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Micromorphic continuum.

Part II: Finite deformation plasticity

coupled with damage

P. Grammenoudis ∗ and Ch. Tsakmakis ∗∗

Darmstadt University of Technology

Institute of Continuum Mechanics

Hochschulstraße 1, D-64289 Darmstadt, Germany
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Westinghouse Electric Germany GmbH

Abt. PEM, Dudenstr. 44, D-68167 Mannheim, Germany

Abstract

It is demonstrated how a micromorphic plasticity theory may be formulated on

the basis of multiplicative decompositions of the macro- and microdeformation gra-

dient tensor, respectively. The theory exhibits non-linear isotropic and non-linear

kinematic hardening. The yield function is expressed in terms of Mandel stress and

double stress tensors, appropriately defined for micromorphic continua. Flow rules

are derived from the postulate of Il’iushin and represent generalized normality con-

ditions. Evolution equations for isotropic and kinematic hardening are introduced

as sufficient conditions for the validity of the second law of thermodynamics in ev-

ery admissible process. Finally, it is sketched how isotropic damage effects may be

incorporated in the theory. This is done for the concept of effective stress combined
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with the hypothesis of strain equivalence.

Key words: micromorphic plasticity; finite deformation; isotropic and kinematic

hardening rules; isotropic continuum damage mechanics; finite element

implementation;

1 Introduction

It has been mentioned in Part I that micropolar and micromorphic materials

are continuum theories which take into account, in some sense, the microstruc-

ture of the real material (continua with microstructures). Higher order gradi-

ents of the kinematical variables are incorporated, which renders such models,

among other things, to be suitable when describing localization effects. How-

ever, in opposite to micropolar continua, there are no broadly known (finite

deformation) micromorphic plasticity theories. Thus the aim of Part II is to

sketch how a thermodynamically consistent micromorphic plasticity theory

may be formulated, by using the general framework developed in Part I.

To give an outline of the present work, we elaborate multiplicative decompo-

sitions of the macro- and microdeformation gradient tensors into elastic and

plastic parts, respectively, in order to introduce a so-called plastic interme-

diate configuration for micromorphic continua. As in classical plasticity, this

implies additive decompositions of the strain and micromorphic curvature ten-

sors into elastic and plastic parts. It is a peculiarity of the proposed theory

∗ Corresponding author.
∗∗Corresponding author.
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tsakmakis@mechanik.tu-darmstadt.de (Ch. Tsakmakis).
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that the plastic part of the micromorphic curvature tensor is not related to

some gradient operator and hence it is not subjected to some compatibility

conditions. The formulation of the constitutive theory is based on three stress

tensors, namely the Cauchy stress tensor, a stress tensor responsible for the

microcontinuum and a double stress tensor. To these stress tensors, defini-

tions of Mandel type stress tensors are worked out and utilized to express

the intrinsic dissipation inequality, as well as to represent the yield function.

Correspondingly, three back-stress tensors for modeling kinematic hardening

effects are assumed. Isotropic hardening can be modeled by using three differ-

ent plastic arc lengths, related respectively to a micromorphic strain, a strain

for the microcontinuum and a micromorphic curvature strain, or by capturing

all strains unifiedly by means of a single plastic arc length. Here, the latter

course is followed, that means, a single plastic arc length approach is chosen.

Similar to classical plasticity, we assume the validity of Il’iushin’s postulate,

appropriately generalized for micromorphic continua, and extract from this

convexity of the yield surface and normality conditions for the flow rules. The

evolution equations governing the response of the hardening variables are es-

tablished as sufficient conditions for the validity of the dissipation inequality in

every admissible process. As mentioned above, micromorphic plasticity theo-

ries may be important when localization phenomena are investigated. In such

cases, the existence of some softening mechanisms inherent in the material

response is significant, as e.g. damage. The simplest case is isotropic damage

described by a scalar variable. We demonstrate how isotropic damage may be

coupled to the micromorphic plasticity model. To this end, use is made of the

effective stress concept combined with the hypothesis of strain equivalence.

Throughout the article, the notation and the assumptions made in Part I hold.
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In order to make the theoretical effort as small as possible, isotropy is assumed

to apply, as explained in the article.

2 Decompositions of deformation

2.1 Multiplicative decomposition of the macro- and the microdeformation

gradient tensors into elastic and plastic parts

As in classical plasticity, it is assumed that the macrodeformation gradient

tensor F may be decomposed into elastic and plastic parts,

F = FeFp , (1)

where detFe > 0 is assumed, and therefore det Fp > 0, in view of detF > 0.

This decomposition of F has been broadly known by the works of Lee and Liu

(1967) and Lee (1969). Decomposition (1) is supposed to be unique except for

a rigid body rotation (see Green and Naghdi, 1971; Casey and Naghdi, 1980,

1981). In addition to (1), we assume the multiplicative decomposition of the

microdeformation gradient tensor f into elastic and plastic parts,

f = fefp , (2)

with det fe > 0, and therefore det fp > 0 too. Decomposition (2) is supposed to

be also unique except for the same rigid body rotation, which may be inserted

into the decomposition (1).

It must be mentioned, that further interesting multiplicative decompositions

into elastic and plastic parts have been introduced previously by Sansour

(1998), and later on adopted by Forest and Sievert (2003). A generalized
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deformation gradient F̃ is assumed by Sansour to reflect the deformation of the

micro- and macrocontinuum. With respect to F̃, two alternative multiplicative

decompositions are proposed, which are not equivalent to our Equations (1),

(2).

In opposite to F(X, t), Fp(X, t) (and therefore Fe(X, t) too) is incompatible

deformation. For fixed time t, Fp(X, t) induces a local configuration for the

macroscopic continuum at X. (We adopt the definition of local deformation

and local configuration used by Noll (1967) and Truesdell and Noll (1965).) Let

x̂ ∈ E be the position vector, in that local configuration, of the material point,

which in the reference configuration posses the position vector X. Obviously,

the position x̂ can be chosen arbitrary (cf. Grammenoudis and Tsakmakis,

2008a). This fact may be visualized by imaging the local deformation Fp(X, t)

at X to map a neighborhood N (X) ∈ E on a neighborhood M̂(x̂, t) ∈ E
around x̂, with x̂ being arbitrary point of E . (Further aspects and details may

be consulted in Grammenoudis and Tsakmakis (2008a,b).) Now, as x̂ may

be chosen arbitrary, we assume in particular x̂ to be given by an arbitrary

deformation χ̂,

x̂ = χ̂(X, t) . (3)

It is emphasized that Fp(X, t) �= ∂χ̂

∂X
generally. As special cases, x̂ ≡ X or

x̂ ≡ x are allowed. In the following, the conceptual configuration introduced

by deformation χ̂(·, t) is left arbitrary. We shall write R̂t for the range in E
occupied by the body under the configuration induced by χ̂, R̂t = χ̂(RR, t).

Configuration χ̂(·, t), together with a collection of local deformations for Fp

is referred to as plastic intermediate configuration for the macroscopic con-

tinuum. As the position vector x̂ may be chosen arbitrary, we shall say that

5
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the macroscopic continuum will deform in the plastic intermediate configura-

tion locally by Fp. While the macroscopic continuum deforms locally from

X to x̂, the microscopic continuum at X is postulated to deform homo-

geneously by fp = fp(X, t), so that the position vector X′, emanated from

point X ∈ RR, will go to the position vector x̂′ = χ̂′(X,X′, t) = fp(X, t)X′,

emanated from point x̂ ∈ R̂t. This way, the range R′R(X) will be mapped to

the range R̂′t(x̂) = χ̂′(X,B′). For fixed t, we refer to χ̂′(X, ·, t) as the plastic

intermediate configuration of the microscopic continuum at X. The plastic

intermediate configuration for the macroscopic continuum together with that

one for the microscopic continuum are called plastic intermediate configura-

tion for the micromorphic continuum. Clearly, Fp and fp, and therefore Fe and

fe too, are two-point tensor fields, satisfying polar decompositions

Fe = ReUe = VeRe , Fp = RpUp = VpRp , (4)

fe = reue = vere , fp = rpup = vprp , (5)

where Ue, Up, Ve, Vp, ue, up, ve, vp are symmetric, positive definite second-

order tensors, and Re, Rp, re, rp are proper orthogonal second-order tensors

(rotations). Aside from the velocity gradient tensors L, l introduced in Part I,

the plastic deformation rates operating in the plastic intermediate configura-

tion

L̂p = ḞpF
−1
p = D̂p + Ŵp , D̂p =

1

2
(L̂p + L̂T

p ) , Ŵp =
1

2
(L̂p − L̂T

p ) ,

(6)

l̂p = ḟpf
−1
p = d̂p + ŵp , d̂p =

1

2
(̂lp + l̂Tp ) , ŵp =

1

2
(̂lp − l̂Tp ) , (7)

will be useful e.g. for defining strain and stress rates with respect to the plastic

intermediate configuration.
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As mentioned above, like classical plasticity (cf. Green and Naghdi, 1971;

Casey and Naghdi, 1980, 1981), the plastic intermediate configuration may be

determined uniquely only within an arbitrary rigid body rotation Qp = Qp(t).

Some transformation rules, which apply to both, rigid body rotations Q =

Q(t) superposed on the actual configuration, and rigid body rotations Qp =

Qp(t) superposed on the plastic intermediate configuration simultaneously, are

given in Appendix A.

2.2 Basis systems on R̂t

Before going any further, it is convenient to introduce some special basis sys-

tems. In conjunction with the basis systems {gi}, {Ei}, we define

ĝi := FpEi , ĝi = FT−1
p Ei , ĝi · ĝj = δi

j , (8)

so that

gi = Feĝi , gi = FT−1
e ĝi . (9)

Additionally, we set

Fp = (Fp)
i
j êi ⊗ Ej , (Fp)

i
j ≡ (Fp)ij , (10)

F−1
p = (F−1

p )i
jEi ⊗ êj , (F−1

p )i
j ≡ (F−1

p )ij . (11)

It follows that

ĝi := (Fp)
j
iêj , ĝi = (F−1

p )i
j ê

j . (12)

Beyond {ĝi} and {êi}, one may introduce a further basis {ρ̂i} at x̂, by

ρ̂i := fpEi , ρ̂i = fT−1
p Ei , ρ̂i · ρ̂j = δi

j . (13)
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Similar to (10), (11), we set

fp = (fp)
i
j êi ⊗ Ej , (fp)

i
j ≡ (fp)ij , (14)

f−1
p = (f−1

p )i
jEi ⊗ êj , (f−1

p )i
j ≡ (f−1

p )ij , (15)

and hence

ρ̂i = (fp)
j
iêj , ρ̂i = (f−1

p )i
jê

j . (16)

The transformation law between {ĝi} and {ρ̂i} reads

ĝi = Aj
iρ̂j , ĝi = (A−1)i

jρ̂
j , (17)

with

Ai
j = (f−1

p )i
r(Fp)

r
j , (A−1)i

j = (F−1
p )i

r(fp)
r
j , (18)

(A−1)i
rA

r
j = Ai

r(A
−1)r

j = δi
j . (19)

2.3 Additive decompositions of the strain tensors

We set in Part I, Sect. 5.1, Fa = Fp, fa = fp, βa = β̂, εa = ε̂ and ca = ĉ,

ϕa = ϕ̂, ξa = ξ̂, ζa = ζ̂, to get, on the one hand,

ĉ = FpC , ξ̂ = FT−1
p Ξ , (20)

ϕ̂ = fpΦ , ζ̂ = fT−1
p Z , (21)

and on the other hand

c = Feĉ , ξ = FT−1
e ξ̂ , (22)

ϕ = feϕ̂ , ζ = fT−1
e ζ̂ . (23)

In addition,

β̂ = fT−1
p β̃f−1

p , ε̂ = fpεF
−1
p . (24)
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These relations suggest additive decompositions of Δ′
s and Δs of the form

Δ′
s =

1

2
(ϕ ·ϕ−Φ ·Φ) =

1

2
(ϕ ·ϕ− ϕ̂ · ϕ̂)︸ ︷︷ ︸

=: (Δ′
s)e

+
1

2
(ϕ̂ · ϕ̂−Φ ·Φ)︸ ︷︷ ︸

=: (Δ′
s)p

= (Δ′
s)e +(Δ′

s)p

(25)

and

Δs = ζ · c− Z ·C = (ζ · c− ζ̂ · ĉ)︸ ︷︷ ︸
=: (Δs)e

+ (ζ̂ · ĉ− Z ·C)︸ ︷︷ ︸
=: (Δs)p

= (Δs)e + (Δs)p . (26)

On requiring from all these scalar valued differences to be form-invariant with

respect to the chosen configuration, and by employing similar mathematical

manipulations as in Part I, it is straightforward to deduce that (25), (26) indi-

cate additive decompositions of the strain tensors. For example, with respect

to the reference configuration, we have

Δ′
s = Φ · β̃Φ , (Δ′

s)e = Φ · β̃eΦ , (Δ′
s)p = Φ · β̃pΦ , (27)

β̃ = β̃e + β̃p , (28)

and

Δs = Z · ε̃C , (Δs)e = Z · ε̃eC , (Δs)p = Z · ε̃pC , (29)

ε̃ = ε̃e + ε̃p . (30)

With respect to the plastic intermediate configuration,

Δ′
s = ϕ̂ · β̂ϕ̂ , (Δ′

s)e = ϕ̂ · β̂eϕ̂ , (Δ′
s)p = ϕ̂ · β̂pϕ̂ , (31)

β̂ = β̂e + β̂p , (32)

β̂ = fT−1
p β̃f−1

p , β̂e = fT−1
p β̃ef

−1
p , β̂p = fT−1

p β̃pf
−1
p , (33)

and

Δs = ζ̂ · ε̂ĉ , (Δs)e = ζ̂ · ε̂eĉ , (Δs)p = ζ̂ · ε̂pĉ , (34)
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ε̂ = ε̂e + ε̂p , (35)

ε̂ = fpε̃F
−1
p , ε̂e = fpε̃eF

−1
p , ε̂p = fpε̃pF

−1
p . (36)

Further details are given in Appendix C, from which it can be recognized that

the tensors (β̃, β̂, β), or (β̃e, β̂e, β̂e), or . . ., or (ε̃, ε̂, ε), or (ε̃e, ε̂e, εe), or . . .,

are respectively members of corresponding equivalence classes. Also, like β̃,

ε̃, the strains β̃e, β̃p, ε̃e, ε̃p are tensors on RR (cf. Part I, Sect. 5.1), and so

forth.

To conclude the discussion about strain tensors, we postulate (Δ′
s)
·
e, (Δ′

s)
·
p,

(Δs)
·
e and (Δs)

·
p to be also form-invariant with respect to the chosen configu-

ration. This allows to define, in a natural way, associated rates for the elastic

and plastic parts of the strain tensors. Clearly, the additive decomposition of

the strain tensors carries over their associated rates. Appendix C summarizes

formulas of this kind and illustrates how the various strain tensors, and their

associated rates, are related to each other.

2.4 Additive decomposition of the micromorphic curvature tensors

2.4.1 Decomposition of Δc

Once more, we set Fa = Fp, fa = fp, as well as Ka = K̂, (ga)k = ĝk, (ϕa)k =

ϕ̂k, so that (cf. Part I, Sect. 5.1.2)

ϕ̂k = fpΦk , ϕ̂k = fT−1
p Φk , (37)

and therefore

ϕk = feϕ̂k , ϕk = fT−1
e ϕ̂k . (38)

10
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This suggests additive decomposition of Δc (see Part I, Eq. (81)) into elas-

tic (Δc)e and plastic (Δc)p parts,

Δc = ϕ1 · (∇Rtϕ2)[g3]−Φ1 · (∇RRΦ2)[E3] = (Δc)e + (Δc)p (39)

with

(Δc)e := ϕ1 · (∇Rtϕ2)[g3]− ϕ̂1 · (∇R̂t
ϕ̂2)[ĝ3] , (40)

(Δc)p := ϕ̂1 · (∇R̂t
ϕ̂2)[ĝ3]−Φ1 · (∇RRΦ2)[E3] , (41)

where, as in Part I, Eqs. (82), (83),

∇Rtϕ2 := gradϕ2 =
∂ϕ2

∂Xk
⊗ gk , (42)

∇RRΦ2 := GRADΦ2 =
∂Φ2

∂Xk
⊗ Ek . (43)

Constitutive aspects of the underlying physic of plasticity may be addressed

appropriately by using a suitable differential operator ∇R̂t
. In the case of mi-

cropolar plasticity, a so-called relative covariant derivative has been proposed

by Grammenoudis and Tsakmakis (2008a) as a possibility. An appropriate def-

inition for relative covariant derivative in micromorphic plasticity, has been

proposed in Grammenoudis and Tsakmakis (2008b), which we shall adopt

also for the present article. The most important issues of the relative covari-

ant derivative are summerized in the next section.

2.4.2 Relative covariant derivative on R̂t

Let b̂ = b̂(x̂, t) be a vector field on R̂t, b̂(x̂, t) ∈ Tx̂R̂t, with b̂ = bmρ̂m. The

relative covariant derivative of b̂ is defined (relative to R̂t) by

∇̂b̂ :=

(
∂bj

∂X i
+ Λj

ilb
l

)
ρ̂j ⊗ ĝi . (44)
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As mentioned in Grammenoudis and Tsakmakis (2008a), Λj
il are symbols of

connection for the space RR but not for the space R̂t, and ∇̂b̂ does not

represent a covariant derivative of b̂ relative to R̂t. Furthermore, Λj
il defines

generally a non-torsion free connection on RR. In addition, the space RR may

be endowed with a non-Euclidean metric

G̃ij = (fp)
k
iδkl(fp)

l
j = ρ̂i · ρ̂j . (45)

This metric, together with connection Λj
il renders the space RR to be a non-

Euclidean and a non-Riemannian one. For the particular choice Λj
il ≡ (Λfp)

j
il,

with

(Λfp)
j
im := (f−1

p )j
n

∂(fp)
n
m

∂X i
, (46)

the spaceRR will be flat. In this case, no constitutive laws for K̃p are necessary,

provided some evolution laws for fp are available.

2.4.3 Elastic and plastic parts of the curvature tensor

We turn to the scalar differences in Eqs. (40), (41), and chose the differential

operator ∇R̂t
to be given by ∇̂ (cf. Eq. (44)), so that

∇R̂t
ϕ̂2 =

(
∂(ϕ̂2)

j

∂X i
+ Λj

im(ϕ̂2)
m

)
ρ̂j ⊗ ĝi , (47)

where

ϕ̂2 = (ϕ̂2)
jρ̂j , Φ2 = (Φ2)

jEj , (Φ2)
j ≡ (ϕ2)

j . (48)

It is readily seen that

ϕ̂1 · (∇R̂t
ϕ̂2)[ĝ3] = Φ1 · f−1

p (∇R̂t
ϕ̂2)Fp[E3]

= Φ1 ·
{(

∂(Φ2)
j

∂X i
+ Λj

im(Φ2)
m

)
Ej ⊗Ei

}
[E3] . (49)

12
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Also, from (43),

∇RRΦ2 =

(
∂(Φ2)

j

∂X i
+ λj

im(Φ2)
m

)
Ej ⊗Ei , (50)

with λj
im ≡ λjim = 0 being the symbols, relative to {Ei}, of the Levi-Civita

connection in RR. Thus, after inserting into (41),

(Δc)p = Φ1 · {(Λj
im − λj

im)(Φ2 · Em)}(Ej ⊗Ei)[E3] (51)

or

(Δc)p = K̃p[Φ
1,Φ2,E3] (52)

with

K̃p = (K̃p)
j
miEj ⊗ Em ⊗ Ei , (53)

(K̃p)
j
mi ≡ (K̃p)jmi = Λj

im − λj
im . (54)

In addition, it can be seen that

(Δc)e = K̃e[Φ
1,Φ2,E3] (55)

with

K̃ = K̃e + K̃p . (56)

On requiring from the differences Δc, (Δc)e, and (Δc)p to be form-invariant

with respect to the chosen configuration, and by employing similar mathe-

matical manipulations as in Part I, it is straightforward to deduce that, e.g.,

relative to the plastic intermediate configuration the relations

Δc = K̂[ϕ̂1, ϕ̂2, ĝ3] , K̂ = L(fp, f
T−1
p ,FT−1

p )[K̃] , (57)

(Δc)e = K̂e[ϕ̂
1, ϕ̂2, ĝ3] , K̂e = L(fp, f

T−1
p ,FT−1

p )[K̃e] , (58)

(Δc)p = K̂p[ϕ̂
1, ϕ̂2, ĝ3] , K̂p = L(fp, f

T−1
p ,FT−1

p )[K̃p] , (59)

K̂ = K̂e + K̂p (60)

13
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apply. Further relations are given in Appendix C. Obviously, tensors K̃, K̂,

K, . . . are members of an equivalence class.

Postulating also (Δc)
·
e, (Δc)

·
p, . . . to be form-invariant with respect to the

chosen configuration, associated rates for the elastic and plastic parts of the

micromorphic curvature tensors can be defined in a natural way. Clearly, the

additive decomposition of the curvature tensors carries over their associated

rates. Appendix C summarizes formulas of this kind and illustrates how the

various micromorphic curvature tensors, and their associated rates, are related

to each other.

Remark

As indicated in conjunction with Eq. (46), there are two possibilities for the

curvature tensor K̃p.

(1) Λj
im, and therefore K̃p too, are not subject to some compatibility condi-

tions, so that the Riemannian curvature tensor is non-vanishing. Then,

separate constitutive laws are needed for plastic strain variables and for

K̃p.

(2) Λj
im in Eq. (54) is assumed to be equal to (Λfp)

j
im in Eq. (46). Since the

right hand side of (46) is related to the gradient of fp, it is not necessary

to postulate constitutive relations governing the response of K̃p, provided

some evolution equations for fp are available.

In the present article we are concerned with the first possibility only. (The

other case will be discussed elsewhere.)
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2.5 Stress tensors and their associated rates

It has been shown it Part I how dual stress tensors and associated rates may

be introduced with the help of the stress powers w′, w, and wc. By setting

fa = fp, Fa = Fp (see Part I, Sect. 5.3), we obtain with respect to the plastic

intermediate configuration R̂t,

w′ = σ̂ ·
�
β̂ , w = Ŝ ·

�
ε̂ , wc = Ŝ ·

�
K̂ , (61)

where

σ̂ := fpσ̃fT
p , Ŝ := fT−1

p S̃FT
p , Ŝ := fT−1

p S̃FT
p . (62)

It is of interest to remark that the stress tensors σ̃, σ̂, σ, or S̃, Ŝ, S, or S̃, Ŝ,

S are members of corresponding equivalence classes. The associated rates of

the stress tensors in (62) read

�
σ̂ = ˙̂σ − l̂pσ̂ − σ̂l̂Tp , (63)

�
Ŝ =

˙̂
S + l̂Tp Ŝ− ŜL̂T

p , (64)

�
Ŝ =

˙̂S + l̂pŜ − Ŝ � l̂Tp − ŜL̂p . (65)

Although no stress and double stress rates are needed for the purpose of

the present paper, for reasons of completeness some results are given in Ap-

pendix C.

3 Thermodynamical framework for micromorphic plasticity

In the following all components are given with respect to the bases {Ei}, {êi}
or {ei}, so that no distinction between lower and upper indices is made.

15
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We assume isothermal deformations with uniform temperature distribution.

Then, the Clausius-Duhem inequality for micromorphic materials, with re-

spect to the actual configuration, takes the form (cf. Eringen, 1999, p.50)

S · (L− l)+σ ·d+S · gradl− �RΨ̇ ≡ S · �ε+σ · �β +S · �K− �RΨ̇ ≥ 0 , (66)

where Ψ is the specific (per unit mass of the macroscopic continuum) free

energy of the micromorphic material. As usually in classical plasticity, we

assume the decomposition

Ψ(t) = Ψe(t) + Ψp(t) . (67)

Hence, inequality (66) is equivalent to

S · �ε + σ · �β + S · �K− �RΨ̇e − �RΨ̇p ≥ 0 , (68)

or, with respect to the plastic intermediate configuration,

Ŝ ·
�
ε̂ + σ̂ ·

�
β̂ + Ŝ ·

�
K̂− �RΨ̇e − �RΨ̇p ≥ 0 . (69)

3.1 Elasticity laws - dissipation inequality

In analogy to the case of pure elasticity (cf. Part I, Sect. 3.4), we suppose Ψe

to have the form

Ψe = Ψ̂e(ε̂e, β̂e, K̂e) . (70)

Evidently, Ψe must be invariant under arbitrary rigid body rotations Qp su-

perposed on the plastic intermediate configuration, which implies (cf. Ap-

pendix A),

Ψe = Ψ̂e(Qpε̂eQ
T
p ,Qpβ̂eQ

T
p ,L(Qp,Qp,Qp)[K̂e]) . (71)

16
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But, this is exactly the condition for Ψ̂e to be an isotropic tensor function.

Consequently, Ψe must be a function of scalar invariants of ε̂e, β̂e, K̂e, as e.g.

(ε̂e)ii, (β̂e)ii, (β̂e)ij(ε̂e + ε̂T
e )ij , (K̂e)ijj(K̂e)imm, . . .. These can be expressed in

terms of ε̃e, ε̃p, β̃e, β̃p, K̃e,

(ε̂e)ii =(ε̃e)jm

(
(ε̃p + 1)−1

)
mj

, (72)

(β̂e)ii =(β̃e)jm

(
(2β̃p + 1)−1

)
mj

, (73)

(β̂e)ij(ε̂e + ε̂T
e )ij =(β̃e)ij

(
(2β̃p + 1)−1

)
im

(
(ε̃p + 1)T−1

)
mk

(ε̃e)jk

+(β̃e)ij(ε̃e)im

(
(ε̃p + 1)−1

)
mk

(
(2β̃p + 1)−1

)
kj

, (74)

(K̂e)ijj(K̂e)ill =(2β̃p + 1)mp

(
(2β̃p + 1)−1

)
nl

(
(ε̃p + 1)T−1

)
ls(

(2β̃p + 1)−1
)

qk

(
(ε̃p + 1)T−1

)
kr

(K̃e)mns(K̃e)pqr ,(75)

...

Therefore, Ψe can be represented also as a function of ε̃, β̃, K̃, ε̃p, β̃p, K̃p,

Ψe = Ψ̃e(ε̃, β̃, K̃, ε̃p, β̃p, K̃p) . (76)

In order to exploit inequality (69) we need Ψ̇e. After some lengthy mathemat-

ical manipulation, we deduce from (70)

Ψ̇e =
∂Ψ̂e

∂ε̂e
·
�
ε̂e +

∂Ψ̂e

∂β̂e

·
�
β̂e +

∂Ψ̂e

∂K̂e

·
�
K̂e −

{
ε̂T

e

∂Ψ̂e

∂ε̂e
+

1

�R
η̂

}
·
�
ε̂p

−
{

2β̂e

∂Ψ̂e

∂β̂e

+
1

�R
Λ̂

}
S

·
�
β̂p −

{
2β̂e

∂Ψ̂e

∂β̂e

+
1

�R
Λ̂

}
A

· ŵp , (77)

where

1

�R
Λ̂ :=

1

�R
η̂ − 1

�R
χ̂ + ε̂T

e

∂Ψ̂e

∂ε̂e

− ∂Ψ̂e

∂ε̂e

ε̂T
e , (78)

{·}S, {·}A are the symmetric and skew-symmetric parts of {·} respectively,

and η̂, χ̂ are given by

1

�R
(η̂)ml :=

∂Ψ̂e

∂(K̂e)rnl

(K̂e)rnm , (79)
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1

�R
(χ̂)ml :=

∂Ψ̂e

∂(K̂e)mnr

(K̂e)lnr − ∂Ψ̂e

∂(K̂e)nlr

(K̂e)nmr . (80)

Eq. (77) may be rewritten as

Ψ̇e =
∂Ψ̂e

∂ε̂e
·
�
ε̂ +

∂Ψ̂e

∂β̂e

·
�
β̂ +

∂Ψ̂e

∂K̂e

·
�
K̂−

{
(1 + ε̂T

e )
∂Ψ̂e

∂ε̂e
+

1

�R
η̂

}
·
�
ε̂p

−
{

(1 + 2β̂e)
∂Ψ̂e

∂β̂e

+
1

�R
Λ̂

}
S

·
�
β̂p −

{
2β̂e

∂Ψ̂e

∂β̂e

+
1

�R
Λ̂

}
A

· ŵp

−∂Ψ̂e

∂K̂e

·
�
K̂p . (81)

Now, we shall show that

{
2β̂e

∂Ψ̂e

∂β̂e

+
1

�R
Λ̂

}
A

≡ 0. To this end, we take the

material time derivative of (76),

Ψ̇e =
∂Ψ̃e

∂ε̃
· ˙̃ε +

∂Ψ̃e

∂β̃
· ˙̃β +

∂Ψ̃e

∂K̃
· ˙̃K +

∂Ψ̃e

∂ε̃p
· ˙̃εp +

∂Ψ̃e

∂β̃p

· ˙̃βp +
∂Ψ̃e

∂K̃p

· ˙̃Kp

= fT−1
p

∂Ψ̃e

∂ε̃
FT

p ·
�
ε̂ + fp

∂Ψ̃e

∂β̃
fT
p ·

�
β̂ + L(fT−1

p , fp,Fp)

[
∂Ψ̃e

∂K̃

]
·
�
K̂

+fT−1
p

∂Ψ̃e

∂ε̃p
FT

p ·
�
ε̂p + fp

∂Ψ̃e

∂β̃p

fT
p ·

�
β̂p + L(fT−1

p , fp,Fp)

[
∂Ψ̃e

∂K̃p

]
·
�
K̂p .

(82)

On comparing (81) with (82),

∂Ψ̂e

∂ε̂e

= fT−1
p

∂Ψ̃e

∂ε̃
FT

p , (83)

∂Ψ̂e

∂β̂e

= fp
∂Ψ̃e

∂β̃
fT
p , (84)

∂Ψ̂e

∂K̂e

=L(fT−1
p , fp,Fp)

[
∂Ψ̃e

∂K̃

]
, (85)

−
{

(1 + ε̂T
e )

∂Ψ̂e

∂ε̂e
+

1

�R
η̂

}
= fT−1

p

∂Ψ̃e

∂ε̃p
FT

p , (86)

−
{

(1 + 2β̂e)
∂Ψ̂e

∂β̂e

+
1

�R
Λ̂

}
S

= fp
∂Ψ̃e

∂β̃p

fT
p , (87)
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−∂Ψ̂e

∂K̂e

=L(fT−1
p , fp,Fp)

[
∂Ψ̃e

∂K̃p

]
, (88)

{
2β̂e

∂Ψ̂e

∂β̂e

+
1

�R
Λ̂

}
A

=0 , (89)

which proves the assertion.

Substituting (77) into (69),

(
Ŝ− �R

∂Ψ̂e

∂ε̂e

)
·
�
ε̂ +

{
�R(1 + ε̂T

e )
∂Ψ̂e

∂ε̂e
+ η̂

}
·
�
ε̂p

+

(
σ̂ − �R

∂Ψ̂e

∂β̂e

)
·
�
β̂ +

{
�R(1 + 2β̂e)

∂Ψ̂e

∂β̂e

+ Λ̂

}
S

·
�
β̂p

+

(
Ŝ − �R

∂Ψ̂e

∂K̂e

)
·
�
K̂ + �R

∂Ψ̂e

∂K̂e

·
�
K̂p − �RΨ̇p ≥ 0 , (90)

which must be satisfied for all
�
ε̂,
�
β̂ and

�
K̂.

We assume that Ŝ, σ̂ and Ŝ are functions of ε̂e, β̂e, K̂e,

Ŝ = Ŝ(ε̂e, β̂e, K̂e) , σ̂ = σ̂(ε̂e, β̂e, K̂e) , Ŝ = Ŝ(ε̂e, β̂e, K̂e) , (91)

and that Ψp depends on internal state variables describing the hardening re-

sponse of the micromorphic material. For the case of rate-dependent plasticity,

referred to as viscoplasticity, we assume the evolution of the internal state vari-

ables to depend also on state variables (but not on their rates). That is, we

suppose
�
ε̂p,

�
β̂p,

�
K̂p and Ψ̇p to be functions of state variables only. Thus, using

similar arguments as in Coleman and Gurtin (1967), we may conclude that

the relations

Ŝ = �R
∂Ψ̂e

∂ε̂e
= �RfT−1

p

∂Ψ̃e

∂ε̃
FT

p , (92)

σ̂ = �R
∂Ψ̂e

∂β̂e

= �Rfp
∂Ψ̃e

∂β̃
fT
p , (93)
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Ŝ = �R
∂Ψ̂e

∂K̂e

= �RL(fT−1
p , fp,Fp)

[
∂Ψ̃e

∂K̃

]
, (94)

D :=

{
�R(1 + ε̂T

e )
∂Ψ̂e

∂ε̂e

+ η̂

}
·
�
ε̂p +

{
�R(1 + 2β̂e)

∂Ψ̂e

∂β̂e

+ Λ̂

}
S

·
�
β̂p

+�R
∂Ψ̂e

∂K̂e

·
�
K̂p − �RΨ̇p ≥ 0 (95)

are necessary and sufficient conditions in order for inequality (90) to be valid

in every admissible process. We call inequality (95) the internal dissipation

inequality.

For rate-independent plasticity, often called plasticity, we define the evolution

of internal state variables to depend on the state variables and the rates of

the strain and micromorphic curvature tensors. Consequently, relations (92)-

(95) are necessary and sufficient for (90) to be valid in every purely elastic

admissible process, for which, by definition,
�
ε̂p,

�
β̂p,

�
K̂p vanish. However, we

assume (92)-(95) to apply also along loading paths where inelastic flow is

involved, so that for (rate-independent) plasticity these relations are generally

only sufficient conditions for (90).

It is convenient to introduce the stress tensors

P̂ := (1 + ε̂T
e )Ŝ + η̂ , (96)

Π̂ :=
{
(1 + 2β̂e)σ̂ + Λ̂

}
S

, (97)

where Λ̂ reads, in terms of Ŝ,

Λ̂ = η̂ − χ̂ + ε̂T
e Ŝ− Ŝε̂T

e , (98)

and χ̂, η̂ are given by (79), (80). Then, inequality (95) becomes

D = P̂ ·
�
ε̂p + Π̂ ·

�
β̂p + Ŝ ·

�
K̂p − �RΨ̇p ≥ 0 . (99)
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It is worthwhile mentioning that the plastic stress power is represented by

means of the stress tensors P̂, Π̂, and Ŝ, i.e. these stress tensors play a sim-

ilar role as the so-called Mandel stress tensor in classical plasticity (see e.g.

Lubliner, 1986; Tsakmakis, 1996). Therefore, it is meaningful to refer to these

stress tensors also as Mandel stress tensors of the micromorphic material. Note

in passing that Mandel stress tensors for plastically deformable micropolar

materials have been introduced in Grammenoudis and Tsakmakis (2001).

3.2 Postulate of Il’iushin – flow rule for plasticity

The postulate of Il’iushin has been investigated in the framework of classi-

cal rate-independent plasticity, among others, by Hill (1968); Hill and Rice

(1973); Dafalias (1977); Casey and Tseng (1984); Lubliner (1986); Lin and

Naghdi (1989); Lucchesi and Silhavy (1991); Fosdick and Volkmann (1993);

Srinivasa (1997) as well as Tsakmakis (1996, 1997, 2001). An appropriate gen-

eralization of the postulate for micropolar plasticity has been worked out in

Grammenoudis and Tsakmakis (2001). Here, we shall adopt the validity of

this postulate, in an appropriate fashion for micromorphic (rate independent)

plasticity. Flow rules for ε̂p, β̂p, and K̂p will then be derived as sufficient

conditions for the postulate.

Let

f(t) = f̂(P̂, Π̂, Ŝ, ĥ) (100)

be a yield function with respect to the space of the stress tensors P̂, Π̂, Ŝ, with

ĥ being a set of internal state variables ĥi, 1 ≤ i ≤M . The latter are scalars or

components of tensors capturing hardening properties. It is assumed that (100)

may be recast in a ”strain-curvature space” formulation with respect to the
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reference configuration in the form

f(t) = g̃(ε̃, β̃, K̃, ε̃p, β̃p, K̃p, q̃) , (101)

where q̃ denotes a set of internal state variables q̃j , 1 ≤ j ≤ N , associated in

some way with the hardening variables ĥi.

The equation

f(t) = f̂(P̂, Π̂, Ŝ, ĥ) = g̃(ε̃, β̃, K̃, ε̃p, β̃p, K̃p, q̃) = 0 (102)

is called yield condition. For fixed values of ĥ, it describes a so-called yield

surface in the space of the stress tensors P̂, Π̂, and Ŝ. For fixed values of ε̃p,

β̃p, K̃p, q̃ it describes a yield surface in the space of the strain tensors ε̃, β̃

and micromorphic curvature tensors K̃. For simplicity, the yield surfaces are

assumed to be smooth.

Loading processes involving plastic flow may be described by employing, in-

stead of time t, a scalar parameter s denoting a plastic arc length. It is pos-

tulated that for s = const. all internal state variables stay constant as well.

Furthermore, it is convenient to introduce a so-called loading factor L(t) (cf.

Tsakmakis, 1991),

L := [ḟ ]s=const. . (103)

Then, the model response is characterized as follows (cf. Naghdi and Trapp,

1975; Naghdi and Casey, 1981)

f < 0⇔ elastic range , (104)
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f = 0 & L

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

< 0

= 0

> 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

elastic unloading ,

neutral loading ,

plastic loading .

(105)

Plastic flow is defined to occur only when conditions for plastic loading apply.

We remark that a cycle in the space of the tensors ε̃, β̃, and K̃ is equiva-

lent to a cycle in the space of any further strain and micromorphic curva-

ture measure. Generalizing a proposal of Lucchesi and Silhavy (1991) (cf. also

Grammenoudis and Tsakmakis, 2001, who generalize the postulate to cap-

ture micropolar material response), we denote strain-curvature cycles as small

(but not necessarily infinitesimally small), if the following condition is satis-

fied. During the cyclic process, the initial strain-curvature state is always on

or inside the yield surfaces g̃ = 0 corresponding to the process. In other words,

the initial strain-curvature state always lies in the intersection of all the elastic

ranges surrounded by the yield surfaces g̃ = 0 during the process.

We write Cs[t0, te] for a small cycle, which begins at time t0, and ends at

time te. A plastically deformable micromorphic material is defined to satisfy

the postulate of Il’iushin for small cycles, if for a fixed material particle

I(t0, te) :=
1

�R

∫ te

t0
S · �ε dt +

1

�R

∫ te

t0
σ · �β dt +

1

�R

∫ te

t0
S · �K dt

=
1

�R

∫ te

t0
S̃ · ˙̃εdt +

1

�R

∫ te

t0
σ̃ · ˙̃

β dt +
1

�R

∫ te

t0
S̃ · ˙̃Kdt

≥ 0 for every Cs[t0, te] . (106)

In Appendix B it is proven that (106) is equivalent to

P̂ ·
�
ε̂p + Π̂ ·

�
β̂p + Ŝ ·

�
K̂p ≥ P̂(A) ·

�
ε̂p + Π̂

(A) ·
�
β̂p + Ŝ(A) ·

�
K̂p , (107)
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where (P̂, Π̂, Ŝ) is a stress state on the yield surface, which induces the plastic

strain-curvature rates (
�
ε̂p,

�
β̂p,

�
K̂p). The stress state (P̂(A), Π̂

(A)
, Ŝ(A)

) is a so-

called admissible stress state, i.e. a stress state which is accessible and is on

or inside the yield surface, f̂(P̂(A), Π̂
(A)

, Ŝ(A)
, ĥ(A)) ≤ 0.

If one introduces the notation

�
Ûp := (

�
ε̂p,

�
β̂p,

�
K̂p) , ŝ := (P̂, Π̂, Ŝ) , (108)

then (106) is equivalent to

ŝ ·
�
Ûp ≥ ŝA ·

�
Ûp . (109)

As the plastic power of the micromorphic material may be expressed in terms

of ŝ,
�
Û ,

wpl := P̂ ·
�
ε̂p + Π̂ ·

�
β̂p + Ŝ ·

�
K̂p ≡ ŝ ·

�
Ûp , (110)

inequality (109) represents a so-called principle of maximum plastic stress

power, which is a natural extension of the corresponding principle of maximum

plastic stress power in classical plasticity. The physical interpretation of (109)

may be seen by using the definition

f̄(ŝ, ĥ) := f̂(P̂, Π̂, Ŝ, ĥ) . (111)

Then, with respect to a pure mechanical formulation of the theory, inequal-

ity (109) states that, for a given plastic rate
�
Û p, among all admissible stress

states ŝA, the actual stress state ŝ maximizes the plastic power wpl.

For isothermal deformations with uniform distribution, we deal with here, the

internal dissipation is given by (cf. (99))

D(ŝ,
�
Ûp, Ψ̇p) = ŝ ·

�
Ûp − �RΨ̇p . (112)
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Keeping in mind this equation, (109) states that for given internal state vari-

ables and their rates, i.e. for given
�
Ûp and Ψ̇p, among all admissible stresses

ŝA the actual one ŝ maximizes D.

As in classical plasticity (see e.g. Lubliner, 1990, Sect. 3.2.2), the convexity of

the yield surface f̄ = 0, and the normality rule for
�
Ûp, are sufficient conditions

for inequality (109) to hold. This means that (109) is always satisfied, if
�
Û p is

directed along the outward normal on the yield surface f̄ = 0, which has been

assumed to be smooth,

�
Ûp = ṡ

∂f̄

∂ŝ∥∥∥∥∥∂f̄

∂ŝ

∥∥∥∥∥
, (113)

or, equivalently

�
ε̂p = ṡ

∂f̂

∂P̂∥∥∥∥∥∂f̄

∂ŝ

∥∥∥∥∥
,

�
β̂p = ṡ

∂f̂

∂Π̂∥∥∥∥∥∂f̄

∂ŝ

∥∥∥∥∥
,

�
K̂p = ṡ

∂f̂

∂Ŝ∥∥∥∥∥∂f̄

∂ŝ

∥∥∥∥∥
, (114)

with ∥∥∥∥∥∂f̄

∂ŝ

∥∥∥∥∥ :=

√√√√ ∂f̂

∂P̂
· ∂f̂

∂P̂
+

∂f̂

∂Π̂
· ∂f̂

∂Π̂
+

∂f̂

∂Ŝ
· ∂f̂

∂Ŝ
. (115)

ṡ is a positive scalar for plastic loading, which has to be determined from the

so-called consistency condition ḟ = 0. We see from (113)-(115) that

ṡ =

√
�
Û p ·

�
Û p :=

√
�
ε̂p ·

�
ε̂p +

�
β̂p ·

�
β̂p +

�
K̂p ·

�
K̂p . (116)

Clearly, convexity of f̄(ŝ, ĥ) = 0 with respect to ŝ is equivalent to convexity

of f̂(P̂, Π̂, Ŝ, ĥ) = 0 with respect to P̂, Π̂, Ŝ.

Plastic incompressibility is defined by the constraints

detFp = det fp = 1 ⇔ trL̂p = tr̂lp = tr
�
ε̂p = tr

�
β̂p = 0 . (117)
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If this is assumed, then the yield function must have such a form that
∂f̂

∂P̂
and

∂f̂

∂Π̂
are deviatoric.

Note in passing, that in contrast to the very interesting approach of Ehlers (see

e.g. Ehlers and Volk, 1997b,a, 1998), K̂p does not satisfy any compatibility

conditions. This is the reason why evolution equations for K̂p are necessary.

Also several yield functions, corresponding to multi-mechanism plasticity have

been suggested by Forest and Sievert (2003). This could be an alternative

approach, which may be more proper when discussing practical problems.

3.3 Flow rule for viscoplasticity

Consider micromorphic viscoplasticity models which arise from those of mi-

cromorphic plasticity by adopting all the constitutive equations except for

the evolution equation for s. This is now defined in a quite similar way as in

classical viscoplasticity in terms of a so-called over-stress. Thus, whereas for

rate-independent micromorphic plasticity the yield function is subject to the

constraint f = f̂(P̂, Π̂, Ŝ, ĥ) ≤ 0, in the case of micromorphic viscoplasticity

no such restrictions on f are imposed. We call a positive value of f an over-

stress, so that ṡ is supposed to be given as a function of 〈f〉. As an example,

we propose the evolution equation (cf. Chaboche, 1989)

ṡ =
〈f〉m

η
≥ 0 , (118)

with m and η being positive material parameters.
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3.4 Hardening rules

We suppose the micromorphic material to exhibit isotropic and kinematic

hardening. Let r be a scalar valued internal state variable responsible for

isotropic hardening. With respect to the plastic intermediate configuration, we

introduce strain and micromorphic curvature tensors ε̂k, β̂k, K̂k, responsible

for kinematic hardening, so that the additive decompositions

ε̂p = ε̂k + ε̂d , β̂p = β̂k + β̂d , K̂p = K̂k + K̂d , (119)

apply. The index d indicates that the corresponding variables are related with

the work dissipated as heat. We think of the additive decompositions (119) to

be induced by multiplicative decompositions of Fp, fp,

Fp = FkFd , fp = fkfd , (120)

with detFk > 0, det fk > 0. Fk, fk introduce a new intermediate configuration

R̆t, characterized by the property that the stress and back-stress tensors are

vanishing there. According to our work until now, it is a straightforward matter

to establish the kinematical relations given in Appendix D, which are similar

to those in Appendix C.

Following classical proposals (see e.g. Diegele et al., 2000), we assume the

additive decomposition for Ψp

Ψp(t) = Ψis(t) + Ψk(t) (121)

with

Ψis = Ψ̄is(r) , Ψk = Ψ̂k(ε̂k, β̂k, K̂k) . (122)
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It is convenient to introduce the stresses

R := �R
∂Ψ̄is

∂r
, Ŝk := �R

∂Ψ̂k

∂ε̂k

, σ̂k := �R
∂Ψ̂k

∂β̂k

, Ŝk := �R
∂Ψ̂k

∂K̂k

.

(123)

R denotes the scalar valued stress modeling isotropic hardening, so that the

yield stress k is given by

k := R + k̄0 , k̄0 = const. ≥ 0 . (124)

Kinematic hardening is modeled by the back-stress tensor ŝk,

ŝk := (P̂k, Π̂k, Ŝk) , (125)

where the tensors P̂k, Π̂k are defined in the following.

Assume that Ψk in (122) may be represented also in the form (cf. Eqs. (70), (76))

Ψk = Ψ̃k(ε̃p, β̃p, K̃p, ε̃d, β̃d, K̃d) . (126)

Performing mathematical manipulations similar to those in Sect. 3.1, we arrive

at the results

Ψ̇k =
∂Ψ̂k

∂ε̂k
·
�
ε̂k +

∂Ψ̂k

∂β̂k

·
�
β̂k +

∂Ψ̂k

∂K̂k

·
�
K̂k −

{
ε̂T

k

∂Ψ̂k

∂ε̂k
+

1

�R
η̂k

}
·
�
ε̂p

−
{

2β̂k

∂Ψ̂k

∂β̂k

+ Λ̂k

}
S

·
�
β̂p −

{
2β̂k

∂Ψ̂k

∂β̂k

+
1

�R
Λ̂k

}
A

· ŵp

=
∂Ψ̃k

∂ε̃d
· ˙̃εd +

∂Ψ̃k

∂β̃d

· ˙̃
βd +

∂Ψ̃k

∂K̃d

· ˙̃Kd

+
∂Ψ̃k

∂ε̃p
· ˙̃εp +

∂Ψ̃k

∂β̃p

· ˙̃βp +
∂Ψ̃k

∂K̃p

· ˙̃Kp , (127)

from which we deduce

− 1

�R
Ŝk =−∂Ψ̂k

∂ε̂k

= fT−1
p

∂Ψ̃k

∂ε̃d

FT
p , (128)
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− 1

�R
σ̂k =−∂Ψ̂k

∂β̂k

= fp
∂Ψ̃k

∂β̃d

fT
p , (129)

− 1

�R
Ŝk =−∂Ψ̂k

∂K̂k

= L(fT−1
p , fp,Fp)

[
∂Ψ̃k

∂K̃d

]
, (130)

{
(1− ε̂T

k )
∂Ψ̂k

∂ε̂k
− 1

�R
η̂k

}
= fT−1

p

∂Ψ̃k

∂ε̃p
FT

p , (131)

{
(1− 2β̂k)

∂Ψ̂k

∂β̂k

− Λ̂k

}
S

= fp
∂Ψ̃k

∂β̃p

fT
p , (132)

∂Ψ̂k

∂K̂k

=L(fT−1
p , fp,Fp)

[
∂Ψ̃k

∂K̃p

]
, (133)

{
2β̂k

∂Ψ̂k

∂β̂k

+
1

�R
Λ̂k

}
A

= 0 , (134)

with

1

�R
Λ̂k :=

1

�R
η̂k −

1

�R
χ̂k +

1

�R
{ε̂T

k Ŝk − Ŝkε̂
T
k } , (135)

1

�R
(η̂k)ml :=

∂Ψ̂k

∂(K̂k)rnl

(K̂k)rnm , (136)

1

�R
(χ̂k)ml :=

∂Ψ̂k

∂(K̂k)mnr

(K̂k)lnr − ∂Ψ̂k

∂(K̂k)nlr

(K̂k)nmr . (137)

These relations suggest to define the back-stress tensors P̂k, Π̂k by

P̂k := (1− ε̂T
k )Ŝk − η̂k , Π̂k :=

{
(1− 2β̂k)σ̂k − Λ̂k

}
S

. (138)

This way, �RΨ̇p becomes

�RΨ̇p = −Ŝk ·
�
ε̂d− σ̂k ·

�
β̂d− Ŝk ·

�
K̂d + P̂k ·

�
ε̂p +Π̂k ·

�
β̂p + Ŝk ·

�
K̂p +Rṙ . (139)

After inserting in the dissipation inequality (99),

D = (P̂−P̂k)·
�
ε̂p+(Π̂−Π̂k)·

�
β̂p+(Ŝ−Ŝk)·

�
K̂p−Rṙ+Ŝk·

�
ε̂d+σ̂k·

�
β̂d+Ŝk·

�
K̂d ≥ 0 ,

(140)

or

D = (ŝ− ŝk) ·
�
Ûp − Rṙ + ŝd ·

�
Ûd ≥ 0 , (141)
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where

ŝd := (Ŝk, σ̂k, Ŝk) ,
�
Ûd := (

�
ε̂d,

�
β̂d,

�
K̂d) . (142)

We separate effects due to isotropic hardening from those due to kinematic

hardening by requiring the two inequalities

Dis := (ŝ− ŝk) ·
�
Ûp − Rṙ ≥ 0 , (143)

Dk := ŝd ·
�
Ûd ≥ 0 , (144)

which are sufficient conditions for (141).

3.4.1 Isotropic hardening

Let the yield function in (111) obey the representation

f(t) = ¯̄f(ŝ− ŝk)− k ≡ ¯̄f(ŝ− ŝk)−R− k̄0 , (145)

with ¯̄f being a homogeneous function of degree one, so that, according to

Euler’s theorem,

∂ ¯̄f

∂(ŝ − ŝk)
· (ŝ− ŝk) = ¯̄f . (146)

We recall from the normality rule (113) that (143) is equivalent to

Dis = (ŝ− ŝk) · ṡ
∂ ¯̄f

∂(ŝ− ŝk)∥∥∥∥∥∥
∂ ¯̄f

∂(ŝ− ŝk)

∥∥∥∥∥∥
−Rṙ ≥ 0 , (147)

or, by virtue of (146),

Dis = ṡ
¯̄f

ζ
− Rṙ ≥ 0 , ζ :=

∥∥∥∥∥∥
∂ ¯̄f

∂(ŝ − ŝk)

∥∥∥∥∥∥ . (148)

When inelastic flow is involved, f = 0 ⇔ ¯̄f = k for plasticity, and f ≥ 0 ⇔
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¯̄f ≥ k for viscoplasticity. Hence, we conclude that

ṡ
k

ζ
− Rṙ ≥ 0 (149)

is a sufficient condition for (148). Keeping in mind (124), it follows that (149)

is equivalent to

R

(
ṡ

ζ
− ṙ

)
+ k̄0

ṡ

ζ
≥ 0 . (150)

Since k̄0
ṡ

ζ
≥ 0, it suffices to require

R

(
ṡ

ζ
− ṙ

)
≥ 0 , (151)

in order to satisfy (143) always. A sufficient condition for the validity of the

latter reads

ṡ

ζ
− ṙ =

β

γ

ṡ

ζ
(R−R0) ⇔ ṙ =

(
1− β

γ
(R− R0)

)
ṡ

ζ
, (152)

R0 := R|r=0 , (153)

where β ≥ 0, γ ≥ 0 are material parameters subject to the condition
β

γ
≥ 0.

As a particular example consider the case

Ψis = Ψ̄is(r) =
γ

2�R
(r2 + 2r0r) ⇒ R = �R

∂Ψ̄is

∂r
= γ(r + r0) . (154)

Thus,

k = R + k̄0 ⇒ k0 := k|r=0 = R0 + k̄0 , R0 = γr0 , (155)

and (152) is equivalent to

ṙ = (1− βr)
ṡ

ζ
, (156)

or

Ṙ = {γ − β(R− R0)} ṡ

ζ
(157)
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or

k̇ = {γ − β(k − k0)} ṡ

ζ
. (158)

In essence, these results for isotropic hardening are similar to those in classical

plasticity established by Chaboche (see e.g. Chaboche, 1993).

3.4.2 Kinematic hardening

In order to satisfy (144),

Dk = ŝd ·
�
Ûd ≡ Ŝk ·

�
ε̂d + σ̂k ·

�
β̂d + Ŝk ·

�
K̂d ≥ 0 , (159)

it suffices to assume

�
ε̂d = ṡM̂MMk[Ŝk] ,

�
β̂d = ṡN̂NNk[σ̂k] ,

�
K̂d = ṡP̂k[Ŝk] , (160)

where M̂MMk, N̂NNk are respectively semi-definite isotropic fourth-order tensors,

and P̂k is a semi-definite isotropic sixth-order tensor. Clearly, the evolution

equations (160) may be rewritten in the form

�
ε̂k =

�
ε̂p − ṡM̂MMk[Ŝk] , (161)

�
β̂k =

�
β̂p − ṡN̂NNk[σ̂k] , (162)

�
K̂k =

�
K̂p − ṡP̂k[Ŝk] . (163)

These evolution equations represent generalized Armstrong-Frederick rules (cf.

Armstrong and Frederick, 1966) for the micromorphic material as adopted

here.
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3.5 Coupling with damage

Micromorphic plasticity models have considerable influence whenever local-

ization phenomena are studied. Such phenomena can result as a consequence

of some softening mechanisms inherent in the model response. Damage mod-

els induce softening and are employed to describe the progressive material

degradation due to the loading process. A simple damage model arises if one

assumes the concept of effective stresses combined with the principle of strain

equivalence. This approach has been initiated and intensively investigated by

Lemaitre and Chaboche (1990) (see e.g. Chaboche, 1999; Lemaitre, 1985) (A

comprehensive study is also given in Reckwerth and Tsakmakis (2003).) We

shall now apply this approach in our micropolar plasticity to capture damage

effects.

We start from the second law of thermodynamics (69) and assume again the

additive decomposition (67). But now, Ψe and Ψp depend also on the scalar

damage variable D:

Ψ(t) = Ψ̂(ε̂e, β̂e, K̂e, ε̂k, β̂k, K̂k, r, D) = Ψe(t) + Ψp(t) , Ψp = Ψis + Ψk ,

(164)

Ψe = Ψ̂e(ε̂e, β̂e, K̂e, D) , Ψis = Ψ̄is(r, D) , Ψk = Ψ̂k(ε̂k, β̂k, K̂k, D) .

(165)

This is the simplest possibility to describe isotropic damage. It is assumed

that D ∈ [0, 1]. The values D = 0 and D = 1 correspond to the undamaged

state and the complete local rupture, respectively, while D ∈ (0, 1) reflects a

partially damaged state.
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Quite similar to the approach until now, we establish the relations

Ŝ = �R
∂Ψ̂e

∂ε̂e

, σ̂ = �R
∂Ψ̂e

∂β̂e

, Ŝ = �R
∂Ψ̂e

∂K̂e

, (166)

R := �R
∂Ψ̄is

∂r
, Ŝk := �R

∂Ψ̂k

∂ε̂k
, σ̂k := �R

∂Ψ̂k

∂β̂k

, Ŝk := �R
∂Ψ̂k

∂K̂k

,

(167)

D = (P̂− P̂k) ·
�
ε̂p + (Π̂− Π̂k) ·

�
β̂p + (Ŝ − Ŝk) ·

�
K̂p − Rṙ

+Ŝk ·
�
ε̂d + σ̂k ·

�
β̂d + Ŝk ·

�
K̂d − �R

∂Ψ̂

∂D
Ḋ ≥ 0 , (168)

where the stresses P̂, Π̂, Ŝ, Ŝk, σ̂k, Ŝk, P̂k, Π̂k, R are defined as above, but

with Ψ given by (164), (165).

According to the version of the principle of strain equivalence as adopted

here, the constitutive equations governing the response of the real, damaged

material may be gained as follows. At every material point, we assign to the

real material a fictitious, undamaged material which obeys the constitutive

laws established in Sect. 3.3, 3.4, but with the variables of stress replaced by

so-called effective stresses. The strains for the real and the fictitious material

are assumed to be equal (strain equivalence).

To elaborate, let X be any one of the stress variables Ŝ, σ̂, Ŝ, R, Ŝk, σ̂k, Ŝk,

P̂, Π̂, P̂k, Π̂k. The corresponding effective stress X(eff) is defined by

X(eff) :=
X

1−D
. (169)

Then, from (92)-(94) we obtain

Ŝ(eff) = �R
∂Ψ̂(f)

e

∂ε̂e
, σ̂(eff) = �R

∂Ψ̂(f)
e

∂β̂e

, Ŝ(eff)
= �R

∂Ψ̂(f)
e

∂K̂e

, (170)

where

Ψ(f)
e = Ψ̂(f)

e (ε̂e, β̂e, K̂e) (171)
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is the specific free energy for the fictitious materials. Here and in the sequel,

the superfix f denotes the fictitious material. Eqs. (166), (169), and (170)

imply, after integration,

Ψ̂e(ε̂e, β̂e, K̂e, D) = (1−D)Ψ̂(f)
e (ε̂e, β̂e, K̂e) . (172)

Similarly, we have

Ψ̄is(r, D) = (1−D)Ψ̄
(f)
is (r) , Ψ̂k(ε̂k, β̂k, K̂k, D) = (1−D)Ψ̂

(f)
k (ε̂k, β̂k, K̂k) .

(173)

Since only isotropic and kinematic hardening are assumed to be present, the

yield function reads

f = F̄ (ŝ− ŝk, R, D) = ¯̄f (f)(ŝ(eff) − ŝ
(eff)
k )− R(eff) − k̄0 , (174)

in view of (145), and the flow rule (114) becomes

�
ε̂p = ṡ

∂F̄

∂P̂
ζ

,
�
β̂p = ṡ

∂F̄

∂Π̂
ζ

,
�
K̂p = ṡ

∂F̄

∂Ŝ
ζ

, (175)

ζ :=

∥∥∥∥∥∂F̄

∂ŝ

∥∥∥∥∥ =
1

1−D

∥∥∥∥∥∥
∂ ¯̄f (f)

(
ŝ(eff) − ŝ

(eff)
k

)
∂ŝ(eff)

∥∥∥∥∥∥ , (176)

ṡ =

√
�
ε̂p ·

�
ε̂p +

�
β̂p ·

�
β̂p +

�
K̂p ·

�
K̂p . (177)

The isotropic hardening rule in Sect. 3.4.1 suggests

Ψis =
γ(1−D)

2�R
(r2 + 2r0r) ,

R

1−D
= γ(r + r0) , (178)

ṙ = (1− βr)
ṡ

ζ
=

(
1− β

γ

(
R

1−D
− γr0

))
ṡ

ζ
, (179)

with ζ , R0 being defined as in (176) and (153), respectively. From the kinematic

hardening law in (161)- (163), we get

�
ε̂k =

�
ε̂p − ṡM̂MMk

[
Ŝ

(eff)
k

]
=
�
ε̂p − ṡ

(1−D)
M̂MMk[Ŝk] , (180)
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�
β̂k =

�
β̂p − ṡN̂NNk

[
σ̂

(eff)
k

]
=
�
β̂p −

ṡ

(1−D)
N̂NNk[σ̂k] , (181)

�
K̂k =

�
K̂p − ṡP̂k

[
Ŝ(eff)

k

]
=
�
K̂p − ṡ

(1−D)
P̂k[Ŝk] . (182)

It remains to verify whether the dissipation inequality is satisfied. To this end,

we insert into (168) to obtain

D= (ŝ− ŝk) · ṡ
∂ ¯̄f (f)(ŝ(eff) − ŝ

(eff)
k )

∂(ŝ− ŝk)

ζ
−Rṙ

+
ṡ

1−D

{
Ŝk · M̂MMk[Ŝk] + σ̂k · N̂NNk[σ̂k] + Ŝk · P̂k[Ŝk]

}
− �R

∂Ψ̂

∂D
Ḋ ≥ 0 .

(183)

Since the term in curls is always nonnegative, inequality (183) will be satisfied

whenever

(ŝ− ŝk) · ṡ

ζ

∂ ¯̄f (f)

∂(ŝ− ŝk)
− Rṙ − �R

∂Ψ̂

∂D
Ḋ

=
(
ŝ(eff) − ŝ

(eff)
k

)
· ṡ

ζ

∂ ¯̄f (f)

∂
(
ŝ(eff) − ŝ

(eff)
k

) − Rṙ − �R
∂Ψ̂

∂D
Ḋ

≥R(eff) ṡ

ζ
− R

ṡ

ζ︸ ︷︷ ︸
≥ 0

+ βRr
ṡ

ζ︸ ︷︷ ︸
≥ 0

−�R
∂Ψ̂

∂D
Ḋ ≥ 0 . (184)

Thus, the dissipation inequality will always be satisfied, provided

−�R
∂Ψ̂

∂D
Ḋ ≥ 0 . (185)

A sufficient condition for this inequality reads (cf. Lemaitre, 1987a,b; Lämmer

and Tsakmakis, 2000)

Ḋ = −α1ṡ

(
�R

∂Ψ̂

∂D

)
, (186)

where α1 ≥ 0 denotes a material parameter.
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3.6 Simple constitutive relations

Various constitutive functions, like free energy or yield function, indicate a

simple form if linear, isotropic behavior is assumed to be present. This is

expressed in terms of isotropic tensors AAA, BBB, DDD, C,

Aijpq = Apqij =A1δijδpq + A2δipδjq + A3δiqδjp , (187)

Bijpq = Bpqij = Bijqp =B1δijδpq + B2(δipδjq + δiqδjp) , (188)

Dijpq = Dijqp =D1δijδpq + D2(δipδjq + δiqδjp) , (189)

Cijkpqr = Cpqrijk =C1(δijδkpδqr + δjkδirδpq) + C2(δijδkqδrp + δkiδjrδpq)

+ C3δijδkrδpq + C4δjkδipδqr + C5(δjkδiqδpr + δkiδjpδqr)

+ C6δkiδjqδrp + C7δipδjqδkr + C8(δjpδkqδir + δkpδiqδjr)

+ C9δipδjrδkq + C10δjpδkrδiq + C11δkpδirδjq . (190)

3.6.1 Elasticity laws

Following Mindlin (1964) and Eringen (1999), we assume Ψe to be given by

�RΨe =(1−D)
{

1

2
(AAAe)ijpq(ε̂e)ij(ε̂e)pq +

1

2
(BBBe)ijpq(β̂e)ij(β̂e)pq

+(DDDe)ijpq(ε̂e)ij(β̂e)pq +
1

2
(Ce)ijkpqr(K̂e)ijk(K̂e)pqr

}
, (191)

where AAAe, BBBe, DDDe, Ce indicate the same form as AAA, BBB, DDD, C, respectively. The

elements of these tensors are denoted respectively by Ae
1, Ae

2, Ae
3, Be

1, Be
2, De

1,

De
2, Ce

1 , Ce
2 , . . ., Ce

11. In particular we set

Ae
1 = λ , Ae

2 = μ + α , Ae
3 = μ− α . (192)

Generally, there are involved 18 material parameters, which have to satisfy

some conditions in order for Ψe to be always non-negative. Such conditions
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have been worked out by Eringen (1999) and Smith (1968). From (166), we

deduce

Ŝ =(1−D){Ae
1(trε̂e)1 + Ae

2ε̂e + Ae
3ε̂

T
e + De

1(trβ̂e)1 + 2De
2β̂e} , (193)

σ̂ =(1−D){Be
1(trβ̂e)1 + 2Be

2β̂e + De
1(trε̂e)1 + De

2(ε̂e + ε̂T
e )} , (194)

Ŝijk =(1−D)[δij{Ce
1(K̂e)krr + Ce

2(K̂e)rkr + Ce
3(K̂e)rrk}

+ δjk{Ce
1(K̂e)rri + Ce

4(K̂e)irr + Ce
5(K̂e)rir}

+ δki{Ce
2(K̂e)rrj + Ce

5(K̂e)jrr + Ce
6(K̂e)rjr}

+ Ce
7(K̂e)ijk + Ce

9(K̂e)ikj + Ce
10(K̂e)jik

+ Ce
11(K̂e)kji + Ce

8{(K̂e)jki + (K̂e)kij}] . (195)

3.6.2 Kinematic hardening

Intending to obtain, at the end, a theory for small deformations, we set, in

analogy to (191),

�RΨk =(1−D)
{

1

2
(AAAk)ijpq(ε̂k)ij(ε̂k)pq +

1

2
(BBBk)ijpq(β̂k)ij(β̂k)pq

+(DDDk)ijpq(ε̂k)ij(β̂k)pq +
1

2
(Ck)ijkpqr(K̂k)ijk(K̂k)pqr

}
, (196)

where AAAk, BBBk, DDDk, Ck exhibit the same form as AAA, BBB, DDD, C. Their parameters

are Ak
1, Ak

2, Ak
3, Bk

1 , Bk
2 , Dk

1 , Dk
2 , Ck

1 , Ck
2 , . . ., Ck

11, respectively. It is readily

seen, by substituting in (167), that Ŝk, σ̂k, Ŝk are related to ε̂k, β̂k and K̂k in

a way similar to that in Eqs. (193)-(195). Moreover, we suppose M̂MMk, N̂NNk, P̂k

in (180)–(182) to exhibit the same form as AAA, BBB, C with material parameters

Mk
1 , Mk

2 , Mk
3 , Nk

1 , Nk
2 , P k

1 , P k
2 , . . ., P k

11, respectively.

Hence, Eqs. (180)–(182) yield

�
ε̂k =

�
ε̂p − ṡ

(1−D)
{Mk

1 (trŜk)1 + Mk
2 Ŝk + Mk

3 ŜT
k } , (197)
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�
β̂k =

�
β̂p −

ṡ

(1−D)
{Nk

1 (trσ̂k)1 + 2Nk
2 σ̂k} , (198)

�
K̂k =

�
K̂p − ṡ

(1−D)
P̂k[Ŝk] . (199)

3.6.3 Yield function – Flow rule

Assuming plastic incompressibility to apply for both, the micro- and the

macrocontinuum, we postulate for the yield function in (174) the form

f =F̄ (ŝ− ŝk, R, D) = ¯̄f (f)(ŝ(eff) − ŝ
(eff)
k )− R(eff) − k̄0

=

(
(P̂− P̂k)

D

1−D
·AAAy

[
(P̂− P̂k)

D

1−D

]
+

(Π̂− Π̂k)
D

1−D
·BBBy

[
(Π̂− Π̂k)

D

1−D

]

+
Ŝ − Ŝk

1−D
· Cy

[
Ŝ − Ŝk

1−D

])1

2 − R

1−D
− k̄0 . (200)

AAAy, BBBy, Cy indicate the same form as AAA, BBB, C, with material parameters Ay
1 = 0,

Ay
2, Ay

3, By
1 = 0, By

2 , Cy
1 , . . ., Cy

11.

3.6.4 Small deformations

Intrinsic model properties may be discussed appropriately by confining to

small deformations, excluding thus effects due to geometrical non-linearities.

Let H, h be the displacement gradients for the macro- and the microcontin-

uum,

H := F− 1 , h := f − 1 . (201)

Consider the set F , elements of which are the tensors

H,Ue−1,Up−1,h,ue−1,up−1,RT
p rp−1,Rer

T
e −1, K̃, K̃e, K̃p, β̃k, ε̃k, K̃k,

(202)
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as well as their time and spatial (with respect to X i) derivatives. Let ε :=

max{sup ‖A‖/A ∈ F} be a measure of smallness, where ‖ · ‖ is the Euclidean

norm and sup stands for supremum over the region RR. Assume relations of

the form

H = O(ε) , F = 1 + O(ε) , (203)

Ue = 1 + O(ε) , Up = 1 + O(ε) , (204)

Fe = Re + O(ε) , Fp = Rp + O(ε) , (205)

h = O(ε) , f = 1 + O(ε) , (206)

ue = 1 + O(ε) , up = 1 + O(ε) , (207)

fe = re + O(ε) , fp = rp + O(ε) , (208)

β̃ =
1

2
(h + hT ) + O(ε2) , β̃e = O(ε) , β̃p = O(ε) , (209)

β = β̃ + O(ε2) = β̂ + O(ε2) , βe = β̃e + O(ε2) = β̂e + O(ε2) , (210)

βp = β̃p + O(ε2) = β̂p + O(ε2) , (211)

ε̃ = H− h + O(ε2) , ε̃e = O(ε) , ε̃p = O(ε) , (212)

ε = ε̃ + O(ε2) = ε̂ + O(ε2) , εe = ε̃e + O(ε2) = ε̂e + O(ε2) , (213)

εp = ε̃p + O(ε2) = ε̂p + O(ε2) , (214)

K̃ = GRADh + O(ε2) , K̃e = O(ε) , K̃p = O(ε) , (215)

K = K̃ + O(ε2) = K̂ + O(ε2) , (216)

Ke = K̃e + O(ε2) = K̂e + O(ε2) , (217)

Kp = K̃p + O(ε2) = K̂p + O(ε2) , (218)

Ŝ = O(ε) , S = Ŝ + O(ε2) = S̃ + O(ε2) = T + O(ε2) = P̂ + O(ε2) ,

(219)

σ̂ = O(ε) , σ = σ̂ + O(ε2) = σ̃ + O(ε2) = Σ + O(ε2) = Π̂ + O(ε2) ,

(220)
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Ŝ = O(ε) , S = Ŝ + O(ε2) = S̃ + O(ε2) = T + O(ε2) , (221)

βk = β̃k + O(ε2) = β̂k + O(ε2) , (222)

... (223)

β̇p =
�
βp + O(ε2) = ˙̃β + O(ε2) =

�
β̂ + O(ε2) , (224)

... (225)

� = �R + O(ε) , (226)

DIVT = divT + O(ε2) , (227)

... (228)

to hold. Whenever terms only up to order O(ε) are explicitly retained, the

resulting theory is said to be of small deformations.

A Transformations under rigid body rotations superposed on both

the current and the plastic intermediate configuration

It can be seen (for some of the subsequent relations cf. Green and Naghdi,

1971; Casey and Naghdi, 1980, 1981) that under rigid body rotations Q =

Q(t) superposed on the current configuration, and rigid body rotations Qp =

Qp(t) superposed on the plastic intermediate configuration simultaneously, the

transformation rules for the macroscopic continuum

F→ F∗ = QF = QFeQ
T
p QpFp , (A.1)

Fe → F∗e = QFeQ
T
p , Fp → F∗p = QpFp , (A.2)

Re → R∗
e = QReQ

T
p , Rp → R∗

p = QpRp , (A.3)

Ue → U∗
e = QpUeQ

T
p , Up → U∗

p = Up , (A.4)

Ve → V∗
e = QVeQ

T , Vp → V∗
p = QpVpQ

T
p , (A.5)

L̂p → L̂∗p = QpL̂pQ
T
p + Q̇pQ

T
p , (A.6)
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D̂p → D̂∗
p = QpD̂pQ

T
p , Ŵp → Ŵ∗

p = QpŴpQ
T
p + Q̇pQ

T
p ,

(A.7)

and for the microcontinuum

f→ f∗ = Qf = QfeQ
T
p Qpfp , (A.8)

fe→ f∗e = QfeQ
T
p , fp → f∗p = Qpfp , (A.9)

re→ r∗e = QreQ
T
p , rp → r∗p = Qprp , (A.10)

ue→u∗e = QpueQ
T
p , up → u∗p = up , (A.11)

ve→v∗e = QveQ
T , vp → v∗p = QpvpQ

T
p , (A.12)

apply. Let X̂ denote any one of the tensors β̂, β̂e, β̂p,
�
β̂,

�
β̂e,

�
β̂p, ε̂, ε̂e, ε̂p,

�
ε̂,

�
ε̂e,

�
ε̂p, Γ̂, Γ̂e, Γ̂p,

�
Γ̂,

�
Γ̂e,

�
Γ̂p. Then

X̂→ X̂∗ = QpX̂QT
p . (A.13)

For the micromorphic curvature tensors K̃, K̂ we have

K̃∗
= K̃ , (A.14)

K̂∗
=L

(
f∗p , (f∗p )T−1, (f∗)T−1

)
[K̃∗

]

=L(Qp,Qp,Qp)L
(
fp, f

T−1
p , fT−1

p

)
[K̃]

=L(Qp,Qp,Qp)[K̂] . (A.15)

In a similar manner, if P̂ represents any one of the tensors K̂e, K̂p,
�
K̂,

�
K̂e,

�
K̂p, then

P̂∗
= L(Qp,Qp,Qp)[P̂ ] . (A.16)

B Conditions for the validity of Il’iushin’s postulate

We recall from (92)- (94) that

S̃ = �R
∂Ψ̃e

∂ε̃
, σ̃ = �R

∂Ψ̃e

∂β̃
, S̃ = �R

∂Ψ̃e

∂K̃
. (B.1)
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Assume (106) to apply and consider a small strain-curvature cycle ABCD (see

Fig. B.1), which is parameterized by time t. Denote by M (X) the value of some

quantity M at point X. Then, the times connected with points A, B, C, D

are t(A), t(B), t(C), t(D), respectively, (t(A) < t(B) < t(C) < t(D)). The strain-

curvature cycle begins and ends at ε̃ = ε̃(A) = ε̃(D), β̃ = β̃
(A)

= β̃
(D)

, K̃ =

K̃(A)
= K̃(D)

, while plastic flow occurs only between B and C. In analogy to

Lin and Naghdi (1989), we use the notation

U(t) :=
(
ε̃(t), β̃(t), K̃(t)

)
, U p(t) :=

(
ε̃p(t), β̃p(t), K̃p(t)

)
, (B.2)

U (X) :=
(
ε̃(X), β̃

(X)
, K̃(X)

)
, U (X)

p :=
(
ε̃(X)

p , β̃
(X)

p , K̃(X)

p

)
. (B.3)

A
B

C

D

g̃(U , U (B)
p , q̃(B)) = 0 g̃(U , U (C)

p , q̃(C)) = 0

Fig. B.1. A small strain-curvature cycle with plastic flow occurring between B and

C only.

Since (92)- (94), and therefore also (B.1), are assumed to hold during plastic

loading as well, we have

I
(
t(A), t(D)

)
=

1

�R

∫ t(D)

t(A)

{
S̃ · ˙̃ε + σ̃ · ˙̃β + S̃ · ˙̃K

}
dt

=
∫ t(D)

t(A)

{
∂Ψ̃e (U(t), Up(t))

∂ε̃(t)
· ˙̃ε(t) +

∂Ψ̃e (U(t), Up(t))

∂β̃(t)
· ˙̃β(t)
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+
∂Ψ̃e (U(t), Up(t))

∂K̃(t)
· ˙̃K(t)

}
dt

= Ψ̃e

(
U (A), U (C)

p

)
− Ψ̃e

(
U (A), U (B)

p

)
−

∫ t(C)

t(B)

∂Ψ̃e (U(t), Up(t))

∂ε̃p(t)
· ˙̃εp(t) dt

−
∫ t(C)

t(B)

∂Ψ̃e (U(t), Up(t))

∂β̃p(t)
· ˙̃
βp(t) dt

−
∫ t(C)

t(B)

∂Ψ̃e (U(t), Up(t))

∂K̃p(t)
· ˙̃Kp(t) dt . (B.4)

We make note of the identity

Ψ̃e

(
U (A), U (C)

)
− Ψ̃e

(
U (A), U (B)

)
=

∫ t(C)

t(B)

⎧⎨
⎩∂Ψ̃e

(
U (A), Up(t)

)
∂ε̃p(t)

· ˙̃εp(t)

+
∂Ψ̃e

(
U (A), Up(t)

)
∂β̃p(t)

· ˙̃
βp(t)

+
∂Ψ̃e

(
U (A), Up(t)

)
∂K̃p(t)

· ˙̃Kp(t)

⎫⎬
⎭ dt ,

(B.5)

and conclude from (B.4), (106)

I
(
t(A), t(D)

)
=

∫ t(C)

t(B)

⎡
⎣
⎧⎨
⎩∂Ψ̃e

(
U (A), Up(t)

)
∂ε̃p(t)

− ∂Ψ̃e (U(t), U p(t))

∂ε̃p(t)

⎫⎬
⎭ · ˙̃εp(t)

+

⎧⎨
⎩∂Ψ̃e

(
U (A), Up(t)

)
∂β̃p(t)

− ∂Ψ̃e (U(t), Up(t))

∂β̃p(t)

⎫⎬
⎭ · ˙̃

βp(t)

+

⎧⎨
⎩∂Ψ̃e

(
U (A), Up(t)

)
∂K̃p(t)

− ∂Ψ̃e (U(t), Up(t))

∂K̃p(t)

⎫⎬
⎭ · ˙̃Kp(t)

⎤
⎦ dt ≥ 0 .

(B.6)

By using Taylor’s theorem

lim
t(C)→t(B)

I
(
t(A), t(D)

)
t(C) − t(B)
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=

⎧⎨
⎩∂Ψ̃e

(
U (A), Up(t)

)
∂ε̃p(t)

· ˙̃εp(t)− ∂Ψ̃e (U(t), Up(t))

∂ε̃p(t)
· ˙̃εp(t)

⎫⎬
⎭

t=t(B)

+

⎧⎨
⎩

∂Ψ̃e

(
U (A), Up(t)

)
∂β̃p(t)

· ˙̃
βp(t)−

∂Ψ̃e (U(t), Up(t))

∂β̃p(t)
· ˙̃
βp(t)

⎫⎬
⎭

t=t(B)

+

⎧⎨
⎩

∂Ψ̃e

(
U (A), Up(t)

)
∂K̃p(t)

· ˙̃Kp(t)− ∂Ψ̃e (U(t), Up(t))

∂K̃p(t)
· ˙̃Kp(t)

⎫⎬
⎭

t=t(B)

≥ 0 .

(B.7)

Since the point B can be chosen arbitrarily on the yield surface, we may drop

the index t(B) in the last relation to get, as a necessary condition for (106),

the inequality

−∂Ψ̃e (U , Up)

∂ε̃p
· ˙̃εp − ∂Ψ̃e (U , Up)

∂β̃p

· ˙̃
βp −

∂Ψ̃e (U , Up)

∂K̃p

· ˙̃Kp

≥−
∂Ψ̃e

(
U (A), Up

)
∂ε̃p

· ˙̃εp −
∂Ψ̃e

(
U (A), Up

)
∂β̃p

· ˙̃
βp −

∂Ψ̃e

(
U (A), Up

)
∂K̃p

· ˙̃Kp ,

(B.8)

where U = (ε̃, β̃, K̃) denotes a strain-curvature state on the yield surface

and Up = (ε̃p, β̃p, K̃p) are the plastic strain and plastic micromorphic curva-

ture tensors associated with this state. U (A) =
(
ε̃(A), β̃

(A)
, K̃(A)

)
is a strain-

curvature state on or inside the yield surface, i.e. g̃
(
U (A), Up, q̃

)
≤ 0, with

the internal state variables q̃ being associated with the strain-curvature state

U .

Conversely, (B.8) is a sufficient condition for (106) to hold. This can be verified

by taking the integral of (B.8) along a strain-curvature cycle as shown in

Fig. B.1 For (B.8) to remain valid during this strain-curvature cycle, U (A)

must always lie in the intersection of all elastic ranges, which in turn implies

that the cycle ABCD is small. Then, following the same steps as in (B.4)-
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(B.6), but in the inverse direction, it is a straightforward matter to arrive

at (106).

In view of (86)–(88), one obtains from (B.8)

⎧⎨
⎩
(
1 + ε̂T

e

) ∂Ψ̂e

(
ε̂e, β̂e, K̂e

)
∂ε̂e

+
1

�R
η̂

⎫⎬
⎭ · �ε̂p

+

⎧⎨
⎩
(
1 + 2β̂e

) ∂Ψ̂e

(
ε̂e, β̂e, K̂e

)
∂β̂e

+
1

�R
Λ̂

⎫⎬
⎭

S

·
�
β̂p +

∂Ψ̂e

(
ε̂e, β̂e, K̂e

)
∂K̂e

·
�
K̂p

≥

⎧⎪⎪⎨
⎪⎪⎩
(
1 +

(
ε̂(A)

e

)T
) ∂Ψ̂e

(
ε̂(A)

e , β̂
(A)

e , K̂(A)

e

)
∂ε̂e

+
1

�R
η̂(A)

⎫⎪⎪⎬
⎪⎪⎭ ·

�
ε̂p

+

⎧⎪⎪⎨
⎪⎪⎩
(
1 + 2β̂

(A)

e

) ∂Ψ̂e

(
ε̂(A)

e , β̂
(A)

e , K̂(A)

e

)
∂β̂e

+
1

�R
Λ̂

(A)

⎫⎪⎪⎬
⎪⎪⎭

S

·
�
β̂p

+
∂Ψ̂e

(
ε̂(A)

e , β̂
(A)

e , K̂(A)

e

)
∂K̂e

·
�
K̂p , (B.9)

or, by virtue of (96), (97), and (92)- (94),

P̂ ·
�
ε̂p + Π̂ ·

�
β̂p + Ŝ ·

�
K̂p ≥ P̂(A) ·

�
ε̂p + Π̂

(A) ·
�
β̂p + Ŝ(A) ·

�
K̂p . (B.10)

Inequality (B.10) is equivalent to (B.9) and therefore equivalent to (106).
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C Decompositions of strain and micromorphic curvature tensors –
dual stress and couple stress tensors

C.1 Decomposition of the strain tensors for the microstructure

R′R R′t

R̂′t

β̃ =
1

2
(u2 − 1)

β̃p =
1

2

(
u2

p − 1
)

β̃e =
1

2

(
u2 − u2

p

)

β̃ = β̃e + β̃p

β =
1

2
(1− v−2)

βp =
1

2
(v−2

e − v−2)

βe =
1

2
(1− v−2

e )

β = βe + βp

β̂ =
1

2

(
u2

e − v−2
p

)

β̂p =
1

2

(
1− v−2

p

)

β̂e =
1

2
(u2

e − 1)

β̂ = β̂e + β̂p

fT−1 ( ) f−1

fT−1
e ( ) f−1

efT−1
p ( ) f−1

p
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C.2 Decomposition of the strain rate tensors for the microstructure

l̂p = ḟpf
−1
p = d̂p + ŵp , l = ḟ f−1 = d + w

( )˙ : relative to R′R
( )� = ( )˙+ l̂Tp ( ) + ( ) l̂p: relative to R̂′t
( )� = ( )˙+ lT ( ) + ( ) l: relative to R′t

R′R
R′t

R̂′t

˙̃
β

˙̃
βp

˙̃βe

˙̃
β =

˙̃
βe +

˙̃
βp

�
β = β̇ + lT β + βl

=
1

2

(
l + lT

)
= d

�
βp = β̇p + lT βp + βpl

�
βe = β̇e + lT βe + βel

�
β =

�
βe +

�
βp

�
β̂ =

˙̂
β + l̂Tp β̂ + β̂l̂p

�
β̂p =

˙̂
βp + l̂Tp β̂p + β̂pl̂p

=
1

2

(̂
lp + l̂Tp

)
= d̂p

�
β̂e =

˙̂
βe + l̂Tp β̂e + β̂el̂p

�
β̂ =

�
β̂e +

�
β̂p

fT−1 ( ) f−1

fT−1
e ( ) f−1

efT−1
p ( ) f−1

p
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C.3 Decomposition of the micromorphic strain tensors

RR Rt

R̂t

ε̃ = f−1F− 1

ε̃p = f−1
p Fp − 1

ε̃e = f−1F− f−1
p Fp

ε̃ = ε̃e + ε̃p

ε = 1− fF−1

εp = feF
−1
e − fF−1

εe = 1− feF
−1
e

ε = εe + εp

ε̂ = f−1
e Fe − fpF

−1
p

ε̂p = 1− fpF
−1
p

ε̂e = f−1
e Fe − 1

ε̂ = ε̂e + ε̂p

f ( )F−1

fe ( )F−1
efp ( )F−1

p
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C.4 Decomposition of the micromorphic strain rates

L̂p = ḞpF
−1
p = D̂p + Ŵp , L = ḞF−1 = D + W

( )˙ : relative to RR
( )� = ( )˙− l̂p ( ) + ( ) L̂p: relative to R̂t

( )� = ( )˙− l ( ) + ( )L: relative to Rt

RR
Rt

R̂t

˙̃ε

˙̃εp

˙̃εe

˙̃ε = ˙̃εe + ˙̃εp

�
ε = ε̇− lε + εL

= L− l

�
εp = ε̇p − lεp + εpL

�
εe = ε̇e − lεe + εeL

�
ε =

�
εe +

�
εp

�
ε̂ = ˙̂ε− l̂pε̂ + ε̂L̂p

�
ε̂p = ˙̂εp − l̂pε̂p + ε̂pL̂p

= L̂p − l̂p

�
ε̂e = ˙̂εe − l̂pε̂e + ε̂eL̂p

�
ε̂ =

�
ε̂e +

�
ε̂p

f ( )F−1

fe ( )F−1
efp ( )F−1

p
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C.5 Decomposition of the micromorphic curvature tensors K̃, K̂, K

RR Rt

R̂t

K̃ = f−1GRADf

K̃p = (K̃p)
j
imEj ⊗ Em ⊗Ei

K̃e = K̃− K̃p

K = (gradf) � f−1f

Kp = (Kp)
j
im�j ⊗ �m ⊗ gi

Ke = K−Kp

K̂ =

(
f−1
e

∂fe
∂Xk

+
∂fp
∂Xk

f−1
p

)
⊗ ĝk

K̂p = (K̂p)
j
imρ̂j ⊗ ρ̂m ⊗ ĝi

K̂e = K̂− K̂p

L
(
f , fT−1,FT−1

)
[·]

L
(
fe, f

T−1
e ,FT−1

e

)
[·]L

(
fp, f

T−1
p ,FT−1

p

)
[·]
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C.6 Decomposition of the associated rates for K̃, K̂, K

(·)˙ : relative to RR
(·)� = (·)˙− l̂p (·) + l̂Tp � (·) + (·) L̂p: relative to R̂t

(·)� = (·)˙− l (·) + lT � (·) + (·)L: relative to Rt

RR

Rt

R̂t

˙̃K

˙̃Kp

˙̃Ke = ˙̃K− ˙̃Kp

�
K = K̇− lK + lT �K + KL

= gradl

�
Kp = K̇p − lKp + lT �Kp + KpL

�
Ke =

�
K− �

Kp

�
K̂ =

˙̂K− l̂pK̂ + l̂Tp � K̂ + K̂L̂p

�
K̂p =

˙̂Kp − l̂pK̂p + l̂Tp � K̂p + K̂pL̂p

�
K̂e =

�
K̂−

�
K̂p

L
(
f , fT−1,FT−1

)
[·]

L
(
fe, f

T−1
e ,FT−1

e

)
[·]L

(
fp, f

T−1
p ,FT−1

p

)
[·]
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C.7 Stress tensors related to the microcontinuum and associated rates

( )˙ : relative to RR
( )� = ( )˙− l̂p ( )− ( ) l̂Tp : relative to R̂t

( )� = ( )˙− l ( )− ( ) lT : relative to Rt

RR Rt

R̂t

σ̃

˙̃σ

σ = (detF)Σ
�
σ = σ̇ − lσ − σlT

σ̂ = fpσ̃fT
p

�
σ̂ = ˙̂σ − l̂pσ̂ − σ̂l̂Tp

f ( ) fT

f ( ) fTfp ( ) fT
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C.8 Stress tensors related to the macroscopic continuum and associated rates

( )˙ : relative to RR
( )� = ( )˙+ l̂Tp ( )− ( ) L̂T

p : relative to R̂t

( )� = ( )˙+ lT ( )− ( )LT : relative to Rt

RR Rt

R̂t

S̃

˙̃S

S = (detF)T
�
S = Ṡ + lTS− SLT

Ŝ = fT−1
p S̃FT

p
�
Ŝ =

˙̂
S + l̂Tp Ŝ− ŜL̂T

p

fT−1 ( )FT

fT−1
e ( )FT

efT−1
p ( )FT

p
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C.9 Double stress tensors and associated rates

(·)˙ : relative to RR
(·)� = (·)˙+ l̂Tp (·)− (·) � l̂Tp − (·) L̂T

p : relative to R̂t

(·)� = (·)˙+ lT (·)− (·) � lT − (·)LT : relative to Rt

RR Rt

R̂t

S̃

˙̃S
S = (detF) T
�
S = Ṡ + lT S − S � lT − SLT

Ŝ = L
(
fT−1
p , fp,Fp

)
[S̃]

�
Ŝ = Ṡ + l̂Tp Ŝ − Ŝ � l̂Tp − ŜL̂T

p

L
(
fT−1, f ,F

)
[ ]

L
(
fT−1
e , fe,Fe

)
[ ]L

(
fT−1
p , fp,Fp

)
[ ]

55



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

D Kinematic hardening – Decompositions of plastic strain and mi-
cromorphic curvature tensors

D.1 Kinematic hardening – decomposition of plastic strain tensors for the
microstructure

fp = fkfd

R′R R̂′t

Ř′t

β̃ =
1

2

(
u2

p − 1
)

˙̃β =
1

2
(u2

d − 1)

β̃k =
1

2

(
u2

p − u2
d

)

β̃p = β̃k + β̃d

β̂p =
1

2

(
1− v−2

p

)

β̂d =
1

2

(
v−2

k − v−2
p

)

β̂k =
1

2

(
1− v−2

k

)

β̂p = β̂k + β̂d

β̌p =
1

2

(
u2

k − v−2
d

)

β̌d =
1

2

(
1− v−2

d

)

β̌k =
1

2
(u2

k − 1)

β̌p = β̌k + β̌d

fT−1
p ( ) f−1

p

fT−1
k ( ) f−1

kfT−1
d ( ) f−1

d
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D.2 Kinematic hardening – decomposition of plastic strain rate tensors for
the microstructure

ľd = ḟdf
−1
d , l̂p = ḟpf

−1
p

( )˙ : relative to R′R
( )� = ( )˙+ ľTd ( ) + ( ) ľd: relative to Ř′t
( )� = ( )˙+ l̂Tp ( ) + ( ) l̂p: relative to R′t

R′R
R̂′t

Ř′t

˙̃βp

˙̃
βd

˙̃βk

˙̃
βp =

˙̃
βd +

˙̃
βk

�
β̂p = β̂d + l̂Tp β̂p + β̂pl̂p

�
β̂d =

˙̂
βd + l̂Tp β̂d + β̂dl̂p

�
β̂k =

˙̂
βk + l̂Tp β̂k + β̂k l̂p

�
β̂p =

�
β̂d +

�
β̂k

�
β̌p = ˙̌βp + ľTd β̌p + β̌pľd

�
β̌d = ˙̌βd + ľTd β̌d + β̌dľd

�
β̌k = ˙̌βd + ľTd β̌k + β̌k ľd

�
β̌p =

�
β̌d +

�
β̌k

fT−1
p ( ) f−1

p

fT−1
k ( ) f−1

kfT−1
d ( ) f−1

d
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D.3 Kinematic hardening – decomposition of plastic strain for the micromor-
phic continuum

Fp = FkFd

RR R̂t

Řt

ε̃p = f−1
p Fp − 1

ε̃d = f−1
d Fd − 1

ε̃k = f−1
p Fp − f−1

d Fd

ε̃p = ε̃d + ε̃k

ε̂p = 1− fpF
−1
p

ε̂d = fkF
−1
k − fpF

−1
p

ε̂k = 1− fkF
−1
k

ε̂p = ε̂k + ε̂d

ε̌p = f−1
k Fk − fdF

−1
d

ε̌d = 1− fdF
−1
d

ε̌k = f−1
k Fk − 1

ε̌p = ε̌d + ε̌k

fp ( )F−1
p

fk ( )F−1
kfd ( )F−1

d
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D.4 Kinematic hardening – decomposition of plastic strain rates for micro-
morphic continuum

Ľd = ḞdF
−1
d , L̂p = ḞpF

−1
p

( )˙ : relative to RR
( )� = ( )˙− ľd ( ) + ( ) Ľd: relative to R̂′t
( )� = ( )˙− l̂p ( ) + ( ) L̂p: relative to R̂t

RR
R̂t

Řt

˙̃εp

˙̃εd

˙̃εk

˙̃εp = ˙̃εd + ˙̃εk

�
ε̂p = ˙̂εp − l̂pε̂p + ε̂pL̂p

�
ε̂d = ˙̂εd − l̂pε̂d + ε̂dL̂p

�
ε̂k = ˙̂εk − l̂pε̂k + ε̂kL̂p

�
ε̂p =

�
ε̂d +

�
ε̂k

�
ε̌p = ˙̌εp − ľdε̌p + ε̌pĽd

�
ε̌d = ˙̌εd − ľdε̌d + ε̌dĽd

�
ε̌k = ˙̌εk − ľkε̌k + ε̌kĽd

�
ε̌p =

�
ε̌d +

�
ε̌k

fp ( )F−1
p

fk ( )F−1
kfd ( )F−1

d
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D.5 Kinematic hardening – decomposition of plastic micromorphic curvature
tensors

RR R̂t

Řt

K̃p = (K̃p)
j
miEj ⊗ Em ⊗ Ei

K̃d = (K̃d)
j
imEj ⊗ Em ⊗Ei

K̃k = K̃p − K̃d

K̂p = (K̂p)
j
miρ̂j ⊗ ρ̂m ⊗ ĝi

K̂d = (K̂d)
j
imρ̂j ⊗ ρ̂m ⊗ ĝi

K̂k = K̂p − K̂d

Ǩp = (Ǩp)
j
mi�̌j ⊗ �̌m ⊗ ǧi

Ǩd = (Ǩd)
j
im�̌j ⊗ �̌m ⊗ ǧi

Ǩk = Ǩp − Ǩd

L
(
fp, f

T−1
P ,FT−1

p

)
[·]

L
(
fk, f

T−1
k ,FT−1

k

)
[·]L

(
fd, f

T−1
d ,FT−1

d

)
[·]
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D.6 Kinematic hardening – decomposition of plastic micromorphic curvature
rates

(·)˙ : relative to RR
(·)� = (·)˙− ľd (·) + ľTd � (·) + (·) Ľd: relative to Řt

(·)� = (·)˙− l̂p (·) + l̂Tp � (·) + (·) L̂p: relative to R̂t

RR

Rt

R̂t

˙̃Kp

˙̃Kd

˙̃Kp = ˙̃Kp − ˙̃Kd

�
K̂p =

˙̂Kp − l̂pK̂p + l̂Tp � K̂p + K̂pL̂p

�
K̂d =

˙̂Kd − l̂pK̂d + l̂Tp � K̂d + K̂dL̂p

�
K̂k =

�
K̂p −

�
K̂d

�
Ǩp = ˙̌Kp − ľdǨp + ľTd � Ǩp + ǨpĽd

�
Ǩd = ˙̌Kd − ľdǨd + ľTd � Ǩd + ǨdĽd

�
Ǩk =

�
Ǩp −

�
Ǩd

L
(
fp, f

T−1
p ,FT−1

p

)
[·]

L
(
fk, f

T−1
k ,FT−1

k

)
[·]L

(
fd, f

T−1
d ,FT−1

d

)
[·]
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Flügge, S. (Ed.), Handbuch der Physik. Vol. III/3. Springer-Verlag, Berlin,

Heidelberg, New York.

Tsakmakis, C., 1991. On the loading conditions and the decomposition of

deformation. In: Boehler, J.-P., Khan, A. (Eds.), Anisotropy and localization

of plastic deformation. Elsevier Applied Science, London & New York, pp.

335–356.

Tsakmakis, C., 1996. Kinematic hardening rules in finite plasticity. part i:

A constitutive approach. Continuum Mechanics and Thermodynamics 8,

215–231.

Tsakmakis, C., 1997. Remarks on il’iushin’s postulate. Arch. Mech. 49, 677–

695.

Tsakmakis, C., 2001. Description of plastic anisotropy effects at large defor-

mations. part I: Restrictions imposed by the second law and the postulate

of il’iushin.

66




