Herold G Dehling 
  
Olimjon Sh 
  
Sharipov 
  
Sh Sharipov 
  
Marcinkiewicz-Zygmund strong laws for U -statistics of weakly dependent observations

We prove the Marcinkiewicz-Zygmund Strong Law of Large Numbers for Ustatistics of strictly stationary, absolutely regular observations (ξ i ) i≥1 . Under suitable moment conditions and conditions on the mixing rate, we show that

for some γ ≥ 0, in the non-degenerate case, and n -1+γ 1≤i<j≤n (h(ξ i , ξ j ) -Eh(ξ, η)) → 0 in the degenerate case.

Introduction

Let (ξ i ) i≥1 be a strictly stationary sequence of random variables with a common distribution function F (x), and let h: R 2 → R be a symmetric function, i.e. h(x, y) = h(y, x) for all x, y ∈ R. We define the U -statistics with kernel h by

U n = 2 n(n -1) 1≤i<j≤n (h(ξ i , ξ j ) -E h(ξ, η)),
where ξ and η are independent random variables with distribution function F . The strong law of large numbers (SLLN) for U -statistics in the case of i.i.d. observations (ξ i ) i≥1 was proved independently by [START_REF] Hoeffding | The strong law of large numbers for U -statistics[END_REF] and [START_REF] Berk | Limiting Behavior of Posterior Distributions when the Model is Incorrect[END_REF]. In the case of dependent observations, the SLLN was studied by [START_REF] Wang | The Strong Law of U -Statistics with φ * -Mixing Samples[END_REF], [START_REF] Aaronson | Strong Laws for L-and U -Statistics[END_REF] and [START_REF] Arcones | The Law of Large Numbers for U -Statistics under Absolute Regularity[END_REF]. In the present paper, we
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investigate the Marcinkiewicz-Zygmund SLLN for U -statistics. In the case of i.i.d. observations, the Marcinkiewicz-Zygmund law has been investigated by [START_REF] Sen | On L p -Convergence of U -Statistics[END_REF], [START_REF] Giné | Marcinkiewicz-type Laws of Large Numbers and Convergence of Moments for U -Statistics[END_REF] and [START_REF] Teicher | On the Marcinkiewicz-Zygmund Strong Law for U -Statistics[END_REF]. As far as we know, there are no results on the Marcinkiewicz-Zygmund SLLN for U -statistics of dependent observations yet.

In this paper we will focus on absolutely regular processes. The absolute regularity coefficients of the sequence (ξ i ) i≥1 are defined by

β(k) := 1 2 sup n i=1 n j=1 |P (A i ∩ B j ) -P (A i ) P (B j )| ,
where the supremum is taken over all partitions {A 1 , . . . , A n } and {B 1 , . . . , B n } of Ω with A i ∈ F l 1 , B j ∈ F ∞ l+k and all l ≥ 1. Here F l k denotes the σ-algebra generated by the random variables {ξ i : k ≤ i ≤ l}. The process (ξ i ) i≥1 is called absolutely regular if lim k→∞ β(k) = 0. Now we are ready to formulate our results. Our first theorem investigates U -statistics with bounded kernels. 

lim n→∞ n (1-1 p ) U n = 0 a.s.
In the second theorem, we allow unbounded kernels, satisfying some moment conditions.

Theorem 2. Let (ξ i ) i≥1 be a strictly stationary, absolutely regular process and suppose that for p ∈ [1, 2) and δ > 0 we have

sup i,j E|h(ξ i , ξ j )| p+δ < ∞.
Moreover, assume that the mixing coefficients satisfy

∞ k=1 k γ β(k) < ∞,
where γ := max(1, p(p-1)+δ(p-2) δ

). Then

lim n→∞ n (1-1 p ) U n = 0 a.s.
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Correlation and Moment Inequalities

In this section we present some moment inequalities that will be used in the proofs of our main theorems.

Lemma 2.1. Let (ξ i ) i≥1 be a strictly stationary, absolutely regular process, h : R 2 → R a measurable kernel satisfying, for some p > 0,

M := sup i,j E|h(ξ i , ξ j )| p < ∞.
Then E|h(ξ, η)| p ≤ M , where ξ and η are two independent random variables with the same marginal distribution as ξ 1 .

Proof. Via standard arguments, this follows from the fact that, by definition of absolute regularity, the distribution of (ξ 1 , ξ n ) converges in total variation norm to the distribution of (ξ, η). Lemma 2.2. Let (ξ i ) i≥1 be a strictly stationary, absolutely regular process, let i 1 < . . . < i j < i j+1 < . . . < i k be integers and let F, G and H denote the distribution functions of (ξ i1 , . . . ξ i k ), (ξ i1 , . . . ξ ij ) and (ξ ij+1 , . . . , ξ i k ) respectively. Then the following two statements hold: (i) If g is a measurable function such that

sup |g(x 1 , . . . , x k )| ≤ M < ∞, then gdF - gdGdH ≤ 2M β(i j+1 -i j ).
(ii) If g is a measurable function such that

M = max |g| 1+δ dF, |g| 1+δ dGdH < ∞ for some δ > 0, then gdF - gdGdH ≤ 3M 1 1+δ β δ/(1+δ) (i j+1 -i j ).
Part (ii) of Lemma 2.2 is proved in [START_REF] Yoshihara | Limiting Behavior of U -Statistics for Stationary, Absolutely Regular Processes[END_REF] and part (i) follows from the definition of mixing coefficients β(k), see also [START_REF] Arcones | The Law of Large Numbers for U -Statistics under Absolute Regularity[END_REF].

Lemma 2.3. Assume that h(x, y) is degenerate and let (ξ i ) i≥1 satisfy one of the following two conditions: (i) h is bounded and

∞ k=1 kβ(k) < ∞,
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(ii) for some δ > 0 we have

sup i,j E|h(ξ i , ξ j )| 2+δ ≤ M and ∞ k=1 k(β(k)) δ 2+δ < ∞.
Then there exists a constant C > 0 such that the inequality

E   1≤i<j≤n+a, j>a h(ξ i , ξ j )   2 ≤ C(n + a)nM 2 (1) 
holds for all integers n ≥ 1, a ≥ 0.

Proof. We will follow the proof of Lemma 2 from Yoshihara (1976). First we will prove (1) under conditions (i). We define

J ((i 1 , i 2 ), (j 1 , j 2 )) = E (h(ξ i1 , ξ i2 ) h(ξ j1 , ξ j2 )) , U a,n+a = 1≤i<j≤n+a, j>a h(ξ i , ξ j ).
Observe that

EU 2 a,n+a = 1≤i1<i2≤n+a, i2>a 1≤j1<j2≤n+a, j2>a J (i 1 , i 2 ), (j 1 , j 2 ) . (2) 
We decompose the sum on the r.h.s. into five parts, according to the order in which the indices i 1 , i 2 , j 1 , j 2 occur. We then apply repeatedly the correlation inequality of Lemma 2.2(i) to the function

g(x 1 , x 2 , x 3 , x 4 ) = h(x 1 , x 2 ) h(x 3 , x 4 ),
noting that by degeneracy of h, we have

g(x 1 , x 2 , x 3 , x 4 )dF (x j ) = 0, 1 ≤ j ≤ 4,
where F denotes the distribution function of ξ 1 . Using arguments similar to those used by [START_REF] Yoshihara | Limiting Behavior of U -Statistics for Stationary, Absolutely Regular Processes[END_REF], we then obtain 1≤i1<i2≤j1<j2≤n+a, i2>a, j2>a

J ((i i , i 2 ), (j i , j 2 )) ≤ 1≤i1<i2≤j1<j2≤n+a, i2-i1≥j2-j1, i2>a, j2>a |J ((i 1 , i 2 ), (j 1 , j 2 ))| + 1≤i1<i2≤j1<j2≤n+a, i2-i1≤j2-j1, i2>a, j2>a |J ((i 1 , i 2 ), (j 1 , j 2 ))| ≤ Cn 2 M 2 , (3) 
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1≤i1<j1≤i2<j2≤n+a, i2>a, j2>a

J ((i 1 , i 2 ), (j 1 , j 2 )) ≤ 1≤i1<j1≤i2<j2≤n+a, j1-i1>j2-i2, i2>a, j2>a |J ((i 1 , i 2 ), (j i , j 2 ))| + 1≤i1<j1≤i2<j2≤n+a, j1-i1≤j2-i2, i2>a, j2>a |J ((i 1 , i 2 ), (j i , j 2 ))| ≤ C(n + a)nM 2 , (4) 
1≤i1<j1<j2<i2≤n+a, i2>a, j2>a

J ((i 1 , i 2 ), (j 1 , j 2 )) ≤ 1≤i1<j1<j2<i2≤n+a, j1-i1≥i2-j2, i2>a, j2>a |J ((i 1 , i 2 ), (j i , j 2 ))| + 1≤i1<j1<j2<i2≤n+a, j1-i1≤i2-j2, i2>a, j2>a |J ((i 1 , i 2 ), (j i , j 2 ))| ≤ C(n + a)nM 2 , (5) 
1≤i1,j1≤n+a

n+a i2=a+1 J ((i 1 , i 2 ), (j 1 , j 2 )) ≤ n+a i1=1 n+a i2=a+1 J ((i 1 , i 2 ), (i 1 , i 2 )) + 2 1≤i1<j1≤n+a n+a i2=a+1 |J ((i 1 , i 2 ), (j 1 , j 2 )) | ≤ C(n + a)nM 2 , (6) 
and finally

a+1≤i2,j2≤n+a n+a i1=1 J ((i 1 , i 2 ), (j 1 , j 2 )) ≤ Cn(n + a)M 2 . ( 7 
)
Inequalities ( 2) -( 7) imply (1). Thus under conditions (i) the lemma is proved. The proof of the lemma under conditions (ii) is similar (in this case we use part (ii) of Lemma 2.2).
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Lemma 2.4. Let (ξ i ) i≥1 satisfy the conditions of Lemma 2.3. Then

E max 1≤k≤n   1≤i<j≤k+a, j>a h(ξ i , ξ j )   2 ≤ CM 2 log 2n log 2 (n + a)n (8) 
for any integers n ≥ 1, a ≥ 0, and with the same C and M as in [START_REF] Aaronson | Strong Laws for L-and U -Statistics[END_REF].

Proof. We define

Ūa,n+a = max 1≤k≤n | 1≤i<j≤k+a, j>a h(ξ i , ξ j )| 2 .
We will follow the proof of the theorem by [START_REF] Serfling | Moment inequalities for the Maximum Cumulative Sum[END_REF] and give the proof for completeness. We will use the induction method. For n = 2, (8) follows from [START_REF] Aaronson | Strong Laws for L-and U -Statistics[END_REF]. Assume [START_REF] Sen | On L p -Convergence of U -Statistics[END_REF] holds for all n < N and all a ≥ 0 taking N to be even. We will bound U 2 a,n+a for each n ≤ N . There are two cases: either 1

≤ n ≤ N 2 or N 2 < n ≤ N . If 1 ≤ n ≤ N 2 U 2 a,n+a ≤ Ū 2 a, N a . If N 2 < n ≤ N U 2 a,n+a = (U a, N 2 +a + U N 2 +a,n+a ) 2 = U 2 a, N 2 +a + 2U a, N 2 +a • U N 2 +a,n+a + U 2 N 2 +a,n+a ≤ Ūa, N 2 +a + 2|U a, N 2 +a | • Ū N 2 +a, N 2 +a+ N 2 + U 2 N 2 +a, N 2 +a+ N 2 . Hence Ū 2 a,N +a ≤ U a, N 2 +a + 2|U a, N 2 +a | Ū N 2 +a, N 2 + N 2 +a + Ū 2 N 2 +a, N 2 + N
2 +a . Taking expectations on both sides and applying the induction hypothesis we obtain

E Ū 2 a,N +a ≤ log N log 2 2 CM 2 N 2 + a N 2 + 2E |U a, N 2 +a | Ū N 2 +a, N 2 + N 2 +a + log N log 2 2 CM 2 N 2 + N 2 + a N 2 , (9) 
and moreover

2E |U a, N 2 +a | Ū N 2 +a, N 2 + N 2 +a ≤ 2E 1/2 |U a, N 2 +a | 2 • E 1/2 | Ū N 2 +a, N 2 + N 2 +a | 2 ≤ 2 log N log 2 CM 2 ( N 2 + a) N 2 1/2 • CM 2 (N + a) N 2 1/2 ≤ log N log 2 CM 2 ( N 2 + a) N 2 + CM 2 (N + a) N 2 . ( 10 
)
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where

S n = 1≤i<j≤n h(ξ i , ξ j ).
Using Chebyshev's inequality and Lemma 2.3 we have for any ε > 0

∞ k=1 P |S 2 k | 2 2k/p > ε ≤ ∞ k=1 CE|S 2 k | 2 ε 2 4k/p ≤ ∞ k=1 C2 2k M 2 ε 2 4k/p < ∞.
Now the Borel-Cantelli lemma implies [START_REF] Yoshihara | Limiting Behavior of U -Statistics for Stationary, Absolutely Regular Processes[END_REF]. Again using Chebyshev's inequality and Lemma 2.4 we obtain for any ε > 0

∞ k=1 P 1 2 2k/p max 2 k <i≤2 k+1 |S i | > ε ≤ ∞ k=1 C E(max 2 k <i≤2 k+1 |S i | 2 ) ε 2 4k/p ≤ ∞ k=1 C • 2 2k • (log 2 k ) 2 ε 2 4k/p < ∞.
The latter together with the Borel-Cantelli lemma implies (13). Thus part (i) is proved. In order to prove part (ii), we use Hoeffding's decomposition, according to which we can write

U n = 2 n n i=1 (h 1 (ξ i ) -θ(F )) + 2 n(n -1) 1≤i<j≤n h 2 (ξ i , ξ j ), (14) 
where

h 1 (x) = h(x, y)dF (y), θ(F ) = h(x, y)dF (x)dF (y), h 2 (x, y) = h(x, y) -h 1 (x) -h 1 (y) + θ(F ).
Now part (ii) of the theorem easily follows from part (i) and Lemma 2.5.

Proof of Theorem 2. Again, by Hoeffding's decomposition we have

U n = 2 n n i=1 (h 1 (ξ i ) -θ(F )) + 2 n(n -1) 1≤i<j≤n h 2 (ξ i , ξ j ),
where h 1 (x), θ(F ) and h 2 (x, y) are defined as above. Thus it suffices to show 1

n 1/p n i=1 (h 1 (ξ i ) -θ(F )) → 0 a.s. as n → ∞, ( 15 
) 2n 1-1/p n(n -1) 1≤i<j≤n h 2 (ξ i , ξ j ) → 0 a.s. as n → ∞. ( 16 
)
As (15) follows from Lemma 2.5, it remains to show (16), which again follows from

2 • 2 (1-1/p)k 2 k (2 k -1) S 2 k -→ 0 a.s. as k → ∞, ( 17 
) 2 • 2 (1-1/p)k 2 k (2 k -1) max 2 k <n≤2 k+1 |S n -S 2 k | -→ 0 a.s. as k → ∞, (18) 
where

S n = 1≤i<j≤n h 2 (ξ i , ξ j ).
Let ξ, η be two independent random variables with the same distribution as ξ i .

As Eh 2 (ξ, η) = 0, we get

h 2 (ξ i , ξ j ) = h 2 (ξ i , ξ j )I |h 2 (ξ i , ξ j )| ≤ 2 αk -Eh 2 (ξ, η)I |h 2 (ξ, η)| ≤ 2 αk +h 2 (ξ i , ξ j )I |h 2 (ξ i , ξ j )| > 2 αk -Eh 2 (ξ, η)I |h 2 (ξ, η)| > 2 αk .
We define the kernels h2 (ξ i , ξ j ) = h2,k (ξ i , ξ j ) and ȟ2

(ξ i , ξ j ) = ȟ2,k (ξ i , ξ j ) by h2,k (ξ i , ξ j ) = h 2 (ξ i , ξ j )I |h 2 (ξ i , ξ j )| ≤ 2 αk -Eh 2 (ξ, η)I |h 2 (ξ, η)| ≤ 2 αk , ȟ2,k (ξ i , ξ j ) = h 2 (ξ i , ξ j )I |h 2 (ξ i , ξ j )| > 2 αk -Eh 2 (ξ, η)I |h 2 (ξ, η)| > 2 αk ,
and the associated non-normalized U -statistics by

S2 k = 1≤i<j≤2 k h2 (ξ i , ξ j ), Š2 k = 1≤i<j≤2 k ȟ2 (ξ i , ξ j ).
We can take α = 1 p+δ/2 . First we prove (17). Using the triangle, Hölder and Markov inequalities we obtain for any ǫ > 0

∞ k=1 P 1 2 (1+1/p)k | Š2 k | > ε ≤ C ∞ k=1 2 2k (sup i,j E| ȟ2 (ξ i , ξ j )|I(|h(ξ i , ξ j )| > 2 αk ) + E|h(ξ, η)|I(|h(ξ, η)| ≥ 2 αk )) ε 2 (1/p+1)k ≤ C ∞ k=1 sup i,j (E|h 2 (ξ i , ξ j )| p+δ ) 1/(p+δ) sup i,j (P (|h 2 (ξ i , ξ j )| > 2 αk )) (p+δ-1)/(p+δ) ε 2 (1/p-1)k + C ∞ k=1 (E|h 2 (ξ, η)| p+δ ) 1/(p+δ) (P (|h(ξ, η)| > 2 αk )) (p+δ-1)/(p+δ) ε 2 (1/p-1)k ≤ C ε ∞ k=1 1 2 (1/p-1) 2 α(p+δ-1) k < ∞. (19) 
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Using the Borel-Cantelli lemma, we obtain

1 2 (1+1/p)k Š2 k → 0 a.s. as k → ∞.
Since h 2 (x, y) will generally be non-degenerate, we use Hoeffding's decomposition to get

2 (1-1/p)k • 2 2 k (2 k -1) S2 k (20) = 2 k(1-1/p)  θ (F ) + 2 2 k 2 k i=1 (h 3 (ξ i ) -θ(F )) + 2 2 k (2 k -1) 1≤i<j≤2 k h 4 (ξ i , ξ j )   , where h 3 (x) = h2 (x, y)dF (y), θ(F ) = h2 (x, y)dF (x)dF (y) = 0, h 4 (x, y) = h2 (x, y) -h 3 (x) -h 3 (y) + θ(F ). Now we prove that 1 2 (1+1/p)k 1≤i<j≤2 k h 4 (ξ i , ξ j ) → 0 a.s. as k → ∞. (21) 
Since h 4 (x, y) is degenerate, we obtain, using Chebyshev's inequality and Lemma 2.3, for any ε > 0

∞ k=1 P   1 2 (1+1/p)k 1≤i<j≤2 k h 4 (ξ i , ξ j ) > ε   ≤ C ∞ k=1 E 1≤i<j≤2 k h 4 (ξ i , ξ j ) 2 ε 2 2 2(1+1/p)k ≤ C ε 2 ∞ k=1 2 2k 2 2αk 2 2(1+1/p)k < ∞.
The latter together with the Borel-Cantelli lemma implies (21). Next we show that 1 2 k/p

2 k i=1 h 3 (ξ i ) → 0 a.s. as k → ∞. ( 22 
)
Note that h 3 (x) = h 2 (x, y)dF (y) -ȟ2 (x, y)dF (y) := h 5 (x) -ȟ6 (x).

From Lemma 2.5 we have

1 2 k/p 2 k i=1 h 5 (ξ i ) → 0 a.s. as k → ∞. ( 23 
)
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Using the triangle and the Markov inequality we obtain, for any ε > 0,

∞ k=1 P   1 2 k/p | 2 k i=1 ȟ6 (ξ i )| > ε   ≤ C ∞ k=1 2 k E| ȟ6 (ξ 1 )| 2 k/p ε ≤ C ∞ k=1 E| ȟ2 (ξ, η)| 2 (1/p-1)k ε = C ∞ k=1 E|h 2 (ξ, η)I(|h 2 (ξ, η)| > 2 αk ) -Eh 2 (ξ, η)I(|h 2 (ξ, η)| > 2 αk )| 2 (1/p-1)k ε ≤ C ∞ k=1 E|h 2 (ξ, η)I(|h(ξ, η)| > 2 αk )| 2 (1/p-1)k ε ≤ C ε ∞ k=1 E|h 2 (ξ, η)| p+δ 2 (1/p-1)k 2 α(p+δ-1)k < ∞. (24) 
Hence using the Borel-Cantelli lemma we have

1 2 k/p 2 k i=1 ȟ6 (ξ i ) → 0 a.s. as k → ∞. (25) 
(23) and (25) imply ( 22). Now, (20), ( 21) and ( 22) imply (17). Thus, in order to finish the proof of the theorem, it remains to prove (18). Again we use a truncation method. We note that (18) holds if

2 • 2 (1-1/p)k 2 k (2 k -1) max 2 k <n≤2 k+1 | Šn -Š2 k | → 0 a.s. as k → ∞ (26) and 2 • 2 (1-1/p)k 2 k (2 k -1) max 2 k <n≤2 k+1 | Sn -S2 k | → 0 a.s. as k → ∞, (27) 
where

Šn = 1≤i<j≤n ȟ2 (ξ i , ξ j ), Sn = 1≤i<j≤n h2 (ξ i , ξ j ).
Using the triangle, Hölder and Markov inequalities we obtain, for any ǫ > 0,

∞ k=1 P 1 2 (1+1/p)k max 2 k <n≤2 k+1 | Šn -Š2 k | > ε ≤ C ∞ k=1 2 2k sup i,j E| ȟ2 (ξ i , ξ j )| 2 (1+1/p)k ε .
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The last series converges by the same arguments which were used in (19) and Borel-Cantelli lemma implies (26).

In order to prove (27) we need to prove that, as k → ∞ 1 2 (1+1/p)k max 1≤l≤2 k 1≤i<j≤2 k +l, j>2 k h 4 (ξ i , ξ j ) → 0 a.s. as k → ∞, (28) 1 2 k/p max 2 k <l≤2 k+1 l i=2 k h 4 (ξ i ) → 0 a.s. as k → ∞. (29) Using Chebyshev's inequality and Lemma 2.4 we obtain, for any ε > 0

∞ k=1 P   1 2 (1+ 1 p )k max 1≤l≤2 k 1≤i<j<2 k +l, j>2 k h 4 (ξ i , ξ j ) > ε   ≤ C ∞ k=1 E max 1≤l≤2 k 1≤i<j≤2 k +l,j>2 k h 4 (ξ i , ξ j ) 2 2 2(1+ 1 p ) ε 2 ≤ C ε 2 ∞ k=1 2 2k 2 2αk k 2 2 2(1+ 1 p )k < ∞.
The latter together with the Borel-Cantelli lemma implies (28). Now we will prove that, as k → ∞, 

(30) follows from Lemma 2.5 and the inequality

1 2 k/p max 1≤l≤2 k 2 k +l i=2 k +1 h 5 (ξ i ) ≤ C 2 k/p 2 k i=1 h 5 (ξ i ) + C 2 k/p max 1≤l≤2 k+1 l i=1 h 5 (ξ i ) .
Using the inequality max

1≤l≤2 k E 2 k +l i=2 k +1 ȟ6 (ξ i ) ≤ 2 k E ȟ6 (ξ 1 ) ,
and arguments which were used in (24) one can prove that, for any ε > 0,

∞ k=1 P   1 2 k/p max 1≤l≤2 k 2 k +l i=2 k +1 ȟ6 (ξ i ) > ε   < ∞.

Theorem 1 .

 1 Let (ξ i ) i≥1 be a strictly stationary, absolutely regular process with mixing coefficients satisfying∞ k=1 kβ(k) < ∞. (i) If h(x,y) is a bounded and degenerate kernel, then we have for all p ∈ [1, 2) lim n→∞ n 2(1-1 p ) U n = 0 a.s. (ii) If h(x, y) is a bounded kernel, then we have for all p ∈ [1, 2)

  i=2 k +1 ȟ6 (ξ i ) -→ 0 a.s. as k → ∞.
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The latter and the Borel-Cantelli lemma imply (31). Next, (23) and (31) imply (29), which together with (28) implies (27). Thus the theorem is proved.
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Then, [START_REF] Teicher | On the Marcinkiewicz-Zygmund Strong Law for U -Statistics[END_REF] together with [START_REF] Serfling | Moment inequalities for the Maximum Cumulative Sum[END_REF] implies

For N odd (8) can be proved in the same way considering the two cases 1

In the next lemma we formulate strong laws of large numbers for (ξ i ) i≥1 under additional conditions. Lemma 2.5. Let (ξ i ) i≥1 be a strictly stationary, absolutely regular process satisfying E|ξ 1 | < ∞. Then

provided one of the following two sets of conditions is satisfied, (i) The random variables ξ i are almost surely bounded and

(ii) For some δ > 0, the random variables satisfy

The first part of the lemma follows from Birkhoff's ergodic theorem. The second part was proved by [START_REF] Berbee | Convergence Rates in the Strong Law for Bounded Mixing Sequences[END_REF] under conditions (i). Under (ii), it is a special case of Theorem 1 by Rio (1995).

Proofs of the Theorems

Proof of Theorem