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Micromorphic continuum.

Part I: Strain and stress tensors

and their associated rates

P. Grammenoudis ∗ and Ch. Tsakmakis ∗∗

Darmstadt University of Technology

Institute of Continuum Mechanics

Hochschulstrae 1, D-64289 Darmstadt, Germany

Abstract

Micropolar and micromorphic solids are continuum mechanics models, which take

into account, in some sense, the microstructure of the considered real material. The

characteristic property of such continua is that the state functions depend, besides

the classical deformation of the macroscopic material body, also upon the defor-

mation of the microcontinuum modelling the microstructure, and its gradient with

respect to the space occupied by the material body. While micropolar plasticity the-

ories, including nonlinear isotropic and nonlinear kinematic hardening, have been

formulated, even for nonlinear geometry, few works are known yet about the for-

mulation of (finite deformation) micromorphic plasticity. It is the aim of the three

papers (Part I, Part II and Part III) to demonstrate how micromorphic plasticity

theories may be formulated in a thermodynamically consistent way.

In the present article we start by outlining the framework of the theory. Espe-

cially, we confine attention to the theory of Mindlin on continua with microstructure,

which is formulated for small deformations. After precising some conceptual aspects
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concerning the notion of microcontinuum, we work out a finite deformation version

of theory, suitable for our aims. It is examined that resulting basic field equations

are the same as in the nonlinear theory of Eringen, which deals with a different def-

inition of the microcontinuum. Furthermore, geometrical interpretations of strain

and curvature tensors are elaborated. This allows to find out associated rates in a

natural manner. Dual stress and double stress tensors, as well as associated rates,

are then defined on the basis of the stress powers. This way, it is possible to relate

strain tensors (respectively micromorphic curvature tensors) and stress tensors (re-

spectively double stress tensors), as well as associated rates, independently of the

particular constitutive properties.

Key words: micromorphic plasticity; finite deformation; isotropic and kinematic

hardening rules; isotropic continuum damage mechanics; finite element

implementation;

1 Introduction

It is well recognized that nonlocality effects have to be involved in a plasticity

theory when discussing localization phenomena or size effects in the material

response. One possibility to augment classical theories to capture nonlocality

aspects is to incorporate higher order gradients of the kinematical and dy-

namical variables (see e.g. Aifantis, 1992, 2003; Fleck and Hutchinson, 1993,

2001; Toupin, 1962; Mindlin and Tiersten, 1962; Mindlin, 1964; Eringen and

Suhubi, 1964; Eringen, 1968, 1999; Steinmann, 1994; Steinmann and Willam,

∗ Corresponding author.
∗∗Corresponding author.

Email addresses: pascha@mechanik.tu-darmstadt.de (P. Grammenoudis),

tsakmakis@mechanik.tu-darmstadt.de (Ch. Tsakmakis).
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1991; Forest, 1998; Forest and Cailletaud, 2000; de Borst, 1991; de Borst and

Mühlhaus, 1992; Dietsche and Willam, 1997; Mühlhaus and Vardoulakis, 1987;

Grammenoudis and Tsakmakis, 2001, 2005a,b).

Among the continuum theories involving higher order of gradients there are

some continuum models which take into account, in some sense, the mi-

crostructure of the real material (continua with microstructure), as e.g. the

micropolar and the micromorphic ones. The formulation of micropolar plas-

ticity is progressed as can be recognized, e.g., from the works Forest and

Cailletaud (2000); de Borst (1991, 1993); Steinmann (1994); Ristinmaa and

Vecchi (1996); Grammenoudis and Tsakmakis (2001, 2005a), and the refer-

ences cited there. On the other hand, some interesting ideas concerning finite

deformation micromorphic plasticity have been elaborated in Forest and Siev-

ert (2003, 2006); Sansour (1998); Hirschberger and Steinmann (2007). In par-

ticular the comprehensive work of Forest and Sievert (2003), provides a unified

thermomechanical framework for the development of micromorphic plasticity.

Nevertheless, several aspects of (finite deformation) micromorphic plasticity

are not broadly investigated, concerning among others geometrical issues of

deformation decompositions into elastic and plastic parts, or formulation of

hardening laws like kinematic hardening rules. Thus, the aim of the first two

works (Part I and Part II) is to sketch how (finite deformation) micromorphic

plasticity models may be formulated in a thermodynamically consistent way,

while Part III is concerned with the discussion of examples which are calcu-

lated numerically. In the first paper, we shall present the framework of our

micromorphic theory, and the variables which are chosen as appropriate for

formulating the constitutive laws.

Eringen and coworkers (see e.g. Eringen and Suhubi, 1964) introduced and

3



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

discussed micromorphic theories, which capture the microstructure of the real

material by assuming a microvolume to be included in each material particle of

the macroscopic body (”Macro-elements are constructed by micro-elements”).

On the other hand, Mindlin proposed an elasticity theory, in which also the

microstructure of the real material is modeled by embedding a microvolume in

each particle of the macro-material. Mindlin’s theory differs from that one ac-

cording to Eringen in that both the macro- and the micro-material contribute

to the kinetic energy-density of the overall material. The seminal works of

Eringen and Mindlin are today the basis for every micromorphic continuum

theory, and provide relevant field equations. Now, for a clear formulation of the

basic concepts, it is perhaps helpful to address the question how small or how

large can be the micro-volume. If the micro-volume is finite, what happens

with material points in the neighborhood of the boundary of the continuum.

Is there allowed for a part of the micro-volume to be not included in the

macro-volume element or even in the range of the continuum? In attempting

to clarify such questions the authors were leaded to postulate the concept of

microstructure something others than in the aforementioned works. But oth-

erwise, as we shall see, not new basic equations may be gained by using this

method.

In the present article, we adopt the proposal of Mindlin for establishing the

balance laws of momentum and moment of momentum, in a fashion which

allows the microcontinuum to exhibit arbitrary finite dimensions. In our opin-

ion this can be a convenient way, when modeling microphysical properties in

the framework of phenomenological continuum mechanics. It is examined that

basic field equations established for nonlinear geometry by Eringen’s theory,

may be recovered by the version of Mindlin’s theory as accommodated here.

4



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Moreover, we elaborate geometrical interpretations for the strain and curva-

ture tensors, which enter in the constitutive theory to be presented in Part II.

This allows to find out associated rates in a natural manner. The method we

pursue here is similar to the one developed by Haupt and Tsakmakis (1996)

in the context of classical continuum mechanics. Dual stress and double stress

tensors, as well as associated rates, are then introduced on the basis of the

stress powers. Thus, we relate strain (respectively micromorphic curvature)

and stress (respectively double stress) tensors with each other, as well as as-

sociated rates, independently of the particular constitutive properties. It is

shown, that our approach is a generalization of the known method of conju-

gate variables in classical continuum mechanics. In fact, we extend the method

of conjugate variables, on the one hand by covering also spacial variables, and

on the other hand by dealing with double stress tensors.

2 Preliminaries

We consider isothermal deformations and write � for the axis of real numbers,

and ϕ̇(t) for the material time derivative of a function ϕ(t), where t is the

time. An explicit reference to space will be dropped in most part of the paper.

Commonly, the same symbol is used to designate a function and the value of

that function at a point. However, if we deal with different representations of

the same function, then use will often be made of different symbols. For real

x, 〈x〉 denotes the function

〈x〉 :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x if x ≥ 0 ,

0 if x < 0 .

(1)
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Second-order tensors, like vectors, are denoted by bold-face Latin or Greek

letters. In particular, a ·b and a⊗b denote the inner product and the tensor

product of the vectors a and b, respectively. For second-order tensors A and B,

we write trA, detA and AT for the trace, the determinant and the transpose

of A, respectively, while A ·B = tr(ABT ) is the inner product between A and

B, and ‖A‖ =
√

A ·A is the Euclidean norm of A. Furthermore,

1 = δijēi ⊗ ēj , i, j = 1, 2, 3 , (2)

represents the identity tensor of second-order, where δij = δi
j = δ j

i is the

Kronecker delta and {ēi} is an orthonormal basis in the three-dimensional

Euclidean vector space we deal with. Also, we use the notations AD = A −
1

3
(trA)1 for the deviator of A and AT−1 = (A−1)T , provided A−1 exists.

Third- and fourth-order tensors are denoted by bold face calligraphic and

double-stroke letters, respectively. Let AAA, BBB be fourth-order tensors, A, B

third-order tensors, A, B, C, D, E, F second-order tensors and a, b, c, d

vectors. With respect to the orthonormal basis {ēi}, the components of AAA, BBB,

A, B, A, B, C, D, E, F, a, b, c, d are Aijkl, Bijkl, Aijk, Bijk, Aij, Bij , Cij ,

Dij , Eij , Fij , ai, bi, ci, di (often use will be made of notations of the form

Aij = (A)ij). Then, we have

AAABBB = AijmnBmnkl ēi ⊗ ēj ⊗ ēk ⊗ ēl , (3)

AAA
T = Aklij ēi ⊗ ēj ⊗ ēk ⊗ ēl , (4)

AAA[B] = AijmnBmn ēi ⊗ ēj , (5)

B ·AAA[C] = AAA
T [B] ·C , (6)

A2 = AA = AijAjk ēi ⊗ ēk , (A−2 = A−1A−1) , (7)

Aa ≡ A[a] = Aijaj ēi , (8)
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AB = Bij(Aēi)⊗ ēj = Aij ēi ⊗ (BT ēj) , (9)

A[a,b] = Aij(a · ēi)(b · ēj) = a ·Ab = Aijaibj , (10)

A[a,b, c] = Aijk(a · ēi)(b · ēj)(c · ēk) = Aijkaibjck , (11)

A[a] = Aijkēi ⊗ ēj(a · ēk) = Aijkakēi ⊗ ēj , (12)

(A⊗ d)[a,b, c] = (a ·Ab)(d · c) , (13)

A ·B = AijkBlmn(ēi · ēl)(ēj · ēm)(ēk · ēn) = AijkBijk , (14)

‖A‖ =
√

A ·A . (15)

The products AA, AA, A 
A ≡ AT 
A are defined to represent third-order

tensors given by

AA := Aijk(Aēi)⊗ ēj ⊗ ēk = ApiAijkēp ⊗ ēj ⊗ ēk , (16)

AA := Aijkēi ⊗ ēj ⊗ (AT ēk) = AijkAkpēi ⊗ ēj ⊗ ēp , (17)

A 
A ≡ AT 
A := Aijkēi ⊗ (AT ēj)⊗ ēk = AijkAjpēi ⊗ ēp ⊗ ēk , (18)

while A[A] represents the vector

A[A] = Aijk{(ēj ⊗ ēk) ·A}ēi = AijkAjkēi . (19)

We introduce a linear operator (A,B,C) �→ L(A,B,C), acting on the space

of all third-order tensors, by

L(A,B,C) : A �→ L(A,B,C)[A] = Aijk(Aēi)⊗ (Bēj)⊗ (Cēk) , (20)

or, with respect to the orthonormal basis {ēi},

(L(A,B,C)[A])mnp = AmiBnjCpkAijk . (21)
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It can be seen that

L(AB,CD,EF) = L(A,C,E)L(B,D,F) , (22)

A · L(A,B,C)[B] = LT (A,B,C)[A] ·B = L(AT ,BT ,CT )[A] ·B (23)

and

L−1(A,B,C) = L(A−1,B−1,C−1) , (24)

provided A−1, B−1 and C−1 exist. For the particular case where A = D⊗ a,

we have

L(A,B,C)[D⊗ a] = ADBT ⊗ (Ca) . (25)

In this case, we have also

A[b, c,d] = (D⊗ a)[b, c,d] = D[b, c](a · d) = (b ·Dc)(a · d) . (26)

We write III for the fourth-order identity tensor,

III = δimδjn ēi ⊗ ēj ⊗ ēm ⊗ ēn , (27)

which satisfies the property

III = EEE + JJJ , (28)

EEE = Eimjn ēi ⊗ ēm ⊗ ēj ⊗ ēn =
1

2
(δijδmn + δinδmj) ēi ⊗ ēm ⊗ ēj ⊗ ēn ,

(29)

JJJ = Jimjn ēi ⊗ ēm ⊗ ēj ⊗ ēn =
1

2
(δijδmn − δinδmj) ēi ⊗ ēm ⊗ ēj ⊗ ēn . (30)

Hence, for the symmetric and the skew-symmetric (anti-symmetric) part of

the second-order tensor A, denoted respectively by AS and AA, we have

AS = EEE[A] , AA = JJJ[A] , (31)
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while

III[A] = A . (32)

We write SSS for the fourth-order tensor with the property

SSS[A] = AT . (33)

Thus, every isotropic fourth-order tensor AAA possesses the representation

AAA = α11⊗ 1 + α2III + α3SSS , (34)

where α1, α2 and α3 are scalars.

If M is a manifold, then TM is the tangent bundle of M,

TM :=
⋃

p∈M
TpM , (35)

where TpM is the tangent space to M at p.

3 Kinematic

3.1 Micromorphic continuum

Consider a material body B (macroscopic continuum, or macrocontinuum,

or macroscopic material, or overall material body), with elements X , Y , . . .,

which may be mapped into a region of the three dimensional Euclidean space E .

With an origin O fixed in E , every point P ∈ E may be identified by a po-

sition vector p, which belongs to the tangent space to E at O. As usually in

classical continuum mechanics, we shall often set p equal to point P , and we

shall speak of the point p ∈ E .

9
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Microphysically, real materials like metals indicate some kind of patterning

with discrete distributed mass. This may be addressed, when formulating con-

stitutive properties of a material point, by taking into account not only the

material point itself, but rather an entire neighborhood of the point. We may

realize this by attaching to each material point X ∈ B, a material body B′(X )

(microcontinuum, or microstructure), which serves to model the microphys-

ical (microstructural) properties of the overall material body. It is assumed,

that the same body B′, with elements X ′, Y ′, . . ., is attached at every X . A

configuration of the body B and its microstructure B′ is a map

(k, k′) : (B,B′) → E × E , (36)

(χ, χ′) �→

⎛
⎜⎜⎜⎜⎜⎜⎝

k = k(X )

k′ = k′(X ,X ′)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (37)

with k(B), k′(X ,B′) open and simply connected subsets of E . k(B) and k′(X ,B′)
are denoted as the ranges in E occupied respectively under the configura-

tion (k, k′). We shall also write (k, k′) ≡ (k,k′), and we shall set k(B) ≡ k(B),

k′(X ,B′) ≡ k′(X ,B′), where k(X ) is a position vector with respect to origin O

and k′(X ,X ′) is a position vector emanated from point k(X ) ∈ E and leading

to the point in space occupied by X ′.

A fixed chosen configuration (χR, χ′R) is called reference configuration of

(B,B′),

(X ,X ′) �→

⎛
⎜⎜⎜⎜⎜⎜⎝

X = χR(X )

X′ = χ′R(X ,X ′)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (38)

while a motion of (B,B′) in E × E is an one parameter family of configura-

tions (χ, χ′), parameterized with time t ∈ I (I ⊂ �, I: interval),

10
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(χ, χ′) : B × B′ × I → E × E , (39)

(X ,X ′, t) �→

⎛
⎜⎜⎜⎜⎜⎜⎝

x = χ(X , t)

x′ = χ′(X ,X ′, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (40)

It is supposed, that for fixed time t, the map (χ, χ′) possesses an inverse,

so that X , X ′ may be expressed in terms of x, x′. If the motion of (B,B′)
starts at time t0, then the configuration (χ(·, t0), χ′(·, ·, t0)) is called the initial

configuration. Accordingly, the configuration (χ(·, t), χ′(·, ·, t)) is denoted as

actual or current or Eulerian configuration. In this article, we assume the

initial configuration at time t0 to coincide with the reference configuration,

x = χ(X , t0) ≡ χR(X ) , (41)

x′ = χ′(X ,X ′, t0) ≡ χ′R(X ,X ′) . (42)

It is common to call configurations different than the reference configuration as

spatial ones. Also, it is assumed that, for fixed t, all inverse functions exist, so

that the motion can be expressed in terms of X, X′. If no confusion may arise,

following common praxis, we shall use the same symbols for these functions

as in Equation (40),

(X,X′, t) �→

⎛
⎜⎜⎜⎜⎜⎜⎝

x = χ(X, t) ≡ χt(X)

x′ = χ′(X,X′, t) ≡ χ′t(X,X′)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (43)

Also, we shall write

u = u(X, t) = x−X (44)

for the macroscopic displacement vector. Functions (χ, χ′) in this equation,

for fixed time t, are referred to as deformation from the reference to the ac-

tual configuration. We refer to the ranges in E RR := χR(B), Rt := χt(B),

11
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R′R(X) := χ′R(X ,B′), R′t(x) := χ′t(X ,B′).

O

x

X

x′

X′

R′R(X)

RR

R′t(x)

Rt

Fig. 1. The region R′R(X) (respectively R′t(x)) must not necessarily be subset of

the region RR (respectively Rt).

The introduction of microcontinua into the theory goes back essentially to

Mindlin (1964) and Eringen (1968). Here, the microcontinuum is supposed to

be, in some sense, mechanically (we are dealing with isothermal processes and

uniform distributed temperature only) equivalent to some patterned material

neighborhood around the considered point. The mass in the microcontinuum

is assumed to be continuously distributed. Generally, the microcontinuum as

adopted in the present article, is a fictitious (conceptual) one, which may have

arbitrary finite dimensions (see Fig. 1), i.e. the region in E occupied by the

microcontinuum at a material point of the macroscopic material must not

necessarily be subset of the region occupied by the macroscopic material itself

(see also Grammenoudis and Tsakmakis (2007)), where this kind of microcon-

tinuum has been invoked in a micropolar plasticity theory). Following Eringen
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(see e.g. Eringen (1999)), we define a micromorphic material to be a material

body with a microcontinuum at each point, which suffers only homogeneous

deformations.

3.2 Deformation

As for a classical continuum, the deformation of the macrocontinuum will be

described by the (macro-) deformation gradient tensor

F = F(X, t) =
∂χ(X, t)

∂X
= GRADχ(X, t) , (45)

where detF > 0 is assumed. We distinguish between the operators GRAD and

grad, representing the gradients with respect to X and x, respectively. Under

arbitrary rigid body rotations Q superposed on the actual configuration, F

transforms according to

F → F∗ = QF . (46)

The right Cauchy-Green deformation tensor C and the left Cauchy-Green

deformation tensor B are given by

C = FT F = U2 , B = FFT = V2 , (47)

in which U and V, called respectively the right and the left stretch tensors,

are symmetric and positive definite. They appear in the polar decomposition

of F,

F = RU = VR , (48)

where R is a proper orthogonal second-order tensor. The velocity gradient

tensor is denoted by L ,

L := gradẋ = ḞF−1 , (49)
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with

L = D + W , D :=
1

2
(L + LT ) , W :=

1

2
(L− LT ) . (50)

Similar to Eq. (45), the deformation of the microscopic body will be described

by the microdeformation gradient tensor

f = f(X,X′, t) :=
∂χ′(X,X′, t)

∂X′ , (51)

with det f > 0 being assumed. As in the micromorphic continuum the mi-

crostructure suffers homogeneous deformations only, we have f = f(X, t). Ge-

ometrically, the macrodeformation gradient F(X, t) is a two point tensor, i.e.

it acts on a vector A ∈ TXRR and furnishes a vector a = FA ∈ TxRt. On

the other hand, since f is homogeneous deformation, f may also be thought

to be a two point tensor, which acts on vectors A ∈ TXRR and furnishes

vectors α ∈ TxRt. Assume A, α to be objective Lagrangean and objective

Eulerian vectors respectively, i.e., under arbitrary rigid body rotations Q su-

perposed on the actual configuration (of the macroscopic body), A, α trans-

forms according to A∗ = A and α∗ = Qα = QfA. Then, f has to transform

according to

f → f∗ = Qf . (52)

Keeping in mind det f > 0, the polar decomposition

f = ru = vr (53)

holds, with r,u,v being second-order tensors corresponding respectively to the

tensors R,U,V in the polar decomposition (48). We use the symbol l for the

14
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”microvelocity” gradient tensor,

l := ḟ f−1 = d + w , (54)

d :=
1

2
(l + lT ) , w :=

1

2
(l− lT ) . (55)

(According to Eringen (1999, p.24), l is called the microgyration tensor.)

If we set x′ = f(X, t)X′ in Eq. (43), then the motion can be described by the

map

(X,X′, t) �→

⎛
⎜⎜⎜⎜⎜⎜⎝

x = χ(X, t)

x′ = f(X, t)X′

⎞
⎟⎟⎟⎟⎟⎟⎠

. (56)

All what says this map can be reflected by considering instead of arbitrary vec-

tors X′, position vectors Φ for the microcontinuum, which are arbitrary fields

of X, Φ = Φ(X), and which are mapped to vectors ϕ(x, t) = f(X, t)Φ(X).

Then, for arbitrary but fixed Φ(·), Eq. (56) yields

(X, t) �→

⎛
⎜⎜⎜⎜⎜⎜⎝

x = χ(X, t)

ϕ(x, t) = f(X, t)Φ(X)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (57)

3.3 Coordinate systems

As usually, the tangent space at any point of a manifold is defined to be an

Euclidean vector space. The inner product in this space is denoted by a dot.

Clearly, in the tangent space of every point there exists always an orthonormal

basis, so that, with respect to this (perhaps local) basis, the components of the

metric tensor will be given by the Kronecker delta symbol. If these bases form

a field of coordinate basis vectors, tangent to a global coordinate system, then
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the metric coefficients of the metric on the manifold, will be given everywhere

by the Kronecker delta symbol. In this case, the metric tensor on the manifold

is everywhere the identity tensor of the second-order, and the manifold will

be Euclidean. However, if it is not possible to select such a coordinate system,

then the tangent vector spaces will still be Euclidean, but the metric of the

manifold, and hence the manifold itself, will be not Euclidean. In this case, if

we are given the metric coefficients at every point on the manifold, then there

do not exist some coordinate transformations rendering the metric coefficients

equal to the Kronecker delta everywhere. Nevertheless, the components of

tensorial quantities will be expressed in terms of the Euclidean product, which

holds always in the tangent space at every point.

It is assumed that RR and Rt are Euclidean manifolds, and that they can

be covered by coordinate lines of single coordinate systems, respectively. Let

{X i}, {xi} be Cartesian coordinate systems for RR and Rt, inducing the

coordinate bases Ei ≡ Ei, ei ≡ ei, respectively,

Ei · Ej = δi
j , ei · ej = δi

j . (58)

It is convenient to use the coordinate system {X i} as a convective one. Then

the coordinate lines in RR of the coordinate system {X i} will represent ma-

terial lines, which will be deformed in Rt, to form the coordinate lines of the

convective coordinate system. To a material point, it will be assigned in RR
and Rt the same values of convective coordinates {X i}, but the corresponding

local coordinate basis will be different. If Ei and gi are the coordinate basis

vectors for the same material point in RR and Rt, respectively, then

gi = FEi , gi = FT−1Ei , gi · gj = δi
j , (59)

gij = gi · gj = Ei ·CEj , gij = gi · gj = Ei ·C−1Ej . (60)
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Between the two basis fields {ei} and {gi}, assigned to the manifold Rt, there

are the relations

gj =
∂xi

∂Xj
ei , gi =

∂X i

∂xj
ei . (61)

This, together with the formula ek ∂

∂xk
= ek ∂Xm

∂xk

∂

∂Xm
, imply

ek ∂

∂xk
= gm ∂

∂Xm
. (62)

Then,

F = F i
jei ⊗Ej = δi

jgi ⊗ Ej , F i
j ≡ Fij =

∂xi

∂Xj
, (63)

F−1 = (F−1)i
jEi ⊗ ej = δi

jgi ⊗ Ej , (F−1)i
j ≡ (F−1)ij =

∂X i

∂xj
. (64)

In analogy to (59), (60), an additional basis field �i = �i(x, t) may be intro-

duced on Rt, by

�i := fEi , �i := fT−1Ei , �i · �j = δi
j . (65)

Note that, in opposite to {gi}, the basis {�i} is anholonomic, since f does not

satisfy some compatibility conditions with respect to the coordinates {X i}.
In other words, f may be thought to be only a local deformation for the

macroscopic body.

3.4 Strain energy function in micromorphic hyperelasticity

The definition of kinematical measures typical for micromorphic continua can

be motivated by considering first pure elasticity. Suppose the specific (per unit

mass of the macroscopic continuum) strain energy function Ψ for an elastic

micromorphic material to depend on F, f , and GRADf ,

Ψ = Ψ̄(F, f , GRADf) . (66)
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It is worth regarding, that GRADf introduces an internal length into the

theory. According to Eq. (66), an elastic micromorphic continuum models

microphysical properties of the real material by taking into account, beyond

the classical deformation gradient tensor F, the microdeformation gradient

tensor f and its gradient GRADf (see Eringen (1968)).

With respect to the convective coordinate system {X i}, we have

GRADf =
∂f

∂X
=

∂f

∂X i
⊗ Ei . (67)

In view of (52), the third-order tensor GRADf obeys the transformation law

(GRADf)∗ ≡ GRAD(Qf) = Q
∂f

∂Xk
⊗ Ek = QGRADf , (68)

where, as usual, X∗ ≡ X has been assumed. On requiring Ψ∗ = Ψ̄(F∗, f∗, GRADf∗) =

Ψ, we get

Ψ = Ψ̄(QF,Qf ,QGRADf) , (69)

which must hold for every proper orthogonal Q. By setting Q = r−1,

Ψ = Ψ̄(r−1F,u, r−1GRADf)

= Ψ̄(uf−1F,u,uf−1GRADf)

= ¯̄Ψ(f−1F,u2, f−1GRADf) , (70)

or

Ψ = Ψ̃(ε̃, β̃, K̃) , (71)

where

ε̃ := f−1F− 1 , β̃ :=
1

2
(u2 − 1) , K̃ := f−1GRADf = f−1 ∂f

∂Xk
⊗ Ek .

(72)

Variables ε̃, β̃, and K̃ are Lagrangean measures, which represent a second-

order micromorphic strain tensor, a second-order classical strain tensor for the
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microstructure and a third-order micromorphic curvature tensor, respectively.

This set of variables has been introduced by Eringen (see e.g. Eringen, 1999,

p.15) in order to formulate micromorphic elasticity. Especially, K̃ is called by

Eringen the wryness tensor. Note that (72) is not the only set of variables ap-

propriate for formulating the constitutive theory. Alternatives arise by setting

in (69) Q equal to rT or R−1 or RT . Then, by following similar steps as above,

one can readily prove that the sets (cf. Eringen, 1999, p.14 and 15)

(
f−1F− 1,

1

2
(u2 − 1),F−1GRADf

)
, (73)(

fTF− 1,
1

2
(u2 − 1), fT GRADf

)
, (74)(

fT F− 1,
1

2
(u2 − 1),F−1GRADf

)
, (75)(

fTF− 1,
1

2
(U2 − 1),FT GRADf

)
, (76)(

fT F− 1,
1

2
(U2 − 1), f−1GRADf

)
, (77)(

F−1f − 1,
1

2
(U2 − 1),F−1GRADf

)
, (78)

...

may also be used as Lagrangean kinematical variables for formulating consti-

tutive theories of micromorphic elasticity.

4 Balance laws

4.1 Conservation of mass for the micro- and the macroscopic continuum

Let V ′(X), v′(x, t) be the volumes of the space ranges R′R(X) and R′t(x),

respectively. In the ensuing analysis we shall often suppress the argument X

in functions V ′(X), R′R(X), the argument x in function R′t(x), the arguments
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x, t in function v′(x, t), the arguments X, t in function f(X, t), and so forth.

Thus, for corresponding volume elements dV ′ and dv′, we have

dv′ = (det f) dV ′ , (79)

or equivalently

v′ = (det f)V ′ . (80)

The mass in the microcontinuum at X, which models a neighborhood around

X of the real material, is assumed to be continuously distributed, so that a

mass density �′(x,x′, t) is assigned to each point in R′t(x), the corresponding

mass density in R′R(X) being �′R(X,X′) ≡ �′(X,X′, 0). Conservation of mass

for the microcontinuum is assumed to apply, so that

�′(x,x′, t) =
�′R(X,X′)
det f(X, t)

. (81)

Let dV , �R(X) be the volume element and the mass density of the macro-

scopic continuum in the reference configuration at point X. Denote by dv the

corresponding volume element in the actual configuration at point x. Then

dv = (detF) dV . (82)

The volumes of RR and Rt are denoted by V and v, respectively.

We suppose �R to be given by the volume average

�R(X) = 〈�′R(X,X′)〉R′
R :=

1

V ′

∫
R′

R
�′R(X,X′) dV ′ . (83)

The mass density of the macroscopic continuum in the actual configuration is

referred to as �(x, t), and conservation of mass for the macroscopic continuum
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is required,

�(x, t) =
�R(X)

detF(X, t)
. (84)

The latter, together with (79)-(83) yields

�(x, t) = 〈�′(x,x′, t)〉R′
t
:=

1

v′

∫
R′

t

χ(x, t)�′(x,x′, t) dv′ , (85)

with the weight function χ being defined by

χ(x, t) :=
det f(X, t)

detF(X, t)
. (86)

In other words, the mass density of the macroscopic continuum is given by

the weighted volume average of the mass density of the microcontinuum. The

weight function χ captures both the deformation of the macroscopic con-

tinuum and the deformation of the microcontinuum. On the other hand,

one may thoughtthink the mass density of the macroscopic continuum to

be defined by (85). Then, as �′(X,X′, 0) = �′R(X,X′), v′(X, 0) = V ′(X),

f(X, 0) = F(X, 0) = 1, and hence χ(X, 0) = 1, we see that �(X, 0) = �R(X),

with �R(X) given by (83), and Eq. (84) will be recovered.

4.2 Balance laws of momentum and moment of momentum

By taking into account the motion of the microcontinuum, Mindlin (1964)

elaborated rigorous derivations for the balance laws for momentum (linear

moment) and moment of momentum (angular moment) for the case of small

deformations. Following steps similar to those in Mindlin’s approach, but ad-

justed to the finite deformation version of the theory adopted here, one may

derive in Rt, relative to the Cartesian coordinate system {xi}, the balance of
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momentum

∂Tij

∂xj
+ bi = �ẍi in Rt , (87)

the balance of moment of momentum

∂Tijk

∂xk
+ Tij − Σij + b

(d)
ij = �λij in Rt , (88)

and appropriate boundary conditions. (For reasons of completeness, the proof

of this assertion is given in Appendix A). In (87), (88), divS =
∂Sij

∂xj

ei for an

Eulerian second-order tensor field S = S(x), T = Tijei ⊗ ej is the Cauchy

stress tensor (non-symmetric), Σ = Σijei ⊗ ej is a symmetric stress tensor

responsible for the microcontinuum, T = Tijkei⊗ ej ⊗ ek is a so-called double

stress tensor, b = biei and b(d) = b
(d)
ij ei ⊗ ej are respectively the body force

and the double body force per unit volume of the actual configuration of the

macroscopic continuum, and t = tiei, t(d) = t
(d)
ij ei ⊗ ej are respectively the

surface force (traction) and the double surface force (double traction) per unit

area of the actual configuration of the macroscopic continuum. The second-

order tensor λ is defined by

λ(x, t) :=
1

v′

∫
R′

t

ẍ′ ⊗ x′ dv′ , (89)

if X′ = 0 is volume centroid of the microcontinuum in the reference configu-

ration, or by

λ(x, t) :=
1

�(x, t)v′

∫
R′

t

χ(x, t)(ẍ′ ⊗ x′)�′(x,x′, t) dv′ , (90)

if X′ = 0 is center of mass of the microcontinuum in the reference configura-

tion. Tensor λ in (89) or (90) is called specific (per unit mass of the microscopic

continuum) spin inertia tensor. It is analogously but not equal to a correspond-

ing tensor introduced by Eringen and Suhubi (1964). Note that λ obeys the
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representation (see Appendix A)

λ = (l̇ + ll)θ , (91)

with

θ = fΘfT (92)

and

Θ = Θ(X) :=
1

V ′

∫
R′

R
(X′ ⊗X′) dV ′ = ΘT , (93)

θ = θ(x, t) :=
1

v′

∫
R′

t

(x′ ⊗ x′) dv′ = θT (94)

if X′ = 0 is volume centroid of the microcontinuum in the reference configu-

ration, or

Θ = Θ(X) :=
1

�R(X)V ′

∫
R′

R
(X′ ⊗X′)�′R(X,X′) dV ′ , (95)

θ = θ(x, t) :=
1

�(x, t)v′

∫
R′

t

χ(x, t)(x′ ⊗ x′)�′(x,x′, t) dv′ (96)

if X′ = 0 is center of mass of the microcontinuum in the reference config-

uration. Again, the tensors Θ, θ defined by (93), (94) or (95), (96) are in

essence the same as the so-called microinertia tensors introduced by Eringen

(see e.g. Eringen, 1999, p.32). Furthermore, starting from the motion of a

microcontinuum included in each material particle of the macroscopic contin-

uum, Eringen and coworkers (see e.g. Eringen and Suhubi, 1964) proposed,

by using different approaches than Mindlin, balance laws of momentum and

moment of momentum for the macroscopic continuum, and related boundary

conditions. If one chooses a fixed form for Θ = Θ(X) in (92), then, regardless

of the way Θ is defined, these laws are exactly the same as those in (87),

(88). Also, for small deformations, apart from definition of Θ, relations (87),

(88) are exactly the same relations obtained by Mindlin (1964) for a material
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composed wholly of unit cells.

4.3 Balance of mechanical energy

It is well known in continuum mechanics that the balance law of mechanical

energy is derivable from the balance laws of momentum and moment of mo-

mentum (cf. corresponding relations in Eringen, 1999; Eringen and Suhubi,

1964). Since the resulting equation is important for our aims, and in order to

make the paper self-contained, we discuss briefly the derivation of this balance

law.

We take the product of Eq. (87) (respectively Eq. (88)) with ẋi (respectively

lij):

∂Tij

∂xj

ẋi + biẋi = �ẍiẋi =
1

2
�

d

dt
(ẋiẋi) , (97)

∂Tijk

∂xk
lij + Tijlij − Σijlij + b

(d)
ij lij = �λijlij . (98)

Employing the identities

∂Tij

∂xj
ẋi =

∂(Tij ẋi)

∂xj
− TijLij , (99)

∂Tijk

∂xk
lij =

∂(Tijklij)

∂xk
− Tijk(gradl)ijk , (100)

and integrating (97), (98) over Rt (with boundary ∂Rt), followed by the use

of the divergence theorem,

∫
∂Rt

t · ẋ da +
∫
Rt

b · ẋ dv =
d

dt

∫
Rt

1

2
(ẋ · ẋ)� dv +

∫
Rt

T · L dv , (101)

∫
∂Rt

t(d) · l da +
∫
Rt

b(d) · l dv

=
∫
Rt

λ · l� dv +
∫
Rt

(Σ−T) · l dv +
∫
Rt

T · gradl dv . (102)
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We write dA = dAnR for a material surface element of the macroscopic

continuum at X in RR, the corresponding material surface element at x in

Rt being da = dan, where nR and n are the (positive) unit normals to the

boundaries of RR and Rt, respectively. After adding Eq. (101) to Eq. (102),

∫
∂Rt

(t · ẋ + t(d) · l) da +
∫
Rt

(b · ẋ + b(d) · l) dv

=
∫
Rt

[
1

2

d

dt
(ẋ · ẋ) + λ · l

]
� dv +

∫
Rt

[T · (L− l) + Σ · l + T · gradl] dv ,

(103)

which is the resulting balance of mechanical energy. The terms on the left-

hand side represent the rate of working of the external (applied) forces. The

first integral on the right-hand side is the rate of change of the kinetic energy

of the body and

∫
Rt

[T·(L−l)+Σ·l+T ·gradl] dv =
∫
RR

[S·(L−l)+σ·l+S ·gradl] dV , (104)

is the rate of working of the internal forces, where

S := (detF)T , σ := (detF)Σ , S := (detF)T (105)

are the weighted Cauchy stress tensor, the weighted stress tensor for the micro-

continuum and the weighted double stress tensor, respectively. From Eq. (104),

we recognize that

w := S · (L− l) , w′ := σ · l ≡ σ · d , wc := S · gradl (106)

represent stress powers per unit volume of the reference configuration.
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5 Dual Variables

5.1 Equivalent classes of strain and micromorphic curvature tensors

In this section we shall interpret geometrically the set of kinematical vari-

ables ε̃, β̃ and K̃ appearing in Eq. (72). To this end we shall made use of

scalar valued differences of geometrical measures. The interpretation of other

sets of variables like these in Eqs. (73)–(78) will be established in a similar

fashion.

Rt

O

X

RR

x = χ(X, t)

Φ

F, f

R′t(x)R′R(X)

C
c

ϕ

Fig. 2. F(X, t), f(X, t) are two-point deformation tensors, mapping vectors at X in

the reference configuration to vectors at x in the actual configuration.

Consider a material line on RR passing through an arbitrary point X and

having there tangent vector C = C(X) (see Fig. 2). The corresponding tangent

vector on the same material line on Rt at x = χ(X, t) is c = c(x, t). Further,

assume Φ = Φ(X) to be a vector at X, which is position vector to some

material point X ′ ∈ R′R(X), the corresponding vector at x = χ(X, t) being

ϕ(x, t). Then,

c = FC , ϕ = fΦ . (107)
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On the other hand, one may consider vectors Ξ = Ξ(X) and Z = Z(X),

which are normal at X, to material surfaces in the macroscopic and the mi-

croscopic continuum, respectively. The corresponding vectors normal to the

same material surfaces in the actual configuration are respectively ξ = ξ(x, t)

and ζ = ζ(x, t) and we have

ξ = FT−1Ξ , ζ = fT−1Z . (108)

More generally, one can consider regular linear transformations Fa = Fa(X, t)

for the macroscopic continuum, and regular linear transformations fa = fa(X, t)

for the microscopic continuum, both going from the reference to the same, but

otherwise arbitrary configuration. On designating the counterparts of C, Φ,

Ξ, Z with respect to these configurations respectively by ca, ϕa, ξa, ζa,

ca = FaC , ϕa = faΦ , (109)

ξa = FT−1
a Ξ , ζa = fT−1

a Z . (110)

Particular examples of such transformations are discussed in Part II in the

framework of multiplicative decompositions of F and f into elastic and plastic

parts.

5.1.1 Strain tensors

As in classical continuum mechanics, the state of strain in the microstructure

at x = χ(X, t), for fixed time t, may be expressed in terms of the scalar valued

difference

Δ′
s = Δ′

s(X, t) :=
1

2
(ϕ ·ϕ−Φ ·Φ) . (111)
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With respect to the reference configuration, on using Eq. (107)2, we have

Δ′
s = Φ · β̃Φ , (112)

where

β̃ :=
1

2
(fT f − 1) (113)

represents a Green strain tensor for the microstructure. Various counterparts

of β̃ may be introduced by requiring from Δ′
s to remain form-invariant with

respect to the chosen configuration. (This method for defining strain tensors

has been discussed intensively in Haupt and Tsakmakis (1996)). For example,

relative to the actual configuration,

Δ′
s = ϕ · βϕ , (114)

where

β := fT−1β̃f−1 ≡ 1

2
(1− v−2) (115)

is Eulerian counterpart of β̃, and is called Almansi strain tensor (for the

microstructure). An equivalence class of strain tensors βa may be generated

by representing Δ′
s with respect to configurations induced by Fa, fa,

Δ′
s = ϕa · βaϕa , βa = fT−1

a β̃f−1
a . (116)

In other words, Δ′
s is represented form-invariantly, with respect to configura-

tions induced by fa, by means of the strain tensors βa, which are obtained by

push-forward transformations of β̃.

In order to interpret the micromorphic strain tensor ε̃, we enter into relation

the deformations of the micro- and the macrocontinuum by introducing the

scalar valued difference

Δs = Δs(X, t) := ζ · c− Z ·C . (117)
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Then, by virtue of (107)1 and (108)2, we get relative to the reference configu-

ration

Δs = Z · ε̃C . (118)

With respect to arbitrary configurations induced by Fa, fa, we have

Δs = ζa · εaca . (119)

The strain tensors εa are defined by the push-forward transformations

εa = faε̃F
−1
a , (120)

and form an equivalence class of micromorphic strain tensors. For the par-

ticular choice fa = f , Fa = F, we obtain the Eulerian micromorphic strain

tensor

ε := f ε̃F−1 = f(f−1F− 1)F−1 = 1− fF−1 , (121)

for which

Δs = ζ · εc . (122)

It is perhaps of interest to remark, that as Φ(X), Z(X) ∈ TXRR, β̃, ε̃ can be

imagined as second-order tensor fields on RR, i.e. β̃(X, t), ε̃(X, t) : TXRR×
TXRR → �. Similarly, β, ε are second-order tensor fields on Rt, i.e. β(x, t),

ε(x, t) : TxRt × TxRt → � and so on.

As mentioned at the beginning of Sect. 5.1, all strain tensors may be intro-

duced geometrically by considering appropriate scalar valued differences like

Δ′
s and Δs. For example, the micromorphic strain tensors in the sets (73)–

(78) can be obtained by considering, relative to the reference configuration,

differences of the form

ϕ · c−Φ ·C , ξ ·ϕ− Ξ ·Φ , . . . . (123)
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5.1.2 Micromorphic curvature tensors

For interpreting geometrically the micromorphic curvature tensor K̃ (see Eq. (72)3),

suppose X ′i , i = 1, 2, 3, to be mutually different material points of the mi-

crostructure attached to X , which are not all in a plane, and are different

that X . Let Φi = Φi(X) ≡ X′
i be the (position) vectors assigned to the pairs

(X ,X ′i ). Clearly, Φi are three time- and linear independent vectors (direc-

tors) at X (Φi ∈ TXRR), which form a basis at X, the reciprocal basis being

Φi = Φi(X), Φi ·Φj = δi
j. On the other hand, Φi may be thought to be tan-

gent vectors to material lines of the microstructure at X. Then, the reduced

convective basis for the microcontinuum at x will be given by

ϕi = ϕi(x, t) = fΦi ∈ TxRt , (124)

with reciprocal basis

ϕi = ϕi(x, t) = fT−1Φi ∈ TxRt . (125)

In the particular case where Φi = Ei, the basis {ϕi} will coincide with the

basis {�i} (cf. Eg. (65)). However, in the following it is convenient to left

{Φi} arbitrary. Evidently, the basis fields ϕi(x, t) and Φi(X), induced by

the convective coordinate systems in the microstructure, can be invoked to

characterize the deformation of the microcontinuum. This is analogous to the

macrocontinuum, the deformation of which can be reflected by the basis vector

fields Ei(X) and gi(x, t), induced by the convective coordinate system {X i}.

Next, we define a scalar-valued difference Δc by

Δc = Δc(X, t) := ϕ1 · (∇Rtϕ2)[g3]−Φ1 · (∇RRΦ2)[E3] , (126)
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where

∇Rtϕ2 := gradϕ2 =
∂ϕ2

∂Xk
⊗ gk , (127)

∇RRΦ2 := GRADΦ2 =
∂Φ2

∂Xk
⊗ Ek . (128)

Δc is a measure for the deformation of the microstructure at a material point,

which takes into account the deformation of the microstructure assigned to

points in the neighborhood.

Our aim is to represent Δc first by means of the curvature tensor K̃. To this

end we express ϕ1, ϕ2 and g3 in Eq. (126) in terms of Φ1, Φ2 and E3,

Δc = fT−1Φ1 ·
(

∂(fΦ2)

∂Xk
⊗ gk

)
[g3]−Φ1 ·

(
∂Φ2

∂Xk
⊗Ek

)
[E3]

= Φ1 ·
{
f−1 ∂f

∂Xk
Φ2

}
(gk · g3) + Φ1 · ∂Φ2

∂Xk
(gk · g3)−Φ1 · ∂Φ2

∂Xk
(Ek · E3) ,

(129)

or, in view of gk · g3 = Ek · E3,

Δc = Φ1 ·
(
f−1 ∂f

∂Xk
Φ2

)
(Ek · E3) =

(
f−1 ∂f

∂Xk
⊗Ek

)
[Φ1,Φ2,E3] . (130)

Hence, (cf. definition (72))3

Δc = K̃[Φ1,Φ2,E3] . (131)

It straightforward to verify that, with respect to the actual configuration,

Δc = K[ϕ1, ϕ2, g3] , (132)

where

K :=
∂f

∂Xk
f−1 ⊗ gk ≡ (gradf) 
 f−1 (133)

and

K = L(f , fT−1,FT−1)[K̃] . (134)
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That means, K can be derived from K̃ by push-forward transformation gen-

erated by L(f , fT−1,FT−1).

Result (134) can be generalized to arbitrary configurations induced by the

deformations Fa, fa. In fact, if we define

(ga)k := FaEk , (ga)
k = FT−1

a Ek , (135)

(ϕa)k := faΦk , (ϕa)
k = fT−1

a Φk , (136)

then an equivalence class of tensors Ka can be constructed, such that

Δc = Ka[(ϕa)
1, (ϕa)2, (ga)3] (137)

and

Ka = L(fa, f
T−1
a ,FT−1

a )[K̃] (138)

or

K̃ = L(f−1
a , fT

a ,FT
a )[Ka] . (139)

Especially, for Fa = F and fa = f ,

Kmnr = (f)mi(f
T−1)nj(F

T−1)rkK̃ijk , (140)

K̃mnr = (f−1)mi(f
T )nj(F

T )rkKijk , (141)

with respect to the Cartesian coordinate systems {Xi} for RR and {xi} for

Rt, inducing the basis {Ei} and {ei}, respectively. Evidently, K̃(X, t) is a

third-order tensor on RR, K(x, t) is a third-order tensor on Rt, and so on.

Summarizing, by representing the scalar differences Δ′
s, Δs and Δc in a form-

invariant manner with respect to the chosen configuration, equivalent classes

of strain tensors for the microcontinuum, micromorphic strain tensors and

micromorphic curvature tensors can be obtained. This also provides the geo-

metrical interpretation of the considered set of strain and curvature tensors.
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The geometrical interpretation of other sets of variables can be established

in a similar fashion. However, in the remaining of this paper, and in Part II,

we shall concentrate ourself on the equivalent classes of strain and curvature

tensors produced by the set of variables in (72). This set of variables is also

favorized by Eringen (1999, p. 15 and 16). For the tensors in these equivalent

classes, we shall show how to find out associated time derivatives and dual

stresses. For other sets of variables the approach will be quite similar.

5.2 Associated rates for strain and micromorphic curvature tensors

For every strain or micromorphic curvature tensor, a specific rate (associated

rate) may be uniquely determined by requiring from Δ̇′
s, Δ̇s, and Δ̇c to remain

also form-invariant with respect to the chosen configuration (cf. Haupt and

Tsakmakis (1996) for similar approaches in classical continuum mechanics).

It is worth mentioning that this method for assigning to each strain or mi-

cromorphic curvature tensor an associated rate is independent of particular

material properties.

To illustrate the method, we restrict attention to Δ′
s, take the material time

derivative of (111), (114) or (116), and summarize the results as follows

Δ̇′
s = Φ ·

�
β̃Φ ,

�
β̃ := ˙̃β , (142)

Δ̇′
s = ϕ ·

�
βϕ ,

�
β := β̇ + lT β + βl = d , (143)

or generally

Δ̇′
s = ϕa ·

�
βaϕa ,

�
βa := β̇a + (ḟaf

−1
a )T βa + βa(ḟaf

−1
a ) . (144)

We refer to
�
βa as the rate associated to βa. Obviously, Δ̇′

s, like Δ′
s, is rep-
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resented form-invariantly with respect to the chosen configuration. To each

strain βa, operating in configurations generated by Fa, fa, there is assigned a

specific rate
�
βa, which represents a generalized Oldroyd time derivative. With

respect to the reference configuration, the associated rate is the material time

derivative, while relative to the actual configuration, the associated rate corre-

sponds to a classical Oldroyd derivative. It is of interest, and also of practical

importance, to remark that the associated rates
�
βa arise from the rate

˙̃
β by

the same push-forward transformations as between βa and β̃ (cf. Eq. (116)2,

�
βa = fT−1

a
˙̃
βf−1

a . (145)

Without proof, we mention that under rigid body rotations superposed on

the configuration induced by Fa, fa,
�
βa transforms like βa. Moreover, higher

associated rates may be introduced by postulating the time rates Δ̈′
s,

...
Δ
′
s, . . .

to be form-invariant with respect to the chosen configuration as well. This

means, our approach for introducing associated rates is the same as that one

used to construct the well known Rivlin-Ericksen tensors (see Malvern, 1969,

p. 403).

In a similar way, Eqs. (117)–(122) yield

Δ̇s = Z ·
�
ε̃C ,

�
ε̃ := ˙̃ε , (146)

Δ̇s = ζ · �εc ,
�
ε := ε̇− lε + εL = L− l = f ˙̃εF−1 , (147)

or generally

Δ̇s = ζa ·
�
εaca ,

�
εa := ε̇a − (ḟaf

−1
a )εa + εa(ḞaF

−1
a ) = fa ˙̃εF−1

a . (148)

For the associated rates of micromorphic curvature tensors, we deduce from
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Eqs. (131)–(141)

Δ̇c =
�
K̃[Φ1,Φ2,E3] ,

�
K̃ := ˙̃K , (149)

Δ̇c =
�
K[ϕ1, ϕ2, g3] ,

�
K := K̇− lK + lT 
K + Kl = gradl

= L(f , fT−1,FT−1)[ ˙̃K] . (150)

With respect to the orthonormal bases {Ei} and {ei}, induced by the Carte-

sian coordinate systems {Xi} for RR and {xi} for Rt,

˙̃Kijm =

(
(f−1)ir

∂frj

∂Xm

)·
= (f−1)ir(f

T )jp(F
T )ms

∂lrp

∂xs
, (151)

�
Kkln = (f)ki(f

T−1)lj(F
T−1)nm

˙̃Kijm =
∂lkl

∂xn
. (152)

More generally,

Δ̇c =
�
Ka[(ϕa)

1, (ϕa)2, (ga)3] , (153)

�
Ka = K̇a − (ḟaf

−1
a )Ka + (ḟaf

−1
a )T 
Ka + Ka(ḞaF

−1
a )

= L(fa, f
T−1
a ,FT−1

a )[ ˙̃K] . (154)

Of course, higher rates for the micromorphic strain and the micromorphic

curvature tensors may be introduced in a natural manner, by requiring from

the rates Δ̈s,
...
Δs, . . ., Δ̈c,

...
Δc, . . . to be form-invariant with respect to the

chosen configuration. Concluding, we remark that also for the micromorphic

strain and the micromorphic curvature tensors, the associated rates transform,

under rigid body rotations superposed on the configuration induced by Fa, fa,

as the tensors themselves.
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5.3 Dual stress tensors and their associated rates

Generally, strain and stress tensors are not a priori related to each other, rais-

ing the question of whether there exists a method to connect with each strain

tensor a stress tensor independently of specific material properties. The stress

power is commonly the convenient framework for answering this question. In

the context of classical continuum mechanics, Hill (1968) developed the con-

cept of conjugate variables on the basis of the stress power w̄ (e.g. per unit

volume of reference configuration). According to this, a stress tensor is pos-

tulated to be conjugate to a given strain tensor e, if the scalar product of t

with the material time derivative of e yields the stress power w̄,

w̄ = t · ė . (155)

Hill’s conjugacy concept is meaningful only for Lagrangean variables. In fact,

for the Eulerian Cauchy stress tensor a conjugate strain tensor does not exist

(see e.g. Ogden, 1983, p.159). To overcome this difficulty in classical contin-

uum mechanics, Haupt and Tsakmakis (1996) proposed the concept of dual

variables. We shall adopt this concept and we shall extend it to cover mi-

cromorphic continua as well. For simplicity, we shall define the notion dual

variables only with reference to the three classes of strain and micromorphic

curvature tensors introduced in Sect. (5.1). But it is emphasized that for other

classes one has to go on analogously.

We first concentrate ourself to the class of strain tensors βa and discuss in full-

length the main issues of the concept. Recall that for defining these tensors

and their associated rates, use is made of the scalar quantities Δ′
s, Δ̇′

s, . . ..

These scalars were required to be form-invariant with respect to the chosen
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configuration. Now, we consider the stress power w′ defined by (106)2, and

its rates ẇ′, ẅ′, . . ., and require from these scalar quantities to be also form-

invariant with respect to the chosen configuration. Keeping in mind (143), it

follows that

w′ = σ ·
�
β (156)

relative to the actual configuration, or

w′ = σ · fT−1 ˙̃βf−1 = f−1σfT−1 · ˙̃β , (157)

and therefore

w′ = σ̃ · ˙̃
β (158)

relative to the reference configuration, where (cf. Eq. (A.46))

σ̃ = f−1σfT−1 (159)

represents a second Piola-Kirchhoff stress tensor for the microcontinuum. Sub-

stituting
˙̃
β from (145) into (158),

w′ = faσ̃fT
a ·

�
βa . (160)

On defining the stress tensor σa through

σa := faσ̃fT
a , (161)

we obtain, with respect to configurations generated by Fa, fa,

w′ = σa ·
�
βa . (162)

The latter reveals that w′ exhibits a form-invariant representation with re-

spect to every configuration induced by Fa, fa. If Fa = fa = 1 (reference

configuration), then w′ is given by (158), while for Fa = F and fa = f (actual

configuration) w′ is given by (156). Pairs (βa,σa) of strain and stress tensors
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satisfying (162) are said to be dual strain and stress tensors (with respect to

w′).

To determine the time derivative which is associated with the stress tensor

σa, we take the material time derivative of w′ in (158),

ẇ′ = ˙̃σ · ˙̃β + σ̃ · ¨̃β . (163)

Using the stress tensors σa and the strain tensors βa, the term σ̃ · ¨̃β can be

written in the form

σ̃ · ¨̃β = σa ·
��
β a , (164)

where

��
β a = fT−1

a
¨̃βf−1

a = (
�
βa)

· + (ḟaf
−1
a )T

�
βa +

�
βa(ḟaf

−1
a ) . (165)

Clearly, Equation (164) represents a scalar, which is expressible form-invariantly

with respect to the chosen configuration. Consequently, the scalar

w′incr. := ˙̃σ · ˙̃β , (166)

which is called the incremental stress power (per unit volume of the refer-

ence configuration) for the microcontinuum, must also be form-invariant with

respect to the chosen configuration. Because,

w′incr. = ˙̃σ · fT
a

�
βafa = fa ˙̃σfT

a ·
�
βa , (167)

ẇ′ will be form-invariant,

w′incr. =
�
σa ·

�
βa , (168)

whenever

�
σa := σ̇a − (ḟaf

−1
a )σa − σa(ḟaf

−1
a )T = fa ˙̃σfT

a . (169)
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If Fa = F, fa = f (actual configuration), then

�
σ = σ̇ − lσ − σlT . (170)

This way, we can associate with each stress tensor σa a specific time deriva-

tive
�
σa, which is referred to as associated rate. Concerning the properties of

the rates
�
σa, it is easy to prove that under rigid body rotations superposed on

the configurations induced by Fa, fa,
�
σa transform like σa. Also, Eqs. (169)

and (161) suggest that
�
σa arises from ˙̃σ by the same push-forward transfor-

mation as between σa and σ̃.

The method for determining stress tensors dual to the micromorphic strains εa,

as well as associated rates, is quite similar. The main results read as follows,

w = S̃ · ˙̃ε = S · �ε = Sa · �εa , (171)

with (cf. (A.46))

S = fT−1S̃FT , (172)

or generally

Sa := fT−1
a S̃FT

a . (173)

Sa is called dual to εa. The associated rates
�
Sa are given by

�
Sa = fT−1

a
˙̃SFT

a = Ṡa + (ḟaf
−1
a )TSa − Sa(ḞaF

−1
a )T . (174)

For Fa = F, fa = f (actual configuration)

�
S = fT−1 ˙̃SFT = Ṡ + lT S− SLT . (175)

Finally, for the double stress tensors dual to the micromorphic curvature ten-

sors, we have

wc = S̃ · ˙̃K = S ·
�
K = Sa ·

�
Ka , (176)
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with (cf. (A.46))

S = L(fT−1, f ,F)[S̃] , (177)

or generally

Sa := L(fT−1
a , fa,Fa)[S̃] . (178)

Micromorphic curvature tensors Ka and double stress tensors Sa are said to

be dual to each other. The associated rates
�
Sa are given by

�
Sa :=L(fT−1

a , fa,Fa)[
˙̃S]

= Ṡa + (ḟaf
−1
a )Sa − Sa 
 (ḟaf

−1
a )T − Sa(ḞaF

−1
a ) . (179)

In particular, for Fa = F and fa = f ,

�
S = L(fT−1, f ,F)[ ˙̃S] = Ṡ + lS − S 
 lT − SL . (180)

We shall employ in Part II the strain and micromorphic curvature tensors,

as well as their corresponding dual stress tensors to formulate micromorphic

plasticity.

A Derivation of balance laws for momentum and moment of mo-

mentum according to Mindlin’s approach

We shall extend, from small to finite deformations, the approach of Mindlin

for establishing the balance laws of momentum and moment of momentum.

We start from the definition of the microcontinuum, the kinematical relations,

the equations describing conservation of mass (see Sect. 4.1) and Hamilton’s

principle. Latter is considered only for conservative mechanical systems and is

equivalent to the local equations of motion, provided all functions involved are

sufficiently smooth. However, although the local equations of motion will be
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derived in the framework of conservative systems, they still apply to every me-

chanical system governed by similar higher order stresses. Consequently, they

can be utilized for the elastic-plastic materials addressed in Part II. Another

important reason for employing this approach is to derive rigorously the local

equations of motion for the macrocontinuum by using appropriate averages of

the microcontinuum, as it shown in the remainder.

Before going any further we would like to mention two articles, which come into

our knowledge by one of the reviewers. The first one is of Germain (1973) and

deals with the virtual power method to derive relevant field equations among

others also for micromorphic materials. According to this method, which has

been recently applied by Forest and Sievert (2003), it is not necessary for the

material behavior to be hyperelastic, which make it appear to be an advan-

tage, or to be more general, than other energetical principles dealing with

hyperelastic material behavior. However, the virtual power method requires

some a priori knowledge, which may be available only through experience.

The second article goes back on Chen (2007) and proposes to gain the field

equations from Hamilton’s principle under the framework of Poison bracket

formalisms. There are some similarities between this article and our work, in

what concerns the weight functions in the averaging procedures. But otherwise

the article of Chen (2007) relies upon Eringen’s definition on microcontinuum,

so that differences exist, e.g., in the definition of the spin inertia tensor.
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A.1 Hamilton’s principle for pure elastic materials

Hamilton’s principle for independent variations δu and δf of displacement

u := x−X and microdeformation f , and fixed times t0, t1, reads

δ
(∫ t1

t0
Kdt +

∫ t1

t0
Wedt

)
= δ

∫ t1

t0
Wdt , (A.1)

or ∫ t1

t0
δKdt +

∫ t1

t0
δWedt =

∫ t1

t0
δWdt . (A.2)

Here, K and We are the total kinetic energy and the work done by external

forces for the macrocontinuum, respectively, while W designates the work of

the internal forces. Variations δu and δf , as well as quantities K, We, W

are defined in the following sections. In doing this, it suffices to concentrate

ourself on the Cartesian coordinates {xi} for Rt and {Xi} for RR, inducing

the orthonormal bases {ei} and {Ei}, respectively. All tensorial components

are referred to these coordinate systems.

A.2 Variation of u and f

Let ∂Rt be the boundary ofRt, and denote by ∂Rui
t the part of ∂Rt where the

displacement components ui are prescribed, ui = ūi on ∂Rui
t . Variations δu =

δu(x, t) are defined to be, as sufficiently as needed, smooth functions vanishing

on ∂Rui
t , i.e. δui = 0 on ∂Rui

t . Moreover, δu have to vanish everywhere at times

t0 and t1, δu ≡ 0 in Rt0 or Rt1 .

Let ∂Rfij

t be the part of ∂Rt where components of the microdeformation fij

are prescribed, fij = f̄ij on ∂Rfij

t . Variations δf = δf(x, t) are defined to be,

as sufficiently as needed, smooth functions vanishing on ∂Rfij

t , i.e. δfij = 0 on
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∂Rfij

t , and to satisfy δf = 0 in in Rt0 or Rt1 .

A.3 Kinetic energy of the macroscopic continuum

The total kinetic energy of the macrocontinuum is given by (cf. Mindlin

(1964))

K :=
∫
RR

TdV ≡
∫
Rt

τdv , (A.3)

where T is the density of kinetic energy of the macroscopic continuum at X

per unit volume of the reference configuration of the macroscopic continuum,

and τ is the density of kinetic energy of the macroscopic continuum at x per

unit volume of the actual configuration of the macroscopic continuum. We

define

T = T (X, t) :=
1

2
〈�′R(X,X′)〉RR〈(x + x′)· · (x + x′)·〉RR

=
�R
2
〈(x + x′)· · (x + x′)·〉RR , (A.4)

τ = τ(x, t) :=
1

2
〈�′(x,x′, t)〉Rt〈(x + x′)· · (x + x′)·〉Rt

=
�

2
〈(x + x′)· · (x + x′)·〉Rt , (A.5)

where 〈(x+x′)· ·(x+x′)·〉RR and 〈(x+x′)· ·(x+x′)·〉Rt are respectively averages

of squares of velocities to be defined appropriately, and use has been made of

(83) and (85). In order for definitions (A.4) and (A.5) to be compatible with

(A.3), we have to prove that

T dV = τ dv . (A.6)

In addition, we shall show that T and τ obey the representations

T =
�R
2

(ẋ · ẋ) +
�R
2

ḟT ḟ ·Θ , (A.7)
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τ =
�

2
(ẋ · ẋ) +

�

2
lT l · θ , (A.8)

where Θ and θ are Lagrangean and Eulerian second-order tensors, respec-

tively, to be given below. They fulfill the transformation law

θ = fΘfT . (A.9)

Proceeding to prove (A.6)–(A.9), we consider two possibilities for the material

point X′ = 0 of the microcontinuum at X.

In the first possibility, we assume this point to be the volume centroid of the

microcontinuum, i.e. ∫
R′

R
X′ dV ′ = 0 . (A.10)

As the deformation of the microcontinuum is homogeneous, we have X′ =

f−1x′, so that (A.10) is equivalent to

1

det f
f−1

∫
R′

t

x′ dv′ = 0 , (A.11)

where (79) has been taken into account. Since f is a regular mapping, the

linear equation (A.11) possesses only the trivial solution

∫
R′

t

x′ dv′ = 0 . (A.12)

In other words, the material point of the microcontinuum which is volume

centroid in the reference configuration remains volume centroid in the actual

configuration as well. From (A.12);

d

dt

∫
R′

t

x′ dv′ =
∫
R′

t

(ẋ′ + x′(trl) dv′ = 0 , (A.13)

and hence ∫
R′

t

ẋ′ dv′ = 0 or
∫
R′

R
ẋ′ dV ′ = 0 . (A.14)
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Now, we define

〈(x + x′)· · (x + x′)·〉RR :=
1

V ′

∫
R′

R
(x + x′)· · (x + x′)·dV ′ , (A.15)

〈(x + x′)· · (x + x′)·〉Rt :=
1

v′

∫
R′

t

(x + x′)· · (x + x′)·dv′ . (A.16)

It follows from (A.4), (A.5), by virtue of (A.14), that

T = T (X, t) =
�R(X)

2

{
1

V ′

∫
R′

R
(x + x′)· · (x + x′)· dV ′

}

=
�R
2

(ẋ · ẋ) +
�R
2

{
1

V ′

∫
R′

R
(ẋ′ · ẋ′) dV ′

}
, (A.17)

and

τ = τ(x, t) =
�(x, t)

2

{
1

v′

∫
R′

t

(x + x′)· · (x + x′)· dv′
}

=
�

2
(ẋ · ẋ) +

�

2

{
1

v′

∫
R′

t

(ẋ′ · ẋ′) dv′
}

. (A.18)

Note in passing, that (A.17) corresponds to the kinetic energy density proposed

by Mindlin (1964), when ”the material is composed wholly of unit cells”. Also,

it is not difficult (by using (79)–(86)) to verify that (A.17) and (A.18) satisfy

the equivalence relation (A.6).

In order to recast T and τ , we introduce the second-order tensors Θ and θ by

the volume averages

Θ = Θ(X) :=
1

V ′

∫
R′

R
(X′ ⊗X′) dV ′ = ΘT , (A.19)

θ = θ(x, t) :=
1

v′

∫
R′

t

(x′ ⊗ x′) dv′ = θT . (A.20)

Clearly, these definitions satisfy the transformation rule (A.9), and recalling

that ẋ′ = lx′, we find

1

V ′

∫
R′

R
(ẋ′ · ẋ′) dV ′ ≡ 1

v′

∫
R′

t

(ẋ′ · ẋ′) dv′ = ḟT ḟ ·Θ = lT l · θ . (A.21)
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After inserting in (A.17) and (A.18), we get Eqs. (A.7) and (A.8), which proves

the assertion in the context of the first possibility.

According to the second possibility, we assume the point X′ = 0 of the micro-

continuum at X, to be the center of mass, i.e.

∫
R′

R
X′�′R dV ′ = 0 , (A.22)

which is equivalent to ∫
R′

t

x′�′ dv′ = 0 . (A.23)

That means, the material point of the microcontinuum which is center of mass

in the reference configuration remains center of mass in every configuration

during the motion of the material body. Moreover,

d

dt

∫
R′

t

x′�′ dv′ =
∫
R′

t

ẋ′�′ dv′ = 0 . (A.24)

(These results go back to Eringen (see e.g. Eringen, 1999, p. 31).)

Now, we define

〈(x + x′)· · (x + x′)·〉RR

:=
1∫

R′
R

�′R(X,X′)dV ′

∫
R′

R
(x + x′)· · (x + x′)·�′R(X,X′)dV ′ , (A.25)

〈(x + x′)· · (x + x′)·〉Rt

:=
1∫

R′
t
χ(x, t)�′(x,x′, t)dv′

∫
R′

t

χ(x, t)[(x + x′)· · (x + x′)·]�′(x,x′, t)dv′ .

(A.26)

After inserting in (A.4), (A.5), and applying (A.22)–(A.24) and the relations

(cf. Eqs. (83), (85))

�RV ′ =
∫
R′

R
�′RdV ′ , �v′ =

∫
R′

t

χ�′dv′ , (A.27)
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we conclude that

T =
�R
2

{
1

�RV ′

∫
R′

R
(x + x′)· · (x + x′)·�′RdV ′

}

=
�R
2

(ẋ · ẋ) +
�R
2

{
1

�RV ′

∫
R′

R
(ẋ′ · ẋ′)�′RdV ′

}
(A.28)

and

τ =
�

2

{
1

�v′

∫
R′

t

χ(x + x′)· · (x + x′)·�′dv′
}

=
�

2
(ẋ · ẋ) +

�

2

{
1

�v′

∫
R′

t

χ(ẋ′ · ẋ′)�′dv′
}

. (A.29)

It is easy to confirm (by using relations (79)–(86)), on the one hand, that

(A.28) and (A.29) satisfy Eq. (A.6), and on the other hand, that T and τ may

be represented by (A.7), (A.8), provided Θ and θ are now defined by the mass

averages

Θ = Θ(X) :=
1

�R(X)V ′(X)

∫
R′

R
(X′ ⊗X′)�′R(X,X′) dV ′ = ΘT , (A.30)

θ = θ(x, t) :=
1

�(x, t)v′(x, t)

∫
R′

t

χ(x, t)(x′ ⊗ x′)�′(x,x′, t) dv′ = θT ,

(A.31)

which proves the assertion in the context of the second possibility.

Note that the second-order tensors Θ and θ in Eqs. (A.30), (A.31) correspond,

but are not equal, to the microinertia tensors introduced by Eringen (see e.g.

Eringen, 1999, p. 32).

From (A.3) and (A.7)

∫ t1

t0
δK dt = −

∫ t1

t0

{∫
RR

(�Rẍ · δu + �RΘ · f̈T δf) dV
}

dt , (A.32)

where use is made of partial integration and of the fact that δu and δf vanish

at times t0 and t1.
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Similar to Eringen (1999, p. 33), we define a spin inertia second-order tensor

λ by

λ(x, t) :=
1

v′

∫
R′

t

(ẍ′ ⊗ x′) dv′ , (A.33)

if X′ = 0 is volume centroid, or by

λ(x, t) :=
1

�(x, t)v′

∫
R′

t

χ(x, t)(ẍ′ ⊗ x′)�′(x,x′, t) dv′ , (A.34)

if X′ = 0 is center of mass. Since the microcontinuum undergoes homogeneous

deformations, the relation ẍ′ = (l̇ + ll)x′ applies, so that in every case

λ = (l̇ + ll)θ , (A.35)

in view of (A.20) and (A.31). Further, it is readily shown that

Θ · f̈T δf = (l̇ + ll)θ · (δf)f−1 , (A.36)

so that, after substitution in (A.32),

∫ t1

t0
δK dt = −

∫ t1

t0

{∫
Rt

[�ẍ · δu + �λ · (δf)f−1] dv
}

dt , (A.37)

or,

∫ t1

t0
δK dt = −

∫ t1

t0

{∫
Rt

[�ẍiδui + �λij(δfim)(f−1)mj ] dv
}

dt . (A.38)

A.4 Work of the internal forces

The work of the internal forces will be stored in the material as potential

energy W ,

W :=
∫
RR

�RΨdV ≡
∫
Rt

�Ψdv , (A.39)

with Ψ being given by (71). We define the second-order stress tensors

S̃ := �R
∂Ψ̃

∂ε̃
, σ̃ := �R

∂Ψ̃

∂β̃
= σ̃T (A.40)

48



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

and the third-order double stress tensor

S̃ := �R
∂Ψ̃

∂K̃
. (A.41)

It follows from (A.39), that

δW =
∫
RR

(S̃ · δε̃ + σ̃ · δβ̃ + S̃ · δK̃) dV . (A.42)

After some lengthy, but otherwise straightforward calculations,

S̃ · δε̃ = S · {(δF)F−1 − (δf)f−1} , (A.43)

σ̃ · δβ̃ = σ · {(δf)f−1} , (A.44)

S̃ · δK̃ = S · ∂{(δf)f
−1}

∂x
, (A.45)

where

S := fT−1S̃FT , σ := fσ̃fT , S := L(fT−1, f ,F)[S̃] . (A.46)

Substitution in (A.42), and integrating with respect to the actual configura-

tion,

δW =
∫
Rt

{
T · {(δF)F−1} −T · {(δf)f−1}+ Σ · {(δf)f−1}+ T · ∂{(δf)f

−1}
∂x

}
dv ,

(A.47)

or equivalently

δW =
∫
Rt

{
Tij(δFim)(F−1)mj − Tij(δfim)(f−1)mj + Σij(δfim)(f−1)mj

+Tijk
∂{(δfim)(f−1)mj}

∂xk

}
dv , (A.48)

where

T :=
1

detF
S , Σ :=

1

detF
σ , T :=

1

detF
S . (A.49)
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We notice the relations

Tij(δFim)(F−1)mj =
∂(Tijδui)

∂xj
− ∂Tij

∂xj
δui , (A.50)

Tijk
∂{(δfim)(f−1)mj}

∂xk
=

∂{Tijk(δfim)(f−1)mj}
∂xk

− ∂Tijk

∂xk
(δfim)(f−1)mj .

(A.51)

On inserting in (A.48), and employing the divergence theorem,

δW =
∫
Rt

(
Σij − Tij − ∂Tijk

∂xk

)
(δfim)(f−1)mj dv −

∫
Rt

∂Tij

∂xj

(δui) dv

+
∫

∂Rt

Tijnj(δui) da +
∫

∂Rt

Tijknk(δfim)(f−1)mj da . (A.52)

with ∂Rt being the boundary of Rt.

A.5 Work of the external forces

As suggested by Mindlin (1964), the form of (A.52) motivates to adopt the

following form for δWe,

δWe =
∫
Rt

biδui dv+
∫
Rt

b
(d)
ij (δfim)(f−1)mj dv+

∫
∂Rt

tiδui da+
∫

∂Rt

t
(d)
ij (δfim)(f−1)mj da ,

(A.53)

where b = biei, b(d) = b
(d)
ij ei ⊗ ej are the body force and double body force

per unit volume of the actual configuration of the macroscopic continuum and

t = tiei, t(d) = t
(d)
ij ei ⊗ ej are the surface force (traction) and the double

surface force (double traction) per unit area of the actual configuration of the

macroscopic continuum, respectively.
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A.6 Local equations of motion

We now insert Eqs. (A.53), (A.52) and (A.38) into Eq. (A.2) and drop the

integration with respect to time,

∫
Rt

(
∂Tij

∂xj
+ bi − �ẍi

)
δui dv

+
∫
Rt

(
∂Tijk

∂xk
+ Tij − Σij + b

(d)
ij − �λij

)
(δfim)(f−1)mj dv

+
∫

∂Rt

(ti − Tijnj)δui da +
∫

∂Rt

(t
(d)
ij − Tijknk)(δfim)(f−1)mj da = 0 . (A.54)

The necessary and sufficient conditions in order for (A.54) to be satisfied for

arbitrary variations δu, δf , are the local equations of motion

∂Tij

∂xj
+ bi = �ẍi in Rt , (A.55)

∂Tijk

∂xk

+ Tij − Σij + b
(d)
ij = �λij in Rt , (A.56)

together with the boundary conditions

Tijnj = ti = t̄i on ∂Rti
t = ∂Rt \ ∂Rui

t , (A.57)

Tijknk = t
(d)
ij = t̄

(d)
ij on ∂Rt

(d)
ij

t = ∂Rt \ ∂Rfij

t , (A.58)

δui = 0 & ui = ūi on ∂Rui
t , (A.59)

δfij = 0 & fij = f̄ij on ∂Rfij

t . (A.60)

Thereby,

∂Rui
t ∪ ∂Rti

t = ∂Rt , ∂Rui
t ∩ ∂Rti

t = ∅ , (A.61)

∂Rfij

t ∪ ∂Rt
(d)
ij

t = ∂Rt , ∂Rfij

t ∩ ∂Rt
(d)
ij

t = ∅ . (A.62)

Concluding, we emphasize once more that relations (A.55)–(A.62) have been

established here by confining to pure elasticity, but otherwise they are valid for
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all micromorphic materials, irrespective of particular constitutive properties.
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