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Onset of convection in a basally heated spherical shell,1

application to planets2

Marie Běhounkováa,b,∗, Gaël Chobleta,b3

aLaboratoire de Planétologie et Géodynamique, Université de Nantes, Nantes, France4

bUMR-6112, CNRS, Nantes, France5

Abstract6

Convective instabilities related to the early dynamics of planetary mantles just

after core formation play an important role in the subsequent evolution. Al-

though these early stages of planetary dynamics are likely to imply more com-

plex phenomena such as global melting and fractional solidification, and al-

though density variations of compositional origin are likely to play an impor-

tant role, little is known about the onset of solid-state convection in a fluid with

temperature-dependent viscosity heated from below. Here, we investigate onset

times of convection in order to obtain scaling relationships for the influences of

Rayleigh number, viscosity parameter describing the dependency on the tem-

perature and geometry of spherical shell (measured by f , ratio between the

inner and outer radii). We performed three dimensional numerical experiments

and we concentrate on the dynamical regime described by global viscosity con-

trast smaller than 104. Onset times and wavelengths of the first instabilities

using both dynamical (free-slip) and kinematical (no-slip) boundary conditions

are investigated. For both boundary conditions, the scaling may be written in

the form t′ ∝ (Ra∗)a, where a is approximately −2/3 and Ra∗ = Ra(µ(θ∗)) is

a Rayleigh number specifically associated with a relevant temperature (viscos-

ity) value (θ∗ ≈ 0.25). In addition, the dimensionless onset times (using the

shell thickness as a characteristic length scale) are almost independent on the

geometry of the shell for large range of the geometrical factor (f ' 0.2). In

order to better understand these processes, 3D results are compared with two

simple methods: the linear stability (LS) analysis and the growth of Rayleigh-
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Taylor (R-T) instabilities. The LS analysis values of the onset times are much

smaller due to the “frozen time” approach (i.e. the conductive propagation of

the hot front is not taken into account). The dependency of the onset time

on the Rayleigh number is overestimated, especially for the free-slip conditions,

where the “frozen time” effect is even more significant. For the R-T instability

analysis, although the onset times are also underestimated, the agreement with

3D simulations is good in terms of efficient scaling relationships. When applied

to the dimensions and plausible initial state of terrestrial planets (Mars, the

Earth and Venus), the scaling relationships provide an idealized framework to

investigate early dynamics. Due to uncertainties associated with the “initial”

temperature field and viscosity parameters, the computed onset times vary by

several orders of magnitude (between 0.1 Myr and 500 Myr). These are likely

to be smaller than the ones obtained for the onset of convection at the base

of the lithosphere. For the investigated range of parameters, the minimal pre-

ferred degree for the onset instabilities is estimated to be approximately 10 so

that, other ingredients or a different dynamical regime, have to be considered

to promote the very low degree convective instabilities suggested for the early

evolution of Mars.

Key words: onset of convection, scaling laws, temperature-dependent7

viscosity, shell geometry, sluggish rid regime8

1. Introduction9

The internal distribution of temperature and of chemical composition dur-10

ing the early stages of planetary evolution are shaped by a series of primordial11

energetic events such as possible large scale impacts and core differentiation.12

Although in a purely thermal framework, the primordial nature of the temper-13

ature field within the planet will be forgotten due to the strong temperature-14

dependence of the viscosity (cf. Tozer, 1965), especially in the case of a hot start15

(e.g. Schubert et al., 1980), variations in composition may strongly affect this16

simple scheme. One possible origin of chemical stratification may result from17
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the solidification of a global magma ocean that likely resulted from the ener-18

getic processes mentioned above. Despite the fact that a precise timing may19

be controversial (Wood and Halliday, 2005; Allègre et al., 2008), the existence20

of such an early magma ocean is supported by geochemical measurements on21

certain isotopes of tungsten and neodymium (cf. Kleine et al., 2002; Blichert-22

Toft and Albarède, 1994). Although the solidification of the magma ocean is23

a complex phenomenon involving many processes (e.g. Solomatov, 2000) some24

of which still lack a full understanding, it has been suggested that the density25

distribution subsequent to the crystallization may be highly unstable and would26

result in a large scale overturn (see for Mars, Elkins-Tanton et al., 2003, 2005).27

The new stratification could then be stable enough to prevent the mixing of28

this deep denser layer possibly strongly enriched in heat producing elements (cf.29

Elkins-Tanton et al., 2005). A stratification of possibly different origin, is also30

suggested in some models of the present day dynamics of the Earth’s mantle31

in order to reconcile geochemical and geophysical observations. The dynami-32

cal implications are studied both in the laboratory (e.g. Le Bars and Davaille,33

2004) and numerically (e.g. Tackley, 2002). Since the above dynamical pro-34

cesses are complicated and because they are controlled by poorly constrained35

factors, simple idealized models lead to a useful insight into the onset of solid-36

state convection. Indeed, while these models may lack fundamental aspects of37

the early dynamics of planetary interiors, they allow a precise understanding38

of the phenomena and permit to consider large ranges for the (unconstrained)39

parameters.40

The onset of convection of a homogeneous fluid with a temperature- and/or41

stress-dependent viscosity has been investigated in several contexts. The first42

instabilities induced by the sudden surface cooling of an initially hot fluid and43

its subsequent evolution was extensively studied (e.g., Davaille and Jaupart,44

1993; Choblet and Sotin, 2000; Korenaga and Jordan, 2003; Huang et al., 2003;45

Zaranek and Parmentier, 2004; Dumoulin et al., 2005). These studies mostly46

focus on the case of a fluid with strongly dependent viscosity (viscosity contrast47

> 106) in set-ups where the asymptotic stagnant lid regime occurs (see e.g. Solo-48
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matov, 1995). Applications to the evolution of the oceanic lithosphere on the49

Earth and the onset of small scale convection at its base have been proposed,50

for example, in order to explain the apparent heating from below away from hot51

spot tracks (Davaille and Jaupart, 1994, and many subsequent studies). A few52

studies also applied these results to the early dynamics of planetary interiors53

(see Choblet and Sotin, 2001, in the case of Mars). In the symmetrical case of54

heating from below, for the regime corresponding to strongly temperature de-55

pendent viscosity, hot instabilities develop that are initially not strong enough56

to penetrate the stiff cold material: small-scale convection is restricted to a57

hot sublayer whose boundary gradually extends upwards. This layer becomes58

eventually unstable and large scale convection develops. This regime was inves-59

tigated by Thompson and Tackley (1998) in a study concerning the formation60

of a superplume and by Solomatov and Moresi (2002) as a possible explanation61

of the origin of D” layer within the Earth. Ke and Solomatov (2006) employed62

numerical simulations for this regime as a possible mechanism leading to the63

formation of the crustal dichotomy on Mars. In the case of icy-satellites, the64

non-Newtonian (power-law) rheology of ice is supposed to be a key parame-65

ter. The onset of convection is then often considered for an initially conductive66

steady-state, i.e., the critical value of the Rayleigh number defined classically for67

the whole layer is investigated rather than the transient process caused by the68

instantaneous heating/cooling of the fluid layer. Barr and Pappalardo (2005)69

study the case of temperature and strain-rate dependent viscosity in this con-70

text. A conclusion is that the non-Newtonian rheology is important mainly in71

the case of ice with large grain sizes. Based on a different approach (an initially72

convective state is subjected to a decrease, step by step, of the Rayleigh num-73

ber until convection vanishes), Solomatov and Barr (2006, 2007) focus on the74

influence of the rheology, demonstrating the differences between Newtonian and75

power-law viscosities and the dependence on the initial perturbation.76

Here, we propose to investigate the onset of convection after the solidification77

of a magma ocean in the terrestrial planets, using three dimensional numerical78

experiments based on numerical tool ŒDIPUS (Choblet, 2005; Choblet et al.,79
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2007) in a basally heated spherical shell with either isoviscous or temperature80

dependent viscosity. This set-up is described in section 2. Intermediate values of81

the viscosity contrast (∆µ) across the hot boundary layer are considered (< 104).82

This corresponds to the transitional regime between the isoviscous case and the83

asymptotic regime investigated in previous studies. Due to poorly constrained84

viscosity parameters at the appropriate conditions for deep planetary mantles85

(see e.g. Yamazaki and Karato, 2001; Hirth and Kohlstedt, 2003; Korenaga and86

Karato, 2008) and initial temperature distribution, both regimes (transitional87

or asymptotic regime) are indeed plausible. The methods are detailed in section88

3 and appendices A and B. For a better understanding of the onset of convec-89

tion, the full 3D numerical solutions (3.1) are systematically compared with the90

results of two simplified methods. The first approach is the numerical solu-91

tion of “frozen-time” linear stability analysis (e.g. Chandrasekhar, 1961; Yang92

and Choi, 2002), investigating the critical Rayleigh number for temperature93

dependent viscosity (3.2 and App. A). The second approach uses linearized94

Rayleigh-Taylor analysis in a simple two layers model (see e.g. Zaranek and95

Parmentier, 2004; Ke and Solomatov, 2004, 2006) where the onset time is deter-96

mined as the time when the growth of the R-T instability exceeds the growth97

of the thermally induced boundary layer in the convection framework (3.3 and98

App. B). The differences between dynamical (in our case free-slip) and kine-99

matical (no-slip) boundary conditions are investigated. The free-slip boundary100

condition approximates the interface between solid and liquid material, i.e. this101

corresponds to the boundary between the solid mantle and the liquid outer core102

of terrestrial planets or to icy satellites with an icy crust overlying deep internal103

oceans. The no-slip condition reflects interfaces between two solid layers, this104

may represent the boundary between an icy mantle and silicate-rich core, for105

example. Section 4 describes the numerical results: we focus especially on the106

influence of the vigor of convection (4.1) and of the temperature dependency107

of viscosity (4.2). The geometry of the shell is addressed as an additional pa-108

rameter (4.3). Finally, a generic scaling relationship describing these effects is109

introduced (4.4). All the aspects concerning the scaling relationship are further110

5
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discussed in section 5. Such laws are then used with the appropriate scaling111

factor in order to assess the onset of convection within terrestrial planets (sec-112

tion 6).113

2. Governing equations114

In the following, the Boussinesq approximation for infinite Prandtl num-115

ber is taken into account. The dimensionless equations (conservation of mass,116

momentum and energy with neglected viscous and internal heating) are117

0 = ∇′ · v′, (1)

0 = −∇′p′ + ∇′ ·
(

µ′(θ′)
(

∇′v′ + ∇′Tv′

))

− Raθ′er, (2)

∂θ′

∂t′
= −v · ∇′θ′ + ∇′2θ′. (3)

where Ra is Rayleigh number. •′ denotes the dimensionless variables and the118

following scaling is used: x = dx′, time t = d2

κ t′, velocity v = κ
dv′, pressure119

p = µ0κ
d2 p′, temperature T = T0+∆Tθ′, µ′(θ′) = µ(T )

µ0

= µ(T )
µ(T0) , where d = rt−rb120

is the thickness of the fluid layer (rb and rt are associated with inner and outer121

boundary, respectively), T0 is the surface temperature, ∆T is the temperature122

difference across the shell and κ is the thermal diffusivity.123

The viscosity is supposed to depend exponentially on temperature124

µ(T ) = µ0 exp

(

−avis
T − T0

∆T

)

, µ′(θ′) = exp (−avisθ
′) , (4)

where avis is the variable viscosity parameter. This dependency is an approxi-125

mation of the viscosity described by the Arrhenius law:126

µ(T ) = A exp

(

Q∗

RT

)

, (5)

where Q∗ is the activation enthalpy and R the gas constant. In the framework127

of a basally heated layer, the two laws are similar for avis = Q∗∆T
RT0(T0+∆T ) .128

6
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The initial and boundary conditions for temperature are θ′(r, t = 0) = 0,129

θ′0(r = rb, t) = 1 and θ′(r = rt, t) = 0. No internal heat sources are introduced.130

Besides the initial and boundary conditions, the convective behavior described131

by conservation laws (1–3) and by relationship (4) is controlled by three non-132

dimensional parameters: the Rayleigh number Ra, the viscosity parameter avis133

and the spherical shell geometrical factor f defined by the ratio of the inner and134

outer radius of the shell f = rb

rt
= rt−d

rt
.135

The Rayleigh number Ra(θ′) for a given viscosity (temperature) is136

Ra(θ′) =
ρ0g∆Tαd3

κµ(θ′)
(6)

with ρ0 reference density, α thermal expansion, g the gravity acceleration. The137

surface Rayleigh number Ra0 = Ra(θ′ = 0) and the bottom Rayleigh number138

Rab = Ra(θ′ = 1) are considered in the following.139

3. Method140

3.1. 3D convection141

The numerical method described in Choblet (2005) and Choblet et al. (2007)142

is used to obtain a three dimensional solution of the system (1–3) in the spherical143

shell. The composite mesh based on the “cubed sphere” (Ronchi et al., 1996)144

transformation is employed, the resulting grid consisting in six identical blocks.145

Due to the time demands, most of the convection simulations are carried out in146

one block. Additional vertical boundaries are hence introduced where free-slip147

and no-heat-flux conditions are prescribed. In order to test the influence of these148

artificial boundaries, several tests in the whole spherical shell are also performed.149

The computational grid in one block consists of 32 × 64 × 64, 64 × 64 × 64 or150

128×64×64 discrete cells depending on the Rayleigh number, viscosity contrast151

and the geometry (the unstable hot boundary layer is described at least 5–6152

points in the vertical direction at the onset of convection).153

At the beginning of the simulation, the temperature field is T0 within the154

shell and it is stochastically perturbed with a maximum amplitude of 10−3∆T .155

7
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The onset time for convection is defined as the time when the maximum devia-156

tion between the horizontally averaged temperature and the conductive heating157

profile reaches locally a value of 0.1% (see Fig. 1).158

The preferred degree (wavelength) of the instabilities at the onset time are159

also estimated. The “degree” in one block can be determined by two dimensional160

fast Fourier transform (Press et al., 1992). Assuming the preferred wavelength161

remains identical, the coresponding estimate of the preferred degree for the162

whole sphere is then obtained by the multiplication of this value by factor 4163

(one block corresponds to one fourth of the sphere, i.e. to π/2 of the sphere164

in both equatorial and meridional directions). This provides a guidance for165

the relative behavior (i.e. increase or decrease) of the preferred degree as a166

function of the studied parameters. For experiments in the whole shell, the167

spherical harmonic expansion coefficients are computed by integration and lead168

to a precise evaluation of the preferred degree.169

3.2. Linear stability analysis170

The linear stability analysis belongs to a traditional approach for computing171

the “classical” critical Rayleigh number, i.e. for computing critical Rayleigh172

number for steady-state conduction solution. For constant viscosity and spheri-173

cal geometry, this approach is described in detail (including the influence of the174

shell geometry and preferred degree) in Chandrasekhar (1961). The effect of the175

temperature dependent viscosity as well as the influence of the shell geometry on176

“classical” critical Rayleigh number and preferred degree is analyzed in Ratcliff177

et al. (1996). Here, we look for the critical Rayleigh number and its correspond-178

ing degree (i.e. associated to the smallest time at which convection occurs) in179

a model with depth-dependent viscosity. The temperature profile first evolves180

conductively in the basally heated shell. A critical Rayleigh number Rac(t
′) is181

computed for a given time t′ and thus a given temperature profile. These results182

may be related to the ones obtained for 3D numerical experiment supposing that183

the onset of convection corresponds to the first time when the Rayleigh number184

of the 3D convection experiment exceeds Rac(t
′). This method, however, does185

8
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not take into account the propagation of the wave front, i.e. the “frozen time”186

problem (e.g. Yang and Choi, 2002, see differences between the “frozen time”187

model with “propagation theory”) is solved. This aspect is discussed further188

in the next section. Technical details concerning this method are described in189

appendix A.190

3.3. Rayleigh-Taylor instability analysis191

Similarly to linear stability analysis, the Rayleigh-Taylor instability also be-192

longs to classical (semi)analytical approaches with many possible applications193

to mantle dynamics (see e.g. Ribe (2007) for a summary). For example, both194

Cartesian configurations with layers of different viscosities (e.g. Canright and195

Morris, 1993) and spherical layers (e.g. Ribe and de Valpine, 1994) have been196

considered. Some models also include more complex geometry of the buoyant197

structure such as the cylindrical anomaly studied by Lister and Kerr (1989) in198

the context of diapirism beneath mid-ocean ridges. Here the onset time for “con-199

vection” is defined as the time when the growth of any R-T instability exceeds200

the conductive propagation of the heat front (Zaranek and Parmentier, 2004;201

Ke and Solomatov, 2004). A two layers model is considered so that the viscos-202

ity profile of the 3D convection experiment is modeled by a step-like function203

characterized by the viscosity contrast ∆µ. Several definitions of ∆µ are possi-204

ble based on either a constant temperature fraction ∆θ (∆µ = exp(∆θavis)) or205

on the temperature average in each layer (∆µ̄ = exp(∆θ̄avis)). These various206

definitions are discussed in the following. This approach is described in details207

in appendix B.208

4. Results209

Here we systematically compare 3D numerical results with the two simplified210

approaches. We study the onset times depending on the Rayleigh number Ra,211

the shell geometrical factor f , viscosity parameter avis and either free-slip or212

no-slip.213

9
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Tab. 1 lists results of 3D numerical experiment for free-slip conditions (Tab. 2214

for no-slip conditions). The estimate of the wavelength (degree) of the instabil-215

ities and the results for the computations in six blocks are also shown in these216

tables. The results obtained for one block (i.e. with additional vertical bound-217

aries) do not differ significantly from those where the whole shell is considered.218

The largest difference of the onset time between two similar experiments in one219

and six blocks is ≈ 5%. This discrepancy can also be partly explained, however,220

by the different initial perturbations (for stochastic nature of the onset time see221

e.g. Korenaga and Jordan, 2004). The preferred degrees also agree rather well222

despite the uncertainty inherent to the case of runs performed on one block (the223

value is forced to be a multiple of 4).224

Furthermore, the numerical experiments were performed for different initial225

perturbations in the case of constant viscosity and Rayleigh number Ra = 106.226

As expected, the onset time is decreasing with increasing amplitude of the initial227

perturbation. Decreasing the initial perturbation from 10−3 to 10−5 for free-slip228

conditions, the onset time increases by factor ≈ 1.3. This corresponds relatively229

well to results previously obtained by Korenaga and Jordan (2004) who found230

the approximately constant factor ≈ 1.5.231

4.1. Influence of Rayleigh number232

As an example, we discuss the results obtained for a given geometry (f =233

0.55) and an isoviscous fluid (avis = 0). We focus on the dependency of the onset234

time on the value of the Rayleigh number. The onset times and corresponding235

wavelength for all three approaches are summarized in Fig. 2 for both free-236

slip (Fig. 2a) and no-slip (Fig. 2b) boundary conditions. All three approaches237

induce a linear character in the log-log scale, hence the interpolation by power238

law t′ = ARaa is used as an analytical tool: inverted values for A and a are239

listed in Tab. 3. The dependency of the onset time is rather similar for both240

mechanical boundary conditions (a = −0.67 for free-slip and a = −0.69 for241

no-slip). The obtained slopes agree well with the typical onset time scaling242

t′ ∝ Ra−2/3 (e.g. Blair and Quinn, 1969; Jhaveri and Homsy, 1980; Choblet and243

10
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Sotin, 2000; Huang et al., 2003).244

Results of the linear stability analysis for both boundary conditions also ex-245

hibit a linear character for a log-log scale when t′ < 0.01 (Fig. 2, solid thick246

line). For larger times, the temperature on the upper boundary using formula247

(A12) is non-zero and the power-law scaling is not valid anymore (this effect of248

the heat front reaching the upper boundary is less pronounced for 3D convec-249

tion results). For this reason, onset times larger than 0.01 are not considered250

when computing the slope. The influence of Rayleigh number is significantly251

stronger for LS than for 3D results (a = −1.02 for free-slip and a = −0.72252

for no-slip). Moreover, the values of the onset time for LS are more than one253

order of magnitude smaller. Both effects should probably be attributed to the254

use of the “frozen time” approach—in the 3D convection results, the upward255

advective propagation of the instabilities needs to be faster than the conductive256

propagation of the heat front which is neglected in this approach (for influence257

of the “non-frozen” time approach see e.g. Yang and Choi, 2002). If the bound-258

ary layer is defined according to a thickness proportional to the square root259

of the time (h′ ∼
√

t′) then the propagation velocity of the heat front evolves260

according to the relationship ḣ′ ∼ 1/
√

t′. The “frozen time” effect is thus higher261

for lower onset times than for higher ones. This behavior may explain the larger262

negative slope in the case of free-slip conditions. It may also partly cause the263

discrepancy between the slopes observed for no-slip and free-slip results: the264

onset times associated to no-slip boundary conditions are higher and the effect265

of the “frozen time” approach is thus less significant.266

“Onset times” determined by the Rayleigh-Taylor instability analysis also267

underestimate the 3D values (however, significantly less than the LS analysis).268

Again, the curve is almost linear for the studied range. The power-law scaling269

leads to a = −0.70 for free-slip and a = −0.70 for no slip and agrees relatively270

well with slopes obtained from 3D simulations.271

The degree of the fastest growing anomalies increases with increasing Ra for272

all methods (i.e. thinner boundary layers lead to smaller preferred wavelengths273

of the first instabilities). The preferred degrees are higher for no-slip than274

11
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for free-slip condition. However, they vary strongly among the methods. The275

lowest degree is obtained for the linear stability analysis. For 3D numerical276

experiments, the estimate of the degree is limited by the common multiple277

factor 4 when only one block is used. The increase of the degree with increasing278

Rayleigh number is however obvious. The preferred degree is highest for the279

R-T analysis. This may be due to the fact that, in the vicinity of the minimum,280

the dependency of the onset time on the degree is rather low (see App. B;281

Fig. B1a). Considering that the reciprocal value of the fastest growing degree282

is proportional to the thickness of the boundary layer and assuming h′ ∼
√

t′,283

the power law scaling for Rayleigh number Ra leads to284

1

l
∼ h ∼

√
t ∼ Ra−1/3 ⇒ l ∼ Ra

1/3. (7)

The values obtained for preferred degree by the R-T instability analysis follow285

well this prediction l ∼ Ra0.33.286

4.2. Influence of the viscosity variations287

Until now, we have discussed only results for constant viscosity. In this sec-288

tion, we focus on the temperature dependent viscosity. In our computations,289

we consider values of avis smaller than 10. This corresponds to the transitional290

regime observed between the isoviscous regime and the asymptotic regime as-291

sociated to very large viscosity contrasts investigated earlier by some authors292

(Thompson and Tackley, 1998; Solomatov and Moresi, 2002; Ke and Solomatov,293

2004).294

Fig. 3 summarizes results for temperature dependent viscosity and free-slip295

conditions. Fig. 3a shows the dependency of the onset time t′ on the viscosity296

parameter avis keeping a constant value for the surface Rayleigh number Ra0.297

In all the results presented in this paragraph, the initial viscosity within the298

spherical shell is thus identical. The viscosity variations with temperature within299

the region where the hot front propagated, increase with avis. For all methods,300

a nearly linear character in the log scale is observed. We thus use a relationship301

in the form t′ = B exp(bavis). The interpretation of this scaling is discussed in302

12
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the next section. Values of (B, b) are listed in Tab. 3. Note that linear stability303

analysis consider only depth-dependent viscosity, and R-T instability analysis304

uses an even simpler description of the viscosity variations based on a two layered305

viscosity stratification. For this reason, specific differences arise between 3D306

convection results and both simplified methods when viscosity variations are307

introduced. For R-T analysis, different definitions of the viscosity contrast ∆µ308

between the two prescribed layers were tested. First, a series of fractions of the309

global temperature difference are used: ∆µ = exp(avis∆θ) with ∆θ equal to 0.2,310

0.4, 0.6, 0.8 and 1 (cf. Eq. (B14), dashed lines in Fig. 3). Second, the difference311

∆θ̄ between the average temperature in each layer is used (dashed dotted line312

in Fig. 3). The slope of the curve is influenced significantly by this definition.313

The strongest dependency is obtained for ∆θ = 1 (b = −0.25). The case where314

∆θ̄ is used to define the viscosity contrast lies between ∆θ = 0.4 and 0.6 and315

leads to a smaller slope (b = −0.15). This value is close to the one obtained316

for the 3D results (b = −0.16). For the linear stability analysis, the slope is317

almost zero (Fig. 3a), reflecting the fact that the onset time is not strongly318

influenced by the increasing viscosity parameter avis. In this case with free-slip319

boundaries, the onset time is predominantly controlled by the Rayleigh number320

on the surface. While the difference between 3D and LS results was found to321

increase with decreasing values of the onset time in the isoviscous case (Fig. 1a),322

this difference diminishes here (Fig. 3a). In fact, while the conduction of the323

heat front is identical whether the fluid is isoviscous or not, the growth rate of324

instabilities is larger when avis increases. And since the onset time decreases325

more slowly in this case than for constant avis and increasing Ra, the frozen-326

time effect is less important. No-slip results (not presented in Fig. 3 but whose327

best scaling fit are reported in Tab. 3) show a significantly different behavior,328

closer to the observed slopes for 3D results and R-T.329

Results obtained for a constant value of the bottom Rayleigh number Rab330

are presented in Fig. 3b. The surface Rayleigh number Ra0 decreases with331

increasing avis and hence the onset time increases. For relatively high avis, the332

onset time is delayed and the heat front reaches the upper boundary before the333
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onset of convection. Consequently, the scaling t′ ∝ Ra−a is not valid for these334

large values of the onset time. In the case of the LS analysis, this deviation of335

large values of the onset times from the general trend is observed even in the336

isoviscous case (Fig. 2). However, in the case of the R-T analysis, the influence337

of the upper boundary is detected for smaller values of the onset time due to338

the definition of the viscosity contrast between the layers: while results up to339

t′ = 5 · 10−2 seem to follow the same unique slope in the isoviscous reference340

case (Fig. 2), results above t′ > 10−2 deviate when viscosity variations are341

introduced (Fig. 3b). For LS stability and R-T instability analysis, we therefore342

take here into account only onset times t′ < 0.01. The corresponding segments343

of the curves are then also linear so that a fit based on a scaling similar to the344

calculations with constant Ra0 is adopted; parameters are noted (B′, b′) and the345

inverted values are presented in Tab. 3. For this restricted range, the agreement346

is good between the values obtained for the 3D convection results (b′ = 0.56)347

and the R-T instability when the viscosity contrast is based on ∆θ̄ (b′ = 0.54).348

Again the results for viscosity based on ∆θ̄ lie between the results obtained for349

∆θ = 0.4 and 0.6.350

For all methods, the degree of the fastest growing anomaly does not vary351

monotonically with increasing avis. This more complex behavior compared with352

the isoviscous case, may be caused by the existence of several regimes as dis-353

cussed by Ke and Solomatov (2006).354

4.3. Influence of the shell geometry355

We now focus on the influence of the geometrical factor f of the shell. Results356

for constant viscosity and Rayleigh number Ra = 106 are shown in Fig. 4a–b.357

Values of the onset times for the LS analysis (solid line) and the R-T instability358

analysis (dashed line) are again systematically lower than those of 3D numerical359

experiment (solid circles). For the interpolation, we propose a purely mathe-360

matical function t′ = C ·f c · exp(−cf). This scaling satisfies the expected limits361

based on the energetic expectations for the onset times for f approaching 0 or 1362

when the shell thickness is used as a characteristic length scale. For f → 1, the363
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onset time is expected to tend smoothly to the Cartesian limit: limf→1
∂t′

∂f = 0.364

For f → 0, the onset time should be infinity (which is the case of the proposed365

function for c < 0). Due to the asymptotic behavior of the onset time corre-366

sponding to low values of f , the inverted value for c depends on the investigated367

range and on the sampling of the geometrical factor f .368

When results of the linear stability analysis in the case of no-slip boundaries369

are considered, the best fit returns a positive value of c (Tab. 3) in contradiction370

with the assumption inherent to the above scaling. This is due to the complex371

behavior of the onset time caused by increasing preferred wavelengths with372

decreasing f (Fig. 4b). This can also be observed to a lesser extent for free-slip373

LS and for R-T. A key result is that the maximal curvature encompassed by the374

c value in the proposed scaling is significantly different between the LS results375

for free-slip (c = −0.29) and the R-T results (|c| < 10−2 for both free-slip and376

no-slip). This reflects the fact that onset times are almost independent of f377

above a given value and this value is larger for LS than for R-T.378

In the case of 3D results, the lack of numerical experiments in the region379

f ∈ (0, 0.2) prevents a precise assessment of the c value. For this reason, we do380

not compare it with the results obtained for LS and R-T. A slight increase of381

the onset times with f can be observed for the studied range both for free-slip382

and no-slip. This gradual increase is also detectable for LS (and, to a lesser383

extent, R-T), especially in the no-slip case. A candidate effect for this range of384

f , where the geometrical effect on the heat budget gets less and less significant,385

might be that since the preferred wavelength is forced to increase when f gets386

close to 1, the onset time is delayed. The fact that the R-T results seem to be387

less affected would then be related to the small dependency of the growth rate388

as a function of preferred degree, as already mentioned (see Fig. B1a).389

We also investigate the scaling in terms of Rayleigh number for different390

values of the geometrical factor f using R-T instability analysis. The functions391

a(f) and b(f) are introduced to quantify this effect (t′ ∝ Raa(f) and t′ ∝392

exp (b(f)avis)). The absolute value of function a(f) is expected to increase with393

f : by definition of the time analogous to the onset of convection in the R-394

15



Page 16 of 60

Acc
ep

te
d 

M
an

us
cr

ip
t

T framework, smaller values of Ra imply larger thicknesses for the lower layer.395

Since the growth of the thermal boundary layer decreases more rapidly with time396

for low f than for high f , critical thicknesses of the boundary layer take more397

time to develop (see Eq. A12). Our results were obtained for Rayleigh numbers398

larger than 103 (corresponding roughly to the critical value for convection to399

occur within the shell) and smaller than 109. The following values of the power400

a(f) are obtained for free-slip conditions and isoviscous fluid: a(0.01) = −0.74,401

a(0.1) = −0.72, a(0.2) = −0.71, a(f > 0.3) = −0.70. In the case of the function402

b(f), the dependency for free-slip conditions has been found for Ra = 106 and403

avis ranging between 0 and 10: b(0.01) = −0.05, b(0.1) = −0.13, b(0.2) = −0.15,404

b(f > 0.3) = −0.15.405

A general conclusion is that, although small values of f induce that a smaller406

amount of energy is supplied in order to prescribe the hot temperature on the407

inner boundary, the values of the dimensionless onset time are globally inde-408

pendent of f . Thus, the hot front always reaches a similar fraction of the shell409

thickness d before it becomes unstable. As could be expected, the preferred410

wavelength of the first instabilities grows with decreasing geometrical factor f .411

4.4. Scaling relationships412

Considering the scaling of the onset time as a function of both Rayleigh413

number Ra and viscosity parameter avis and neglecting the influence of the414

geometry on dimensionless onset time (a and b are not functions of f , thus415

assuming f ' 0.2), we propose a combination of the relationship obtained by416

varying the two parameters independently:417

t′ ∝ Raa
0 exp (bavis) . (8)

The values obtained for 3D numerical experiments for free-slip conditions are418

a ≈ −0.67 and b ≈ −0.16 (see Tab. 3). Using Eq. (8), the results obtained for a419

constant bottom Rayleigh number Rab = Ra0 exp (avis) may be interpreted as420

follows421
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t′ ∝ Raa
b exp ((b − a)avis) . (9)

Since the runs with constant Rab provide t′ ∝ exp (0.56avis) (see Tab. 3) and422

Eq. (9) gives b − a ≈ 0.51, the assumptions in Eq. (8) seem to be reasonably423

valid as a general description of the two dimensional parametrical space. If the424

same procedure is applied for 3D numerical experiments with no-slip boundaries425

and a ≈ −0.69 and b ≈ −0.20 (see Tab. 3), we get b − a ≈ 0.49. Again, this426

agrees rather well with results obtained for constant Rab (t′ ∝ exp (0.52avis)).427

The equation (8) can also be interpreted as428

t′ ∝ (Ra∗)a (10)

where Ra∗ = ρ0g∆Tαd3

κµ∗
is associated with a viscosity value µ∗ = µ (θ∗) that429

“controls” the onset time of the convection, replacing the explicit scaling in430

terms of viscosity parameter. Since Ra∗ = Ra0 exp (θ∗avis), the temperature431

defining the viscosity µ∗ can be expressed as θ∗ = b
a (cf. Eqs. 8 and 10). Using432

the values listed in Tab. 3, we obtain θ∗ ≈ 0.24 for free-slip and θ∗ ≈ 0.29 for433

no-slip. This is summarized for all methods in Fig. 5 where the scaled onset434

time t′Ra(θ∗)−a is shown as a function of avis.435

The validity of this scaling is demonstrated in Fig. 5 for 3D calculations.436

The onset time t′ is normalized using the dependency predicted by Eq. 10 (t̃′ =437

t′ · (Ra∗)−a) and the variations of this normalized onset time with avis are438

reported for all the calculations performed in this study. Note that the value of439

θ∗ used in this normalization is based solely on results obtained for a prescribed440

value of the surface Rayleigh number. Fig. 5 shows that the proposed scaling441

also describes the other 3D calculations (i.e. with other values of Ra0): a least-442

squares fit with the function t̃′ = α exp (βavis) returns values of β smaller than443

10−2 for both free-slip and no-slip and the scattering of 3D convection runs444

around the interpolated curve is low, see Fig. 5. As expected, the R-T and LS445

results for constant surface Rayleigh number Ra0 show a similar behavior even446

though the normalized onset times are underestimated. The normalized onset447
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times show an approximately linear dependence on viscosity parameter avis in448

the log-scale. In the case of R-T results and no-slip LS results, the value of the449

slope is lower than 0.05. However, due to significantly different scaling for free-450

slip LS results, the slope is higher (β ≈ 0.15). The normalized onset times for451

a constant bottom Rayleigh number Rab show more complex variations. These452

follow an almost linear trend up to a given (transitional) value of the viscosity453

parameter avis. For higher values, the onset of convection is affected by the454

presence of the upper boundary. The transitional value of avis is approximately455

5 in the case of R-T instability analysis. For LS results, it is shifted toward456

slightly higher values (≈ 7) as a result of lower onset times.457

5. Discussion458

For the isoviscous 3D runs, the scaling of the onset time approximately459

follows the typical scaling t′ ∝ Ra−2/3 for both free-slip and no-slip conditions.460

The obtained slopes agree well with previous Cartesian numerical and laboratory461

studies for a fluid cooled from above (e.g. Blair and Quinn, 1969; Jhaveri and462

Homsy, 1980; Choblet and Sotin, 2000; Huang et al., 2003). For an isoviscous463

fluid described by Eqs. (1)–(3), the two cases (heating from below, cooling464

from above) are symmetric and the scaling should be identical. This symmetry465

also holds more-or-less for the spherical shell (f ' 0.2, depending on Rayleigh466

number). Moreover, while no tests were performed in 3D, it was shown for the467

R-T results that this slope is also rather constant for a broad range of values468

for the geometrical factor f (in our experiments, the slopes obtained for R-T469

instability analysis are systematically comparable to 3D numerical experiments).470

However, when the viscosity contrast is increased the symmetry of the flow471

disappears (e.g. Solomatov, 1995). For cooling from above and large viscosity472

contrast, a cold thermal boundary layer first develops. The onset of convection473

occurs when the thin sublayer at the base of the cold and viscous boundary474

layer reaches the critical Rayleigh number (see e.g. Dumoulin et al., 2005).475

The subsequent convective motions develop in the whole domain except for the476
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stagnant lid. The following asymptotic scaling for the viscosity parameter is477

used478

t′ ∝ Raa · aβ
vis, (11)

where 5
6 < β < 7

6 is proposed (Huang et al., 2003; Zaranek and Parmentier,479

2004; Dumoulin et al., 2005). In the case of a fluid layer heated from below and480

again considering large limit of ∆µ(> 106), a “symmetrical” regime has been481

described (Thompson and Tackley, 1998; Solomatov and Moresi, 2002; Ke and482

Solomatov, 2004, 2006). Convective instabilities develop in the low viscosity483

boundary layer. These are not strong enough at first to penetrate into the stiff484

cold material above and small-scale convection is restricted to the low-viscosity485

sublayer. With further heating, this sublayer grows and becomes eventually486

unstable: a large scale, low degree pattern develop.487

Our study address the intermediate range between the isoviscous case and488

this asymptotic regime (contrast ∆µ < 104). At steady-state, this regime would489

correspond to the “sluggish lid” regime where cold and more viscous instabilities490

participate to convection (e.g. Solomatov, 1995). This transitional regime has491

been less studied than the classical asymptotic stagnant-lid regime: Korenaga492

and Jordan (2003) propose a “unifying” scaling of the various regimes, intro-493

ducing a functional based on the concept of available buoyancy (c.f. Conrad and494

Molnar, 1999). In their laboratory experiments mainly focused on the stagnant495

lid regime, Davaille and Jaupart (1993) also investigate the range between the496

isoviscous case and the asymptotic regime (∆µ < 106). Fig. 12 in their study497

indicates that an exponential scaling such as the one proposed here (Eq. 8) de-498

scribes correctly the experiments: onset times for convection increase linearly499

with ∆µ in a log-log scale. In the transient set-up of the present study, onset500

times behave similarly. The hot (less viscous) thermal boundary layer above the501

inner interface first thickens. Convective instabilities occur so that the whole502

thermal boundary layer takes part in the large-scale motion. For this reason, we503

propose an alternative dependency on avis (cf. Eq. 8) equivalent to formulation504
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in Eq. 10: t′ ∝ (Ra∗)
a
, where Ra(θ∗) = ρ0g∆Tαd3

κµ(θ∗) and θ∗ denotes the value of505

temperature corresponding to the viscosity value that “controls” the instability.506

Although the dynamics of the onset of convection are complex when viscosity507

gradients of various amplitudes are considered, using this specific value µ(θ∗)508

(a constant fraction of the viscosity contrast) as a characteristic viscosity in509

the definition of the Rayleigh number is sufficient to describe the influence of510

avis. Our results indicate that a ≈ −2/3 and θ∗ ≈ 0.25 for both free-slip and511

no-slip boundary conditions. Furthermore, the scaling obtained independently512

for constant surface and bottom Rayleigh numbers show that the assumptions513

inherent to this scaling are reasonable (see section 4.4).514

6. Implication for planets515

Applicability to planets Although the onset of solid-state flow in plane-516

tary interiors is a complicated process influenced by many factors, the values of517

the onset times reported here and, most importantly, the observed slopes in the518

simple three parameters space provide interesting guidelines with regard to the519

early dynamics of terrestrial planets. We propose a set-up where a homogeneous520

layer is heated from below. This provides an idealized model for the “initial”521

thermal state of a newly formed planet, once core formation is completed and522

subsequent to the solidification of a large fraction of a plausible magma ocean.523

In fact, a global magma ocean resulted likely from the rapid occurrence of a524

series of primordial energetic events. Whether hafnium-tungsten chronometry525

based on rocks of presumably planetary origin—Mars, the Moon, the Earth,526

Vesta—e.g. Yin et al. (2002); Kleine et al. (2002) provides a precise timing for527

the metal-silicate separation is controversial, e.g. Wood and Halliday (2005);528

Allègre et al. (2008). In all cases, geochemical data indicate that the completion529

of this process is likely to occur before 100 Myr after the formation of the solar530

system. In this context, the few models proposing colder scenarios where core531

formation is significantly delayed (as for Mars, Senshu et al., 2002) are problem-532

atic. The precise partition of the heat associated with core formation between533
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the silicate mantle and the iron-rich core is, however, still largely uncertain.534

These aspects are further detailed below.535

Simplifications Neither radioactive heating nor dissipation are considered536

in the models presented here. Although the value of the viscous dissipation may537

depend on the initial amplitude of the perturbation analogically to what has538

been proposed in the case of a power-law viscosity (Solomatov and Barr, 2007),539

the influence on the onset of convection is probably relatively small. Short-lived540

radiogenic isotopes such as 26Al (and to a lesser extent 60Fe) are likely to be541

present in the primordial bricks building the silicate part of planets. If accretion542

is achieved shortly after the formation of CAIs (< 10 Myr), these may contribute543

efficiently to the heat budget. In the case where heating from below remains the544

prominent energy supply of the mantle, these additional internal sources would545

reduce the onset time.546

Furthermore, possible chemical variations are not considered. If the man-547

tle is heterogeneous, a two layers system could develop (where a stable deep548

layer may be preserved depending on compositional buoyancy). The specific549

dynamical regimes associated with such a set-up are described by Le Bars and550

Davaille (2004), for example. In the case of the Earth, if such a stratification551

exists at present-day, it might be a consequence of plate dynamics; the deep552

reservoir could be created by slab remnants or delaminated continental mate-553

rial. Therefore, the presence of this stratification throughout the evolution is554

not required. In the case of Mars, one key issue is the possibility of a magma555

ocean cumulate overturn as proposed by Elkins-Tanton et al. (2003, 2005). This556

would result in a stable stratification of the deep mantle due to composition557

and would strongly inhibit whole mantle convection. In this case, radiogenic558

elements would be highly concentrated in the deep layer. The problem of the559

onset of purely thermal convection would then mostly concern the above man-560

tle layer in a configuration similar to that described by Le Bars and Davaille561

(2004) in the case of a very large value of the buoyancy number (measuring the562

ratio between the density variations of compositional origin to the ones caused563
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by temperature gradients), i.e. a stratified regime with a “flat” interface. In-564

deed while this layer should remain stable for a significant fraction of the age565

of the planet, if radiogenic heat sources are present with concentrations ten566

times larger or more than chondritic (Elkins-Tanton et al., 2005), the increase567

of temperature due solely to these internal heat sources may easily reach several568

hundreds of Kelvins in a few tens of million years and lead to hot convective569

instabilities in the less dense layer above.570

We also omit the effect of the phase transitions which may affect the onset571

times and the wavelength of the preferred instabilities especially if these are572

located close to the core-mantle boundary (CMB). In the case of the Earth, the573

exothermic post-perovskite phase transition near CMB is a candidate for such a574

deep transition, however, its presence is rather unlikely for the early Earth due575

to possibly higher temperatures (e.g. Oganov and Ono, 2004). On Mars, the576

presence of the endothermic transition to perovskite near core-mantle boundary577

has also been mentioned as a possibility (e.g. Breuer et al., 1997; Harder, 1998;578

Roberts and Zhong, 2006) and will be discussed later.579

Parameter values for terrestrial planets In addition, the parameter580

values for the simple convection model we investigate, are rather uncertain espe-581

cially under the condition of early planets. Two of the parameters considered in582

the present study (namely, the Rayleigh number Ra and the viscosity parameter583

avis) strongly depend on (i) the internal temperature (T0 in our models), (ii)584

the temperature contrast through the boundary layer (∆T in our models) and585

(iii) the values of viscosity parameters, especially activation parameters associ-586

ated with planetary materials. As already mentioned, both (i) and (ii) directly587

result from the energy budget of planetary accretion and core formation and588

from the heat partitioning between mantle and core. The energy associated589

with impacts by bodies of varying size (Tonks and Melosh, 1993), including the590

probable Moon-forming impact on the Earth at the end of accretion (Canup,591

2004) but also, maybe, the large impact responsible for the Martian hemispheric592

dichotomy (e.g. Andrews-Hanna et al., 2008), is most probably large enough to593
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melt a significant part of the planet’s mantle (Elkins-Tanton et al., 2005). Fur-594

thermore, core formation on any terrestrial planet raises its temperature due to595

the conversion of potential energy into heat. The presence of a magma ocean is596

thus highly probable and it is supported by the geochemical data. The solidifica-597

tion of such a magma ocean is described by Solomatov (2007), for example. The598

temperature profile subsequent to the solidification of the magma ocean could599

then be close to the solidus value. Again, it has been noted by Elkins-Tanton600

et al. (2005) that the density stratification resulting from this solidification may601

not be stable and could promote a gravitational overturn.602

(i) Internal temperature. For all reasons mentioned above, large ranges for603

the internal temperature value T0 need to be considered. For Mars, a temper-604

ature range for the mantle near CMB of (1900, 2300)K is supposed. The lower605

limit is based on the estimate of the current temperature near CMB in Mars606

(Fei and Bertka, 2005). The upper limit corresponds to the solidus temperature607

(≈ 2300 K) (Takahashi, 1990). For the Earth, the current temperature at depth608

660 km is supposed to be approximately 1900 K (e.g. Ito and Takahashi, 1989;609

Boehler, 2000). Considering an adiabatic profile, the current temperature near610

CMB is approximately 2500− 2900 K providing an estimate for the lowest pos-611

sible value for temperature before the onset of convection. The upper bound is612

supposed to lay around the solidus of the lower mantle, i.e. 4300 K (Holland and613

Ahrens, 1997; Zerr et al., 1998). For Venus, we assume the same temperature614

range: Venus is slightly smaller and (at least present-day) surface conditions615

are different than on the Earth so that the energy budget may differ. However,616

we suppose that these differences are not substantial especially when compared617

to the uncertainties of the studied parameters. The thermal evolution within618

the Earth and Venus is discussed in Stevenson et al. (1983). The main effect of619

varying T0 results in large variations of the viscosity value which we take into620

account in the following by considering viscosity η0 as a free parameter. T0 also621

influences the value of avis. We first focus on two specific values of T0 indicated622

in Tab. 4 and then consider results obtained for other values of T0 in the case623

of the Earth and Venus (Fig. 6b–d).624
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(ii) Temperature contrast. The minimal temperature contrast between the625

mantle and the core ∆T is limited by the liquidus temperature of the core626

material. The liquidus of iron near CMB in Mars is estimated to be approxi-627

mately 2100 K (Boehler, 1996). In the Earth, the iron liquidus is around 3000 K628

(Boehler, 1996). The presence of light elements within the core would signifi-629

cantly reduce these values. Supposing the values mentioned above for the man-630

tle temperature before the onset of convection, i.e. 2100 K (Mars) and 3000 K631

(Earth/Venus), a high temperature increase near CMB is not required. We thus632

investigate the following range for ∆T : 500–2000 K consistent with the current633

estimate within the Earth (Lay et al., 2008). We will see below that larger634

values of ∆T are likely to be associated with a different dynamical regime than635

the one investigated here where the associated viscosity contrast is moderate.636

(iii) Viscosity parameters. The parameters controlling the viscosity value637

and its variations near the bottom of the mantle are another key issue. Due to638

the lack of constraints, we basically suppose them to be free parameters (com-639

bined together with the internal temperature T0). Indeed, besides temperature,640

viscosity also depends on the activation energy and volume, grain size and water641

content. Values of these parameters are subjected to large uncertainties espe-642

cially for the lower mantle material. We thus consider the following viscosity643

range (1018, 1022)Pa · s. The lower limit is a viscosity near solidus (Solomatov,644

2007) in the Earth. The upper viscosity bound is based on a estimate of the vis-645

cosity in the lower mantle in the Earth (e.g. Peltier, 1996; Lambeck et al., 1998).646

The relationship between parameter avis used in the 3D experiments and actual647

values of activation parameters E∗ and V ∗ is avis = (E∗+pV ∗)∆T
RT0(T0+∆T ) . However, both648

the activation parameters Q∗ = E∗ + pV ∗ and the temperature T0 are rather649

uncertain. In order to compute the activation enthalpy Q∗ = E∗ + pV ∗, we use650

the parameters listed in Tab. 4 and consider a pressure value corresponding to651

mantle close to the CMB. For Mars, the values are based on what is proposed652

for the Earth’s upper mantle material (Korenaga and Karato, 2008). For the653

Earth and Venus, the activation energy and volume are rather uncertain for the654

lower mantle material under high pressure; we use values based on the results of655
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Yamazaki and Karato (2001). This leads to Q∗ = E∗+pV ∗ ≈ 380 kJ · mol−1 for656

Mars and ≈ 540 kJ · mol−1 for the Earth and Venus. However, the value of the657

activation volume is rather poorly constrained. Korenaga and Karato (2008)658

report a value of the activation volume of 6±5 cm3 · mol−1, hence, values in the659

range (1, 11) cm3 · mol−1 are plausible. Supposing these values, the activation660

enthalpy near CMB may vary between 280 and 480 kJ · mol−1 for Mars and661

between 340 and 1700 kJ · mol−1 for the Earth and Venus. Similarly to high662

temperature contrasts ∆T , the upper bounds of the estimated enthalpy range663

lead to a different dynamical regime which is not addressed here.664

Onset of convection Fig. 6a–b shows the onset times of the first convec-665

tive instability for parameter values corresponding to Venus or the Earth and666

Mars. We use the scaling relationship obtained for the 3D numerical experi-667

ments (Eq. 8) for free-slip boundaries in order to compute the onset time tonset.668

We assume that our scaling is valid up to at least a viscosity parameter value669

of avis = 10. Above this value, as mentioned in section 5, a different regime670

may occur where small-scale convection first develops with a convective thick-671

ening of a low-viscosity sublayer before large scale low-degree instabilities affect672

the whole layer (e.g. Ke and Solomatov, 2006). We thus only report results673

corresponding to values of the viscosity parameter smaller than 10. As noted674

above avis depends on T0 and Q∗. In Fig. 6a–b, the region in the parameter675

space where avis > 10 is indicated as an empty area. In the case of Mars, this676

occurs for a temperature contrast above the CMB of more than 1700 K. In the677

Earth, the viscosity parameter is lower than 10 in the whole range considered678

here. However, if we had considered smaller values for T0 or higher values of Q∗,679

the empty region may have represented a larger fraction of the studied range of680

values for ∆T .681

The onset times for the studied range of parameters vary between 0.1 Myr682

and 700 Myr Fig. 6a–b, the values for the Earth and Venus (< 400 Myr) being683

only slightly smaller than the ones obtained for Mars (> 0.3 Myr). The extreme684

values, although they are very different, are reached only for small areas within685
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the parameter space. The lower limit is obtained for the lowest viscosity con-686

sidered and the highest temperature contrast. In contrary, the upper limit is687

reached for the highest viscosity and lowest temperature contrast. Note that,688

as indicated by the isocontours, there is a systematic trade-off between the two689

parameters proposed in Fig. 6a–b, η0 and ∆T . The main effect is caused by690

viscosity: as can be seen from the scaling relationship, for a constant ∆T , an691

increase of one order of magnitude is obtained when η0 is decreased by a factor692

of 30. For a constant η0, an increase of 1000 K for ∆T results in 4 times smaller693

onset time.694

As mentioned above, the viscosity parameter avis and thus the onset times695

depends besides the free parameter ∆T also on two rather uncertain parameters696

Q∗ and T0. In the case of the Earth and Venus, the influence of the internal697

temperature T0 is demonstrated in Fig. 6, plates c (T0 = 2500 K), plate b (T0 =698

3000 K) and plate d (T0 = 3500 K). As we already discussed, the parameter699

avis increases with decreasing T0. The empty area corresponding to avis > 10700

thus increases with decreasing T0 (cf. Fig. 6 plates b and c). Nevertheless,701

the onset times are not influenced significantly for the investigated range of702

the internal temperatures T0: a slight shift towards the higher onset times is703

observed for constant temperature contrast ∆T if T0 increases and the upper704

and lower boundaries of the estimated onset times are rather similar. In the case705

of variable activation enthalpy Q∗, a similar effect (the increase of geometrical706

factor with increasing activation enthalpy) is observed.707

Although highly variable, these values of the onset times are systematically708

smaller than the values obtained for the onset of convection beneath a stagnant709

lid forming due to cooling from above (see Choblet and Sotin, 2001, for a simple710

scaling) or (Zaranek and Parmentier, 2004, where a more sophisticated model711

where compositional stratification is taken into account, thus delaying the onset712

of convection). A consequence is thus that, once the core is formed and the713

solidification of the magma ocean is achieved, whether an overturn occurs as714

is possible for Mars, or not, the bulk mantle is likely to be destabilized first715

by upwelling instabilities first and downwellings from the cold lithosphere will716
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develop only afterwards.717

Another key issue is the determination of a preferred wavelength of the718

anomalies associated with the onset of the convection. Even though our esti-719

mate of the degree (wavelength) for 3D runs in one single block is limited by720

the common factor 4, it was demonstrated that the low degree instabilities are721

favored by rather low viscosity and/or high viscosity contrast. For the investi-722

gated range of the parameters (internal viscosity µ0 and temperature contrast723

∆T ), i.e. supposing Rayleigh number Ra0 ' 107 (for the Earth and Venus)724

and Ra0 ' 5 · 105 (for Mars) and addressing intermediate viscosity contrast725

avis / 10, it is highly improbable to achieve low degree-anomalies. Based on726

the 3D runs in six block, we roughly estimate that the lowest degree in our case727

is approximately 10.728

The onset of convection in the martian mantle as a the fluid heated from729

below was investigated by Ke and Solomatov (2006) as a possible cause for730

the hemispheric crustal dichotomy. The authors report the possibility of a731

transient low-degree superplume resulting from the destabilization of a deep732

layer where small-scale convection occurs. Large viscosity contrasts (∆µ = 106)733

and relatively low viscosity values need to be considered to promote this regime734

corresponding to the empty area in Fig. 6a. The present study does not rule735

out the possibility of such a large viscosity contrast regime, especially for early736

Mars (this regime does not appear in the parameter space we considered for the737

Earth and Venus) since the values of the activation parameters are subjected to738

large uncertainties.739

Following a first study based on the dynamics of a Rayleigh-Taylor insta-740

bility (Zhong and Zuber, 2001), Roberts and Zhong (2006), investigate other741

mechanisms possibly leading to the formation of low-degree instabilities early742

in the martian mantle. The first one is related to the presence of an endother-743

mic phase transition deep within the mantle and leads to low-degree convection744

only for a restricted region in the parameter space. Furthermore, this pattern745

takes a long time to develop which makes it unrealistic. The other mechanism746

investigated by Roberts and Zhong (2006) is the presence of a viscosity layer-747
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ing possibly due to a change of creep mechanism at depth. In these models,748

a viscosity increase higher than 8 at a depth of ≈ 1000 km systematically pro-749

duces a degree one instability that seems stable independently of the Rayleigh750

number. In a recent paper (Zhong, 2009), the idea of a weak asthenosphere is751

further developed and, together with lithospheric variations, is proposed as a752

mechanism to explain not only the formation of the crustal dichotomy but also753

the spatial and time evolution of volcanism on the Tharsis Rise (namely the754

migration from south to north): differential rotation of the lithosphere excited755

by degree one convection is obtained in such models. This configuration can-756

not be investigated by purely basally heated convection and is not addressed in757

this study. Whether the viscosity increases in the mid-mantle of Mars remains758

an open question. A better assessment of the present-day relationship between759

topography and areoid could help to resolve this issue.760

7. Conclusions761

In order to investigate the onset of solid-state convection within the interior762

of terrestrial planets, 3D numerical experiments are presented for the idealized763

model of a spherical shell heated from below. These results are systemati-764

cally compared with two simplified methods: linear stability (LS) analysis and765

Rayleigh-Taylor (R-T) instability analysis. We focus especially on the dynami-766

cal regime obtained for a viscosity contrast ∆µ ranging between 1 and 104.767

The results of 3D numerical experiments are well approximated by a scaling768

relationship t′ ∝ (Ra∗)a where a ≈ −2/3 and Ra∗ is a specific Rayleigh number769

corresponding to temperature θ∗ ≈ 0.25. This latter parameter includes the770

effect of various viscosity contrasts in a simple framework. Although this scaling771

is valid for both mechanical boundary conditions, the onset times for free-slip772

are systematically lower than for no-slip, as expected. The aspect ratio of the773

shell measured by parameter f (ratio between the inner and outer radii) does774

not influence significantly the dimensionless onset times as long as the inner775

sphere is large enough (f ' 0.2).776
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For linear stability analysis, values of the onset time are much smaller and777

the obtained slope a is lower especially for free-slip boundary conditions due778

to the “frozen time” approach. In the case of Rayleigh-Taylor instability, even779

though the onset times are also underestimated (however significantly less than780

for LS analysis), the above scaling based on the 3D results remains valid, to a781

lesser extent. Two views are classically considered for the onset of convection:782

(i) the need to reach a critical thickness for the boundary layer as supposed in the783

LS analysis, (ii) the need for convective instabilities to reach a specific growth784

rate (larger than the conductive propagation rate) as assumed in the R-T. An785

important conclusion is that the latter process provides a better description of786

the first convective instabilities for a variable-viscosity fluid heated from below.787

The preferred degree monotonically increases with increasing Rayleigh num-788

ber Ra and geometrical factor f in the isoviscous case. In the case of temperature-789

dependent viscosity, the phenomenon is more complex. However, in general, the790

low degrees are preferred for high viscosity contrasts and low Rayleigh numbers.791

Application of these scaling relationships to Venus, the Earth, and Mars792

shows that values of the onset times vary by more than three orders of magnitude793

for reasonable parameter ranges. These are however smaller than 400 Myr for794

the Earth and Venus and 700 Myr for Mars and thus smaller than values derived795

for the onset of cold instabilities beneath the lithosphere in the stagnant lid796

regime. The first boundary layer that destabilizes in a purely thermal framework797

is therefore the hot, deep, low viscosity layer. Assuming a regime where the798

viscosity contrast within the hot boundary layer is less than 104, the estimated799

preferred degree of the first instabilities is always ' 10. This confirms that800

scenarios involving very low degree convective patterns in the case of Mars801

require either additional ingredients or a much stronger viscosity contrast in the802

hot boundary layer.803
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lem and Ondřej Souček for numerous discussions. The comments of Shijie Zhong807

and Mark Jellinek that helped to improve the manuscript are gratefully acknowl-808

edged. This work was supported by the ETHER project of the French Agence809

Nationale de la Recherche (ANR).810

A. Linear stability analysis811

In order to evaluate the critical Rayleigh number with the linear stability812

analysis, infinitesimal perturbations at the onset of convection (ṽ′ and θ̃′) are813

considered. Their evolution is governed by linearized Eqs. (1–3):814

∇′ · ṽ′ = 0, (A1)

Ra
g(r′)

g0
∇′θ̃′ × er + µ′∇′2 (∇′ × ṽ′) +

∂µ′

∂r′

[

er ×∇′2ṽ′ + ∇′ ×
(

er ·
(

∇′ṽ′ + (∇′ṽ′)
T
))]

+

+
∂2µ′

∂r′2
er ×

(

er ·
(

∇′ṽ′ + (∇′ṽ′)
T
))

= 0 (A2)

∇′2θ̃′ − ṽr
∂θ′0
∂r′

=
∂θ̃′

∂t′
, (A3)

where Eq. (A2) is a curl of momentum Eq. (2) with depth-dependent viscosity815

µ′ = µ′(r) and equation (A3) is a linearized energy equation for the depth-816

dependent reference temperature profile θ′0 = θ′0(r). This set of equations is817

solved for the solenoideal (Eq. A1) velocity field represented by a poloidal scalar818

(toroidal part of the field is identically equal to zero see e.g. Schubert et al.819

(2001)) and the temperature perturbations θ̃′. The poloidal scalar P is defined820

by821

ṽ′ = ∇′ × (r′er ×∇′P ) . (A4)
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The equations (A1–A4) lead to the following set of the equations for poloidal822

scalar P and the temperature field θ̃′:823

−Ra
g(r)

g0

θ̃′

r′
= µ∇′4P +

∂µ

∂r′

(

2
∂3

∂r′3
P +

4

r′
∂2

∂r′2
P−

− 2

r′2
∂

∂r′
P +

2

r′3
P +

2

r′2
B

∂

∂r
P − 2

r′3
BP

)

+

+
∂2µ

∂r′2

(

∂2

∂r′2
P − 2

r′2
P − 1

r′2
BP

)

(A5)

∂θ̃′

∂t′
= ∇′2θ̃′ − 1

r

∂θ′0
∂r′

BP, (A6)

where824

1

r2
B• =

1

r2 sinϑ

∂

∂ϑ
sin ϑ

∂

∂ϑ
• +

1

r2 sin2 ϑ

∂2

∂2ϕ
• =

= ∇2 • − ∂2

∂r2
• −2

r

∂

∂r
• . (A7)

In order to solve the linear stability problem, the spectral decomposition of825

the poloidal scalar P =
∑∞

l=0

∑l
m=−l exp (st)Plm(r)Ylm(ϑ, ϕ) and of tempera-826

ture perturbations θ̃′ =
∑∞

l=0

∑l
m=−l exp (st)Θlm(r)Ylm(ϑ, ϕ) are used, Ylm are827

fully normalized spherical harmonics (e.g. Varshalovich et al., 1989). Further-828

more, we restrict ourselves to the eigenvalue s = 0. Hence, the “frozen time”829

approximation is considered and the propagation of the temperature front is830

not taken into account. Under these conditions and due to the orthogonality831

of the spherical harmonics functions, considering Bf(r)Ylm = −l(l + 1)f(r)Ylm,832

the equations (A5–A6) can be rewritten into833

−Ra
g(r′)

g0

Θlm

r′
=

= µ′

(

d4

dr′4
+

4

r′
d3

dr′3
− 2l(l + 1)

r′2
d2

dr′2
+

l2(l + 1)2 − 2l(l + 1)

r′4

)

Plm +

+
dµ′

dr′

(

2
d3

dr′3
+

4

r′
d2

dr′2
− 2l(l + 1) + 2

r′2
d

dr′
+

2l(l + 1) + 2

r′3

)

Plm +
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+
d2µ′

dr′2

(

d2

dr′2
+

l(l + 1) − 2

r′2

)

Plm, (A8)

(

d2

dr′2
+

2

r′
d

dr′
− 1

r′2
l(l + 1)

)

Θlm +
1

r′
l(l + 1)Plm

dθ′0
dr′

= 0. (A9)

These equations are solved in a spherical shell bounded by spheres with radii834

r′ = f
1−f = rb

d (inner boundary) and r′ = 1
1−f = rt

d (outer boundary). On the835

impermeable boundaries, either no-slip or free-slip condition are prescribed836

P ′
lm

(

r′ =
1

1 − f

)

= Plm

(

r′ =
f

1 − f

)

= 0 and

d

dr
P ′

lm

(

r′ =
1

1 − f

)

=
d

dr
P ′

lm

(

r′ =
f

1 − f

)

= 0 for no-slip or

d2

d2r
P ′

lm

(

r′ =
1

1 − f

)

=
d2

d2r
P ′

lm

(

r′ =
f

1 − f

)

= 0 for free-slip.(A10)

The critical Rayleigh number is then obtained solving the condition for in-837

stability (at least one non-trivial solution of the system (A8–A9) for boundary838

condition (A10) exists) with a method similar to Chandrasekhar (1961). The re-839

sults for the conductive profile reproduce the results obtained by Chandrasekhar840

(1961) for constant viscosity and Ratcliff et al. (1996) for temperature dependent841

viscosity.842

In our case, the basally heated problem with θ′(r′, t′ = 0) = 0, θ′0

(

r′ = f
1−f , t′

)

=843

1 and θ′
(

r′ = 1
1−f , t′

)

= 0 is considered. The conductive temperature profile844

within the spherical shell at a given time t′ is determined by (Carslaw and845

Jaeger, 1959)846

θ′0(r
′, t′) =

f

1 − f

1

r′
− f

1 − f

r′ − f
1−f

r′
−

− 2

r′π

∞
∑

n=1

f

1 − f

1

n
sin

(

nπ

(

r′ − f

1 − f

))

exp
(

−n2πt′
)

. (A11)

For small times, the relationship (A11) can be approximated by the solution for847

an infinite region bounded internally by a sphere (Carslaw and Jaeger, 1959):848

θ′0(r
′, t′) =

f

1 − f

1

r′
erfc

(

r′ − f
1−f

2
√

t′

)

. (A12)
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Hence, for a given time, we obtain the temperature profile and then compute849

the critical Rayleigh number and its corresponding degree.850

The example of the onset times obtained for a constant viscosity avis = 0,851

f = 0.55 and free-slip conditions is shown in Fig. A1 as a function of Rayleigh852

number. For times lower than ≈ 0.01 (Fig. A1, solid line), the onset time853

varies almost linearly with Rayleigh number in the log-log scale and its slope is854

t′ ∝ Ra−1.02. The degree of the first instability is growing from l = 3 to l = 4855

with increasing Rayleigh number. For t′ > 0.01, a sudden change of the slope is856

observed. This effect can be explained by the presence of the upper boundary.857

The temperature profile can be described by the time-dependent solution of pure858

conduction in the infinite region bounded internaly by sphere (Eq. A12) for low859

t′. The critical Rayleigh number thus varies with t′. If the hot front reaches860

the upper boundary (the temperature based on Eq. (A12) is non-zero there),861

the temperature profile should be described by Eq. (A11). For high t′, the862

temperature profile becomes very close to the steady-state conduction solution.863

The critical Rayleigh number for the onset of convection thus reaches (for t′ >864

0.5) the asymptotic value corresponding to the classical defition (i.e. the value865

needed to destabilize a steady-state conductive profile): in this example, the866

value of the classical critical Rayleigh number is 712 and the preferred degree867

is 3 (see e.g. Ratcliff et al., 1996). As expected, the dependency of onset time868

for higher degrees (8, 12, 16 and 20) also illustrated in Fig. A1 (thin solid lines)869

also display this asymptotic behavior.870

B. Rayleigh-Taylor instability analysis871

In this approach, we define the onset time as the time when the maximum872

growth velocity ξ̇ of the Rayleigh-Taylor instability is equal to the propagation873

velocity of boundary layer (ḣ) (e.g. Zaranek and Parmentier, 2004; Ke and874

Solomatov, 2004):875

ξ̇ = ḣ. (B1)
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Therefore, the growth of the R-T instability in the spherical shell needs be876

determined. The shell is bounded by rb (inner radius) and rt (outer radius)877

and a simple two layers model is considered. In this model, the less-denser878

fluid layer (lower layer) is described by thickness h, viscosity µ1 and density879

ρ1, the denser fluid (upper layer) is characterized by the viscosity µ2 and the880

density ρ2 = ρ1 + ∆ρ. Thus, the internal interface between the layers is located881

at ri = rb + h. The interface between the layers is presumed to be initially882

infinitesimally perturbed with amplitude ξ0. This initial perturbation ξ0 of the883

internal boundary is supposed to grow exponentially with time884

ξ = ξ0 exp st, (B2)

where s is the growth rate of the instability.885

The growth rate is computed as follows (Ribe, 2007): In each layer, the flow886

in the i-th layer follows the equation of motion for the constant viscosity and887

without body force888

∇4P i = 0, (B3)

where P i is a poloidal scalar (see Eq. A4) representation of the velocity vi =889

(vi
r, v

i
ϑ, vi

ϕ) within the i-th layer. On the boundaries, either no-slip or free-slip is890

prescribed. On the internal interface, the continuity of the normal and tangen-891

tial velocity and of the tangential stresses and discontinuity of the normal stress892

is prescribed. Supposing spectral decomposition P =
∑∞

l=0

∑l
m=−l exp (st)Plm(r)Ylm(ϑ, ϕ)893

and the orthonormality of the spherical harmonic functions, the boundary con-894

ditions on the outer boundaries give895

P2
lm(rt) = P1

lm(rb) = 0 and

d

dr
P2

lm(rt) =
d

dr
P1

lm(rb) = 0 for no-slip or

d2

d2r
P2

lm(rt) =
d2

d2r
P1

lm(rb) = 0 for free-slip. (B4)
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On the internal interface (ri), the linearized conditions for the continuity of896

the normal and tangential velocities are prescribed897

[vr]
+
− = P2

lm(ri) − P1
lm(ri) = 0

898

[vϑ]+− = [vϕ]+− =
d

dr
P2

lm(ri) −
d

dr
P1

lm(ri) = 0. (B5)

The linearized continuity of the tangential stresses gives:899

[σrϑ]+− = [σrϕ]+− = 0

µ2

(

d2

dr2
− l(l + 1) − 2

r2

)

P2
lm(ri) − µ1

(

d2

dr2
− l(l + 1) − 2

r2

)

P1
lm(ri) = 0 .(B6)

The linearized discontinuity of the normal stress is computed as900

[−p + σrr]
+
− = −∆ρgξ

µ2

(

r
d3

dr3
+ 3

d2

dr2
− 3

l(l + 1)

r

d

dr
+ 3

l(l + 1)

r2

)

P2
lm(ri) −

−µ1

(

r
d3

dr3
+ 3

d2

dr2
− 3

l(l + 1)

r

d

dr
+ 3

l(l + 1)

r2

)

P1
lm(ri) =

= −∆ρgξ. (B7)

Using linearized kinematic condition and Eq. (B7), we can write901

ξ̇ = vr(ri)

ξ̇ = −s[−p + σrr]
+
−

g∆ρ

s[−p + σrr]
+
−

g∆ρ
+ vr = 0,

s[−p + σrr]
+
−

g∆ρ
− 1

r
l(l + 1)P = 0. (B8)

Considering the Green function of the of the poloidal scalar in the i-th layer902

P i
l (r, ri) = Ai

nrl + Bi
nr−l−1 + Ci

nrl+2 + Di
nr−l+1, (B9)
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we get 8 unknowns of 8 equations (B4, B5, B6 and B8). And the growth rate s903

for the given degree l is computed then from the condition of the existence of904

the solution. The results for the thin layer limit (ǫl ≪ 1) agrees well with the905

results obtained by Ribe and de Valpine (1994). A more detailed description906

of the growth of R-T instability in the Cartesian coordinates can be found907

e.g. in Ribe (2007), chap. 7.04.9.1.908

In order to compare the results of the Rayleigh-Taylor instability with the 3D909

convection results, the dimensionless growth rate s′ may be related to Rayleigh910

number as follows (Ke and Solomatov, 2006)911

s′ =
d2

κ
s =

d2

κ

∆ρgh

µ2
s̃ =

(

fǫ∆µ

1 − f

)

Ra0s̃, (B10)

where ǫ = h/rb, ∆µ = µ2/µ1 is a viscosity contrast and s̃ is a function dependent912

on l, ∆µ, ǫ and f .913

In order to compare these results with the 3D convection experiments, the914

time dependency of the thickness of the lower layer h = ri − rb (corresponding915

to the hot thermal boundary layer in the numerical experiments) and its time916

derivative ḣ need to be prescribed. The interface between the layers is defined917

by a specific value of the temperature θ′L taking into account purely conductive918

solution. We restrict ourselves only to small times (t′ < 0.01 for f ≈ 0.5) using919

the relationship (A12)920

t′ =
h′2

4

1
(

erfc−1
(

θ′L

(

1 + h′ 1−f
f

)))2 , (B11)

leadint to an implicit equation for h′ solved numerically. The velocity of the921

propagation of the boundary ḣ′ can be computed for given t′ and h′ as follows922

ḣ′ =

2√
π

exp
(

h′2

4t′

)

h′

4t′
3/2

θ′L
1−f

f + 2√
πt′

exp
(

h′2

4t′

) . (B12)

Apparently, both the thickness h′ and its time derivative depend on the defini-923

tion of the boundary layer θ′L. We choose here θ′L = erfc
(√

π
2

)

which approaches924

the Cartesian limit h′ =
√

πt′ for f → 1.925
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As already mentioned, we are looking for the time when the condition (B1)926

ξ0s
′ exp(s′t′) = ḣ′ (B13)

is satisfied for the fastest growing degree l and for given Rayleigh number Ra0,927

geometrical factor f and viscosity contrast between the layers defined by ∆µ.928

In order to compute the time, the bisection method in time is used (Press et al.,929

1992).930

Another key issue for this method is the estimation of ∆µ. Supposing the931

relationship 4, the viscosity contrast is defined as follows932

∆µ =
exp (−θ2avis)

exp (−θ1avis)
= exp ((θ1 − θ2)avis) = exp (∆θavis) , (B14)

where θ1 and θ2 are values of temperature representing lower and upper layer.933

Several solutions are proposed here: either with a prescribed (constant) value934

of ∆θ or using the actual averages of both layers to define θ1 and θ2. The935

temperature difference of the actual temperature averages in each layer is ∆θ̄ =936

θ1 − θ2 and the corresponding viscosity contrast ∆µ̄ = exp
(

∆θ̄avis

)

. Note that937

in any case, ∆θ = 1 leads to the maximum estimate for ∆µ and thus to the938

lowest onset times.939

The basic characteristics for the Rayleigh-Taylor instability analysis for con-940

stant viscosity avis = 0, f = 0.55 and free-slip conditions are shown in Fig. B1.941

The dependency of the onset time on the degree for various Rayleigh number is942

shown in Fig. B1a. For increasing Rayleigh number, the degree corresponding943

to the minimal onset time increases due to decreasing thickness of the boundary944

layer at the onset time. Furthermore, the minima are rather flat, especially, for945

high Rayleigh numbers (low onset times and hence thin boundary layer).946

The influence of the initial perturbation amplitude ξ0 is demonstrated in947

Fig. B1b. As expected, the onset times for given Rayleigh number decreases948

with decreasing initial amplitude. Moreover, if the power law scaling t′ ∝ Raa
949

is considered, we get a = −0.73, −0.71 and −0.70 using a least square fit of the950
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results corresponding to ξ0 = 10−3, 10−4 and 10−5, respectively. Hence, the951

slope is influenced only weakly by the initial perturbation.952

In order to compare with the 3D convection results, the value of the initial953

perturbation can be roughly estimated as follows: the grid resolution in the954

vertical direction is typically dr ≈ 0.02 for 64 cells. Supposing a maximal955

amplitude of 10−3 for the stochastic temperature perturbations, the undulation956

of the isothermic surface could be approximately 2 ·10−5 at the beginning of the957

simulation. This value is the one we select for the prescribed initial amplitude ξ0958

for the R-T analysis. Note that the nonlinear effect of the temperature diffusion959

on the estimate of ξ0 should also be taken into account—for decreasing Rayleigh960

number the onset time is increasing, hence the diffusion effect grows and the961

initial value of the amplitude should decrease. This effect was however neglected.962

Nevertheless, as we show here, the value of ξ0 influences the slope of the curve963

only weakly.964
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List of Figures1140

Figure 1 Example of the determination of the onset time for Ra =1141

106, f = 0.55, avis = 0 and free-slip conditions; the deviation1142

of the horizontally averaged temperature (solid line) from the1143

conduction temperature profile (dashed line) for the six discrete1144

layers closest to core-mantle boundary is reported. The onset1145

time corresponding to a 0.1% deviation is indicated by an arrow.1146

Figure 2 Onset time as a function of Rayleigh number Ra for con-1147

stant f = 0.55, avis = 0 for a) free-slip and b) no-slip. Results of1148

3D numerical simulations (solid circles) and associated fit (thin1149

solid line); linear stability analysis (solid and dash-dotted line)1150

and R-T instability analysis (dashed line) for ξ0 = 10−5 and cor-1151

responding degrees.1152

Figure 3 Onset time as a function of avis for f = 0.55 and free-slip1153

a) Ra0 = 106 and b) Rab = 106. Results of 3D convection exper-1154

iment (solid circles) and associated fit (thin solid line), linear sta-1155

bility analysis results (solid line), R-T instability analysis results1156

(dashed line for ∆θ=1, the lowest onset times, 0.8, 0.6, 0.4 and1157

0.2, dash-dotted line for temperature average (∆θ̄), see Eq. (B14)1158

and text in App. B for further detail) for ξ0 = 10−5 and corre-1159

sponding degrees. In case of constant bottom Rayleigh number1160

(panel b), solid parts of the lines denote results for t′ < 0.01.1161

Figure 4 Onset time depending on spherical shell geometry f for1162

constant Ra = 106, avis = 0 for a) free-slip and b) no-slip con-1163

ditions, the results of 3D convection experiment (solid circles),1164

the linear stability analysis results (solid and dash-dotted line)1165

and R-T instability analysis (dashed line) for ξ0 = 10−5 and its1166

corresponding degrees.1167

Figure 5 Scaled onset time t′ · Ra−a(θ∗) as a function of viscosity1168

parameter avis. Results of 3D numerical solution (solid circles—1169

Ra = const, solid triangles—Ra0 = 106, solid squares—Rab =1170

106) and the associated regression (solid line), results for R-T1171

instability analysis (thick lines, ∆µ based on temperature aver-1172

aging) and linear stability analysis (thin lines) for Ra0 = 106
1173

(dashed line) and Rab = 106 (dash-dotted line), results for a)1174

free-slip and b) no-slip boundary conditions.1175

Figure 6 The estimate of the onset time based on 3D convection1176

experiments and reference temperatures T0 for a) Mars and b)1177

the Earth and Venus; c–d) the dependency of onset times on T01178

in the Earth and Venus.1179
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Figure A1 Linear stability analysis results for f = 0.55, avis = 0 and1180

free-slip conditions. Minimal onset time (solid line—the solution1181

corresponding to the approximation (A12), dashed line—the so-1182

lution corresponding to (A11)) and corresponding degree l onset1183

times for degrees 8, 12, 16 and 20 (thin solid lines) are also pre-1184

sented.1185

Figure B1 Rayleigh-Taylor instability analysis for f = 0.55, avis = 01186

and free-slip, a) the dependency of the onset time on the degree l1187

for different Rayleigh numbers Ra and ξ0 = 10−5, b) the depen-1188

dency of onset time on the Rayleigh number for different initial1189

amplitude ξ0 and its corresponding degrees.1190
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List of Tables1191

Table 1 List of onset times for the numerical experiments corre-1192

sponding to free-slip boundary conditions; a.i.p—amplitude of1193

the initial perturbations; nb—number of blocks; l—estimated1194

preferred degree at onset time.1195

Table 2 List of onset times for the numerical experiments corre-1196

sponding to no-slip boundary conditions; a.i.p—amplitude of the1197

initial perturbations; nb—number of blocks; l—estimated pre-1198

ferred degree at onset time.1199

Table 3 Summary of the proposed scaling (using least squares fit)1200

for both free-slip and no-slip boundary conditions and all meth-1201

ods; 3D—3D numerical solution, R-T—Rayleigh-Taylor instabil-1202

ity analysis, LS—linear stability analysis.1203

Table 4 Reference parameters for Venus, the Earth and Mars.1204
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Ra0 Rab avis f [1] resolution a.i.p. nb l t′onset [1]

1 · 104 1 · 104 0.00 0.55 64 × 64 × 64 1 · 10−3 1 4 0.06138

1 · 104 1 · 104 0.00 0.55 64 × 64 × 64 1 · 10−3 6 5 0.06370

1 · 105 1 · 105 0.00 0.55 64 × 64 × 64 1 · 10−3 1 4 0.01026

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−3 1 8 0.002265

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−3 6 12 0.002364

1 · 107 1 · 107 0.00 0.55 128 × 64 × 64 1 · 10−3 1 8 − 16 0.0004947

1 · 108 1 · 108 0.00 0.55 128 × 64 × 64 1 · 10−3 1 8 − 24 0.0001314

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−5 1 8 0.002980

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−4 1 8 0.002755

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−3 1 8 0.002265

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−2 1 8 0.001845

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−3 1 8 0.002265

1 · 106 9.3 · 106 2.23 0.55 64 × 64 × 64 1 · 10−3 1 8 − 16 0.001464

1 · 106 4.1 · 107 3.71 0.55 64 × 64 × 64 1 · 10−3 1 8 − 16 0.001176

1 · 106 8.6 · 108 4.46 0.55 64 × 64 × 64 1 · 10−3 1 8 − 16 0.001060

1 · 106 8.6 · 108 4.46 0.55 64 × 64 × 64 1 · 10−3 6 19 0.001032

1 · 106 1.7 · 109 7.42 0.55 128 × 64 × 64 1 · 10−3 1 8 0.0006785

1 · 106 7.9 · 109 8.92 0.55 128 × 64 × 64 1 · 10−3 1 8 0.0005431

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−3 1 8 0.002265

1.1 · 105 1 · 106 2.23 0.55 64 × 64 × 64 1 · 10−3 1 8 0.006237

2.4 · 104 1 · 106 3.71 0.55 64 × 64 × 64 1 · 10−3 1 4 0.01366

1.2 · 104 1 · 106 4.46 0.55 64 × 64 × 64 1 · 10−3 1 4 0.02146

1.2 · 104 1 · 106 4.46 0.55 64 × 64 × 64 1 · 10−3 6 6 0.02170

1.2 · 103 1 · 106 6.69 0.55 64 × 64 × 64 1 · 10−3 1 4 0.09036

6.0 · 102 1 · 106 7.42 0.55 64 × 64 × 64 1 · 10−3 1 4 0.1313

1 · 106 1 · 106 0.00 0.2 64 × 64 × 64 1 · 10−3 1 4 0.002041

1 · 106 1 · 106 0.00 0.4 64 × 64 × 64 1 · 10−3 1 4 0.002150

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−3 1 8 0.002265

1 · 106 1 · 106 0.00 0.6 64 × 64 × 64 1 · 10−3 1 8 0.002320

1 · 106 1 · 106 0.00 0.8 32 × 64 × 64 1 · 10−3 1 8 − 24 0.002706

Table 1:

Tab. 1
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Ra0 Rab avis f [1] resolution a.i.p. nb l t′onset [1]

1 · 104 1 · 104 0.00 0.55 64 × 64 × 64 1 · 10−3 1 4 0.1146

1 · 105 1 · 105 0.00 0.55 64 × 64 × 64 1 · 10−3 1 8 0.01761

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−3 1 8 − 16 0.003761

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−3 6 17 − 19 0.003776

1 · 107 1 · 107 0.00 0.55 128 × 64 × 64 1 · 10−3 1 8 − 32 0.0007885

1 · 108 1 · 108 0.00 0.55 128 × 64 × 64 1 · 10−3 1 48 − 64 0.0001955

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−4 1 8 − 16 0.004427

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−3 1 8 − 16 0.003761

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−2 1 8 − 16 0.003081

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−3 1 8 − 16 0.003761

1 · 106 9.3 · 106 2.23 0.55 64 × 64 × 64 1 · 10−3 1 4 − 24 0.002162

1 · 106 4.1 · 107 3.71 0.55 64 × 64 × 64 1 · 10−3 1 4 − 24 0.001574

1 · 106 8.6 · 108 4.46 0.55 64 × 64 × 64 1 · 10−3 1 8 − 16 0.001365

1 · 106 1.7 · 109 7.42 0.55 128 × 64 × 64 1 · 10−3 1 8 − 16 0.0007977

1 · 106 7.9 · 109 8.92 0.55 128 × 64 × 64 1 · 10−3 1 8 − 16 0.0005919

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−3 1 8 − 16 0.003761

1.1 · 105 1 · 106 2.23 0.55 64 × 64 × 64 1 · 10−3 1 8 0.008910

2.4 · 104 1 · 106 3.71 0.55 64 × 64 × 64 1 · 10−3 1 8 0.01804

1.2 · 104 1 · 106 4.46 0.55 64 × 64 × 64 1 · 10−3 1 8 0.02776

1.2 · 103 1 · 106 6.69 0.55 64 × 64 × 64 1 · 10−3 1 8 0.1089

6.0 · 102 1 · 106 7.42 0.55 64 × 64 × 64 1 · 10−3 1 8 0.1605

1 · 106 1 · 106 0.00 0.2 64 × 64 × 64 1 · 10−3 1 8 0.003608

1 · 106 1 · 106 0.00 0.4 64 × 64 × 64 1 · 10−3 1 8 0.003670

1 · 106 1 · 106 0.00 0.55 64 × 64 × 64 1 · 10−3 1 8 − 16 0.003761

1 · 106 1 · 106 0.00 0.6 64 × 64 × 64 1 · 10−3 1 8 − 16 0.003838

1 · 106 1 · 106 0.00 0.8 32 × 64 × 64 1 · 10−3 1 16 − 40 0.004254

Table 2:

Tab. 2
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Ra dependency, t′ = ARaa

avis = 0, f = 0.55

free-slip no-slip

3D 24.4 · Ra−0.67 55.5 · Ra−0.69

R-T 12.8 · Ra−0.70 16.3 · Ra−0.70

LS, t′ < 0.01 17.6 · Ra−1.02 3.44 · Ra−0.72

avis dependency, t′ = B exp(b · avis)

Ra0 = 106, f = 0.55

free-slip no-slip

3D 2.2 · 10−3 exp(−0.16avis) 3.5 · 10−3 exp(−0.20avis)

R-T(∆θ = 1) 6.6 · 10−4 exp(−0.25avis) 9.0 · 10−4 exp(−0.25avis)

R-T(av) 7.1 · 10−4 exp(−0.15avis) 9.6 · 10−4 exp(−0.15avis)

LS 1.3 · 10−5 exp(−0.02avis) 1.1 · 10−4 exp(−0.23avis)

avis dependency, t′ = B′ exp(b′ · avis)

Rab = 106, f = 0.55

free-slip no-slip

3D 1.9 · 10−3 exp(0.56avis) 3.1 · 10−3 exp(0.52avis)

R-T(∆θ = 1), t′ < 0.01 6.6 · 10−4 exp(0.47avis) 9.3 · 10−4 exp(0.44avis)

R-T(av), t′ < 0.01 7.4 · 10−4 exp(0.54avis) 1.0 · 10−3 exp(0.53avis)

LS, t′ < 0.01 1.7 · 10−5 exp(0.82avis) 1.1 · 10−4 exp(0.57avis)

f dependency, t′ = C · f c · exp(−cf)

avis = 0, Ra = 106

free-slip no-slip

3D 3.23 · 10−3 · f0.27 · exp(−0.27f) 4.61 · 10−3 · f0.15 · exp(−0.15f)

R-T 7.85 · 10−4 · f−0.01 · exp(0.01f) 1.08 · 10−3 · f0.00 · exp(0.00f)

LS 9.10 · 10−6 · f−0.29 · exp(0.29f) 1.95 · 10−4 · f0.26 · exp(−0.26f)

Table 3:

Tab. 3
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Earth/Venus Mars

internal temperature T0 3000 K 2100 K

mantle density 4000 kg · m−3 3500 kg · m−3

thermal diffusivity 10−6 m2 · s−1 10−6 m2 · s−1

thermal expansivity 2 · 10−5 K−1 2 · 10−5 K−1

gravity acceleration g0 9.9 m · s−2 3.4 m · s−2

thickness of the mantle d 2900 km 1700 km

geometrical factor f 0.55 0.50

activation parameters for dry diffusion creep in olivine (Korenaga and Karato, 2008)

activation energy E∗ 261 kJ · mol−1

activation volume V ∗ 6 cm3 · mol−1

activation parameters for diffusion creep in perovskite, based on Yamazaki and Karato (2001)

activation energy E∗ 200 kJ · mol−1

activation volume V ∗ 2.5 cm3 · mol−1

Table 4:

Tab 4.


