have

sup
i,j

E|h(ξi, ξj)|p+δ < ∞.

Moreover, assume that the mixing coefficients satisfy
∞∑

k=1

kγβ(k) < ∞,

where γ := max(1, p(p−1)+δ(p−2)
δ ). Then

lim
n→∞

n(1− 1
p )Un = 0 a.s.

2
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2. Correlation and Moment Inequalities

In this section we present some moment inequalities that will be used in the
proofs of our main theorems.

Lemma 2.1. Let (ξi)i≥1 be a strictly stationary, absolutely regular process, h :
R2 → R a measurable kernel satisfying, for some p > 0,

M := sup
i,j

E|h(ξi, ξj)|p < ∞.

Then E|h(ξ, η)|p ≤ M , where ξ and η are two independent random variables
with the same marginal distribution as ξ1.

Proof. Via standard arguments, this follows from the fact that, by definition of
absolute regularity, the distribution of (ξ1, ξn) converges in total variation norm
to the distribution of (ξ, η). �

Lemma 2.2. Let (ξi)i≥1 be a strictly stationary, absolutely regular process, let
i1 < . . . < ij < ij+1 < . . . < ik be integers and let F, G and H denote the dis-
tribution functions of (ξi1 , . . . ξik

), (ξi1 , . . . ξij ) and (ξij+1 , . . . , ξik
) respectively.

Then the following two statements hold:
(i) If g is a measurable function such that

sup |g(x1, . . . , xk)| ≤ M < ∞,

then ∣∣∣∣
∫

gdF −
∫ ∫

gdGdH

∣∣∣∣ ≤ 2Mβ(ij+1 − ij).

(ii) If g is a measurable function such that

M = max
(∫

|g|1+δdF,

∫ ∫
|g|1+δdGdH

)
< ∞

for some δ > 0, then
∣∣∣∣
∫

gdF −
∫ ∫

gdGdH

∣∣∣∣ ≤ 3M
1

1+δ βδ/(1+δ)(ij+1 − ij).

Part (ii) of Lemma 2.2 is proved in Yoshihara (1976) and part (i) follows from
the definition of mixing coefficients β(k), see also Arcones (1998).

Lemma 2.3. Assume that h(x, y) is degenerate and let (ξi)i≥1 satisfy one of
the following two conditions:
(i) h is bounded and

∞∑

k=1

kβ(k) < ∞,

3
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(ii) for some δ > 0 we have supi,j E|h(ξi, ξj)|2+δ ≤ M and

∞∑

k=1

k(β(k))
δ

2+δ < ∞.

Then there exists a constant C > 0 such that the inequality

E


 ∑

1≤i<j≤n+a, j>a

h(ξi, ξj)




2

≤ C(n + a)nM2 (1)

holds for all integers n ≥ 1, a ≥ 0.

Proof. We will follow the proof of Lemma 2 from Yoshihara (1976). First we
will prove (1) under conditions (i). We define

J ((i1, i2), (j1, j2)) = E (h(ξi1 , ξi2)h(ξj1 , ξj2)) ,

Ua,n+a =
∑

1≤i<j≤n+a, j>a

h(ξi, ξj).

Observe that

EU2
a,n+a =

∑

1≤i1<i2≤n+a, i2>a

∑

1≤j1<j2≤n+a, j2>a

J
(
(i1, i2), (j1, j2)

)
. (2)

We decompose the sum on the r.h.s. into five parts, according to the order in
which the indices i1, i2, j1, j2 occur. We then apply repeatedly the correlation
inequality of Lemma 2.2(i) to the function

g(x1, x2, x3, x4) = h(x1, x2)h(x3, x4),

noting that by degeneracy of h, we have
∫

g(x1, x2, x3, x4)dF (xj) = 0, 1 ≤ j ≤ 4,

where F denotes the distribution function of ξ1. Using arguments similar to
those used by Yoshihara (1976), we then obtain

∣∣∣∣∣∣
∑

1≤i1<i2≤j1<j2≤n+a, i2>a, j2>a

J ((ii, i2), (ji, j2))

∣∣∣∣∣∣

≤
∑

1≤i1<i2≤j1<j2≤n+a, i2−i1≥j2−j1, i2>a, j2>a

|J ((i1, i2), (j1, j2))|

+
∑

1≤i1<i2≤j1<j2≤n+a, i2−i1≤j2−j1, i2>a, j2>a

|J ((i1, i2), (j1, j2))|

≤ Cn2M2, (3)

4
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∣∣∣∣∣∣
∑

1≤i1<j1≤i2<j2≤n+a, i2>a, j2>a

J ((i1, i2), (j1, j2))

∣∣∣∣∣∣

≤
∑

1≤i1<j1≤i2<j2≤n+a, j1−i1>j2−i2, i2>a, j2>a

|J ((i1, i2), (ji, j2))|

+
∑

1≤i1<j1≤i2<j2≤n+a, j1−i1≤j2−i2, i2>a, j2>a

|J ((i1, i2), (ji, j2))|

≤ C(n + a)nM2, (4)

∣∣∣∣∣∣
∑

1≤i1<j1<j2<i2≤n+a, i2>a, j2>a

J ((i1, i2), (j1, j2))

∣∣∣∣∣∣

≤
∑

1≤i1<j1<j2<i2≤n+a, j1−i1≥i2−j2, i2>a, j2>a

|J ((i1, i2), (ji, j2))|

+
∑

1≤i1<j1<j2<i2≤n+a, j1−i1≤i2−j2, i2>a, j2>a

|J ((i1, i2), (ji, j2))|

≤ C(n + a)nM2, (5)

∣∣∣∣∣∣
∑

1≤i1,j1≤n+a

n+a∑

i2=a+1

J ((i1, i2), (j1, j2))

∣∣∣∣∣∣

≤
n+a∑

i1=1

n+a∑

i2=a+1

J ((i1, i2), (i1, i2)) + 2
∑

1≤i1<j1≤n+a

n+a∑

i2=a+1

|J ((i1, i2), (j1, j2)) |

≤ C(n + a)nM2, (6)

and finally
∣∣∣∣∣∣

∑

a+1≤i2,j2≤n+a

n+a∑

i1=1

J ((i1, i2), (j1, j2))

∣∣∣∣∣∣
≤ Cn(n + a)M2. (7)

Inequalities (2) - (7) imply (1). Thus under conditions (i) the lemma is proved.
The proof of the lemma under conditions (ii) is similar (in this case we use part
(ii) of Lemma 2.2). �

5
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Lemma 2.4. Let (ξi)i≥1 satisfy the conditions of Lemma 2.3. Then

E max
1≤k≤n


 ∑

1≤i<j≤k+a, j>a

h(ξi, ξj)




2

≤ CM2

[
log 2n

log 2

]
(n + a)n (8)

for any integers n ≥ 1, a ≥ 0, and with the same C and M as in (1).

Proof. We define

Ūa,n+a = max
1≤k≤n

|
∑

1≤i<j≤k+a, j>a

h(ξi, ξj)|2.

We will follow the proof of the theorem by Serfling (1970) and give the proof
for completeness.
We will use the induction method. For n = 2, (8) follows from (1). Assume (8)
holds for all n < N and all a ≥ 0 taking N to be even. We will bound U2

a,n+a

for each n ≤ N . There are two cases: either 1 ≤ n ≤ N
2 or N

2 < n ≤ N . If
1 ≤ n ≤ N

2

U2
a,n+a ≤ Ū2

a, N
a
.

If N
2 < n ≤ N

U2
a,n+a = (Ua, N

2 +a + UN
2 +a,n+a)2

= U2
a, N

2 +a + 2Ua, N
2 +a · UN

2 +a,n+a + U2
N
2 +a,n+a

≤ Ūa, N
2 +a + 2|Ua, N

2 +a | · ŪN
2 +a, N

2 +a+ N
2

+ U2
N
2 +a, N

2 +a+ N
2
.

Hence

Ū2
a,N+a ≤ Ua, N

2 +a + 2|Ua, N
2 +a|ŪN

2 +a, N
2 + N

2 +a + Ū2
N
2 +a, N

2 + N
2 +a

.

Taking expectations on both sides and applying the induction hypothesis we
obtain

EŪ2
a,N+a ≤

(
log N

log 2

)2

CM2

(
N

2
+ a

)
N

2
+ 2E

(
|Ua, N

2 +a|ŪN
2 +a, N

2 + N
2 +a

)

+
(

log N

log 2

)2

CM2

(
N

2
+

N

2
+ a

)
N

2
, (9)

and moreover

2E
(

|Ua, N
2 +a|ŪN

2 +a, N
2 +N

2 +a

)

≤ 2E1/2|Ua, N
2 +a|2 · E1/2|ŪN

2 +a, N
2 + N

2 +a|2

≤ 2
(

log N

log 2

) (
CM2(

N

2
+ a)

N

2

)1/2

·
(

CM2(N + a)
N

2

)1/2

≤
(

log N

log 2

) [
CM2(

N

2
+ a)

N

2
+ CM2(N + a)

N

2

]
. (10)

6
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Then, (10) together with (9) implies

EŪ2
a,N+a ≤

[
log N

log 2
+

(
log N

log 2

)2
](

CM2(
N

2
+ a)CM2(N + a)

N

2

)

≤
[
log 2N

log 2

]2

CM2(N + a)N. (11)

For N odd (8) can be proved in the same way considering the two cases 1 ≤
n ≤ N+1

2 and N+1
2 < n ≤ N . �

In the next lemma we formulate strong laws of large numbers for (ξi)i≥1

under additional conditions.

Lemma 2.5. Let (ξi)i≥1 be a strictly stationary, absolutely regular process sat-
isfying E|ξ1| < ∞. Then

1
n

(ξ1 + . . . + ξn) → 0 a.s. as n → ∞.

Moreover, for p ∈ [1, 2),

1
n1/p

(ξ1 + . . . + ξn) → 0 a.s. as n → ∞,

provided one of the following two sets of conditions is satisfied,
(i) The random variables ξi are almost surely bounded and

∞∑

n=1

np−2β(n) < ∞.

(ii) For some δ > 0, the random variables satisfy E|ξi|p+δ < ∞ and
∞∑

k=1

kνβ(k) < ∞,

where ν = p(p−1)+δ(p−2)
δ .

The first part of the lemma follows from Birkhoff’s ergodic theorem. The second
part was proved by Berbee (1987) under conditions (i). Under (ii), it is a special
case of Theorem 1 by Rio (1995).

3. Proofs of the Theorems

Proof of Theorem 1. First we prove part (i). It suffices to prove the following
relations

S2k

22k/p
→ 0 a.s. as k → ∞, (12)

max2k<i≤2k+1 |Si|
22k/p

→ 0 a.s. as k → ∞. (13)

7
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where
Sn =

∑

1≤i<j≤n

h(ξi, ξj).

Using Chebyshev’s inequality and Lemma 2.3 we have for any ε > 0

∞∑

k=1

P

( |S2k |
22k/p

> ε

)
≤

∞∑

k=1

CE|S2k |2
ε 24k/p

≤
∞∑

k=1

C22kM2

ε 24k/p
< ∞.

Now the Borel-Cantelli lemma implies (12). Again using Chebyshev’s inequality
and Lemma 2.4 we obtain for any ε > 0

∞∑

k=1

P

(
1

22k/p
max

2k<i≤2k+1
|Si| > ε

)
≤

∞∑

k=1

C
E(max2k<i≤2k+1 |Si|2)

ε 24k/p

≤
∞∑

k=1

C · 22k · (log 2k)2

ε 24k/p
< ∞.

The latter together with the Borel-Cantelli lemma implies (13). Thus part (i) is
proved. In order to prove part (ii), we use Hoeffding’s decomposition, according
to which we can write

Un =
2
n

n∑

i=1

(h1(ξi) − θ(F )) +
2

n(n − 1)

∑

1≤i<j≤n

h2(ξi, ξj), (14)

where

h1(x) =
∫

h(x, y)dF (y),

θ(F ) =
∫

h(x, y)dF (x)dF (y),

h2(x, y) = h(x, y) − h1(x) − h1(y) + θ(F ).

Now part (ii) of the theorem easily follows from part (i) and Lemma 2.5. �

Proof of Theorem 2. Again, by Hoeffding’s decomposition we have

Un =
2
n

n∑

i=1

(h1(ξi) − θ(F )) +
2

n(n − 1)

∑

1≤i<j≤n

h2(ξi, ξj),

where h1(x), θ(F ) and h2(x, y) are defined as above. Thus it suffices to show

1
n1/p

n∑

i=1

(h1(ξi) − θ(F )) → 0 a.s. as n → ∞, (15)

2n1−1/p

n(n − 1)

∑

1≤i<j≤n

h2(ξi, ξj) → 0 a.s. as n → ∞. (16)

8
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As (15) follows from Lemma 2.5, it remains to show (16), which again follows
from

2 · 2(1−1/p)k

2k(2k − 1)
S2k −→ 0 a.s. as k → ∞, (17)

2 · 2(1−1/p)k

2k(2k − 1)
max

2k<n≤2k+1
|Sn − S2k | −→ 0 a.s. as k → ∞, (18)

where
Sn =

∑

1≤i<j≤n

h2(ξi, ξj).

Let ξ, η be two independent random variables with the same distribution as ξi.
As Eh2(ξ, η) = 0, we get

h2(ξi, ξj) = h2(ξi, ξj)I
(

|h2(ξi, ξj)| ≤ 2αk
)

− Eh2(ξ, η)I
(

|h2(ξ, η)| ≤ 2αk
)

+h2(ξi, ξj)I
(

|h2(ξi, ξj)| > 2αk
)

− Eh2(ξ, η)I
(

|h2(ξ, η)| > 2αk
)
.

We define the kernels h̄2(ξi, ξj) = h̄2,k(ξi, ξj) and ȟ2(ξi, ξj) = ȟ2,k(ξi, ξj) by

h̄2,k(ξi, ξj) = h2(ξi, ξj)I
(

|h2(ξi, ξj)| ≤ 2αk
)

− Eh2(ξ, η)I
(

|h2(ξ, η)| ≤ 2αk
)
,

ȟ2,k(ξi, ξj) = h2(ξi, ξj)I
(

|h2(ξi, ξj)| > 2αk
)

− Eh2(ξ, η)I
(

|h2(ξ, η)| > 2αk
)
,

and the associated non-normalized U -statistics by

S̄2k =
∑

1≤i<j≤2k

h̄2(ξi, ξj),

Š2k =
∑

1≤i<j≤2k

ȟ2(ξi, ξj).

We can take α = 1
p+δ/2 . First we prove (17). Using the triangle, Hölder and

Markov inequalities we obtain for any ǫ > 0

∞∑

k=1

P

(
1

2(1+1/p)k
|Š2k | > ε

)

≤ C
∞∑

k=1

22k(supi,j E|ȟ2(ξi, ξj)|I(|h(ξi, ξj)| > 2αk) + E|h(ξ, η)|I(|h(ξ, η)| ≥ 2αk))
ε 2(1/p+1)k

≤ C
∞∑

k=1

supi,j(E|h2(ξi, ξj)|p+δ)1/(p+δ) supi,j(P (|h2(ξi, ξj)| > 2αk))(p+δ−1)/(p+δ)

ε 2(1/p−1)k

+ C

∞∑

k=1

(E|h2(ξ, η)|p+δ)1/(p+δ)(P (|h(ξ, η)| > 2αk))(p+δ−1)/(p+δ)

ε 2(1/p−1)k

≤ C

ε

∞∑

k=1

1
(
2(1/p−1)2α(p+δ−1)

)k
< ∞. (19)

9
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Using the Borel-Cantelli lemma, we obtain

1
2(1+1/p)k

Š2k → 0 a.s. as k → ∞.

Since h2(x, y) will generally be non-degenerate, we use Hoeffding’s decomposi-
tion to get

2(1−1/p)k · 2
2k(2k − 1)

S̄2k (20)

= 2k(1−1/p)


θ̄(F ) +

2
2k

2k∑

i=1

(h3(ξi) − θ̄(F )) +
2

2k(2k − 1)

∑

1≤i<j≤2k

h4(ξi, ξj)


 ,

where

h3(x) =
∫

h̄2(x, y)dF (y),

θ̄(F ) =
∫

h̄2(x, y)dF (x)dF (y) = 0,

h4(x, y) = h̄2(x, y) − h3(x) − h3(y) + θ̄(F ).

Now we prove that

1
2(1+1/p)k

∑

1≤i<j≤2k

h4(ξi, ξj) → 0 a.s. as k → ∞. (21)

Since h4(x, y) is degenerate, we obtain, using Chebyshev’s inequality and Lem-
ma 2.3, for any ε > 0

∞∑

k=1

P


 1

2(1+1/p)k

∣∣∣∣∣∣
∑

1≤i<j≤2k

h4(ξi, ξj)

∣∣∣∣∣∣
> ε


 ≤ C

∞∑

k=1

E
∣∣∣
∑

1≤i<j≤2k h4(ξi, ξj)
∣∣∣
2

ε2 22(1+1/p)k

≤ C

ε2

∞∑

k=1

22k22αk

22(1+1/p)k
< ∞.

The latter together with the Borel-Cantelli lemma implies (21). Next we show
that

1
2k/p

2k∑

i=1

h3(ξi) → 0 a.s. as k → ∞. (22)

Note that

h3(x) =
∫

h2(x, y)dF (y) −
∫

ȟ2(x, y)dF (y) := h5(x) − ȟ6(x).

From Lemma 2.5 we have

1
2k/p

2k∑

i=1

h5(ξi) → 0 a.s. as k → ∞. (23)
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Using the triangle and the Markov inequality we obtain, for any ε > 0,

∞∑

k=1

P


 1

2k/p
|

2k∑

i=1

ȟ6(ξi)| > ε




≤ C

∞∑

k=1

2kE|ȟ6(ξ1)|
2k/pε

≤ C

∞∑

k=1

E|ȟ2(ξ, η)|
2(1/p−1)kε

= C

∞∑

k=1

E|h2(ξ, η)I(|h2(ξ, η)| > 2αk) − Eh2(ξ, η)I(|h2(ξ, η)| > 2αk)|
2(1/p−1)kε

≤ C

∞∑

k=1

E|h2(ξ, η)I(|h(ξ, η)| > 2αk)|
2(1/p−1)kε

≤ C

ε

∞∑

k=1

(
E|h2(ξ, η)|p+δ

)

2(1/p−1)k2α(p+δ−1)k
< ∞. (24)

Hence using the Borel-Cantelli lemma we have

1
2k/p

2k∑

i=1

ȟ6(ξi) → 0 a.s. as k → ∞. (25)

(23) and (25) imply (22). Now, (20), (21) and (22) imply (17). Thus, in order
to finish the proof of the theorem, it remains to prove (18). Again we use a
truncation method. We note that (18) holds if

2 · 2(1−1/p)k

2k(2k − 1)
max

2k<n≤2k+1
|Šn − Š2k | → 0 a.s. as k → ∞ (26)

and
2 · 2(1−1/p)k

2k(2k − 1)
max

2k<n≤2k+1
|S̄n − S̄2k | → 0 a.s. as k → ∞, (27)

where

Šn =
∑

1≤i<j≤n

ȟ2(ξi, ξj),

S̄n =
∑

1≤i<j≤n

h̄2(ξi, ξj).

Using the triangle, Hölder and Markov inequalities we obtain, for any ǫ > 0,

∞∑

k=1

P

(
1

2(1+1/p)k
max

2k<n≤2k+1
|Šn − Š2k | > ε

)
≤ C

∞∑

k=1

22k supi,j E|ȟ2(ξi, ξj)|
2(1+1/p)kε

.

11
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The last series converges by the same arguments which were used in (19) and
Borel-Cantelli lemma implies (26).
In order to prove (27) we need to prove that, as k → ∞

1
2(1+1/p)k

max
1≤l≤2k

∣∣∣∣∣∣
∑

1≤i<j≤2k+l, j>2k

h4(ξi, ξj)

∣∣∣∣∣∣
→ 0 a.s. as k → ∞, (28)

1
2k/p

max
2k<l≤2k+1

∣∣∣∣∣
l∑

i=2k

h4(ξi)

∣∣∣∣∣ → 0 a.s. as k → ∞. (29)

Using Chebyshev’s inequality and Lemma 2.4 we obtain, for any ε > 0

∞∑

k=1

P


 1

2(1+ 1
p )k

max
1≤l≤2k

∣∣∣∣∣∣
∑

1≤i<j<2k+l, j>2k

h4(ξi, ξj)

∣∣∣∣∣∣
> ε




≤ C

∞∑

k=1

E

(
max1≤l≤2k

∣∣∣
∑

1≤i<j≤2k+l,j>2k h4(ξi, ξj)
∣∣∣
2
)

22(1+ 1
p )ε2

≤ C

ε2

∞∑

k=1

22k22αkk2

22(1+ 1
p )k

< ∞.

The latter together with the Borel-Cantelli lemma implies (28).
Now we will prove that, as k → ∞,

1
2k/p

max
1≤l≤2k

∣∣∣∣∣∣

2k+l∑

i=2k+1

h5(ξi)

∣∣∣∣∣∣
−→ 0 a.s. as k → ∞ (30)

and
1

2k/p
max

1≤l≤2k

∣∣∣∣∣∣

2k+l∑

i=2k+1

ȟ6(ξi)

∣∣∣∣∣∣
−→ 0 a.s. as k → ∞. (31)

(30) follows from Lemma 2.5 and the inequality

1
2k/p

max
1≤l≤2k

∣∣∣∣∣∣

2k+l∑

i=2k+1

h5(ξi)

∣∣∣∣∣∣
≤ C

2k/p

∣∣∣∣∣∣

2k∑

i=1

h5(ξi)

∣∣∣∣∣∣
+

C

2k/p
max

1≤l≤2k+1

∣∣∣∣∣
l∑

i=1

h5(ξi)

∣∣∣∣∣ .

Using the inequality

max
1≤l≤2k

E

∣∣∣∣∣∣

2k+l∑

i=2k+1

ȟ6(ξi)

∣∣∣∣∣∣
≤ 2kE

∣∣ȟ6(ξ1)
∣∣ ,

and arguments which were used in (24) one can prove that, for any ε > 0,

∞∑

k=1

P


 1

2k/p
max

1≤l≤2k

∣∣∣∣∣∣

2k+l∑

i=2k+1

ȟ6(ξi)

∣∣∣∣∣∣
> ε


 < ∞.
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The latter and the Borel-Cantelli lemma imply (31). Next, (23) and (31) imply
(29), which together with (28) implies (27). Thus the theorem is proved. �
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spaces 8, Birkhäuser Boston, 273–291 (1992).

[7] E. Rio: A Maximal Inequality and Dependent Marcinkiewicz-Zygmund
Strong Laws. Annals of Probability 23, 918–937 (1995).

[8] P. K. Sen: On Lp-Convergence of U -Statistics. Annals of Institute of
Statistical Mathematics 26, 55–60 (1974).

[9] R. J. Serfling: Moment inequalities for the Maximum Cumulative
Sum. Annals of Mathematical Statistics 41, 1227–1234 (1970).

[10] H. Teicher: On the Marcinkiewicz-Zygmund Strong Law for U -
Statistics. Journal of Theoretical Probability 11, 279-288 (1998).

[11] Qiying Wang: The Strong Law of U -Statistics with φ∗-Mixing Samples.
Statistics and Probability Letters 23, 151–155 (1995).

[12] K. I. Yoshihara: Limiting Behavior of U -Statistics for Stationary,
Absolutely Regular Processes. Zeitschrift für Wahrscheinlichkeitstheorie
und verwandte Gebiete 35, 237–252 (1976).

13


