

Cohen syndrome diagnosis using whole genome arrays

Nuria Rivera-Brugués, Beate Albrecht, Dagmar Wieczorek, Heinrich Schmidt, Thomas Keller, Ina Göhring, Arif B. Ekici, Andreas Tzschach, Masoud Garshasbi, Kathlen Franke, et al.

► To cite this version:

Nuria Rivera-Brugués, Beate Albrecht, Dagmar Wieczorek, Heinrich Schmidt, Thomas Keller, et al.. Cohen syndrome diagnosis using whole genome arrays. Journal of Medical Genetics, 2010, 48 (2), pp.136. 10.1136/jmg.2010.082206 . hal-00573454

HAL Id: hal-00573454 https://hal.science/hal-00573454

Submitted on 4 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Cohen syndrome diagnosis using whole genome arrays

Nuria Rivera-Brugués¹, Beate Albrecht³, Dagmar Wieczorek³, Heinrich Schmidt⁴, Thomas Keller⁵, Ina Göhring⁶, Arif B. Ekici⁶, Andreas Tzschach⁷, Masoud Garshasbi⁷, Kathlen Franke⁸, Norman Klopp⁹, H.-Erich Wichmann⁹, Thomas Meitinger^{1,2}, Tim M. Strom^{1,2}, Maja Hempel^{1,2}

¹Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany

²Institute of Human Genetics, Technische Universität München, Munich, Germany

³Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany

⁴Department of Pediatrics, Ludwig-Maximilians-Universität, Munich, Germany

⁵ Department of Pediatrics, Josefinum Augsburg, Augsburg, Germany

⁶ Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nuremberg,

Erlangen, Germany

⁷ Max Planck Institute for Molecular Genetics, Department Human Molecular Genetics, Berlin, Germany

⁸ Private Clinic B.Prager & A.Junge, Dresden, Germany

⁹Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany

Corresponce to

Maja Hempel, MD

Institute of Human Genetics, Technische Universität München

Trogerstraße 32, D-81675 Munich, Germany

hempel@humangenetik.med.tu-muenchen.de

Tel.: 0049 (0)89 4140 6381, Fax: 0049 (0)89 4140 6382

Keywords: Cohen syndrome, COH1 gene, CNV, mental retardation, array

Word count: 1977

ABSTRACT

Background: Cohen syndrome is a rare autosomal recessive disorder with a complex phenotype including psychomotor retardation, microcephaly, obesity with slender extremities, joint laxity, progressive chorioretinal dystrophy/ myopia, intermittent isolated neutropenia, a cheerful disposition, and characteristic facial features. The *COH1* gene, which contains 62 exons, is so far the only gene known to be associated with Cohen syndrome. Point mutations, deletions and duplications have been described in this gene. Oligonucleotide arrays have reached a resolution which allows the detection of intragenic deletions and duplications especially in large genes such as *COH1*.

Results: We have analysed high density oligonucleotide array data from patients with unexplained mental retardation (n=1523) and normal controls (n=1612) for copy number variation (CNV) changes. We detected intragenic heterozygous deletions in the *COH1* gene in three patients but no such changes in the controls. Subsequent sequencing of the *COH1* gene revealed point mutations in the second allele in all three patients analysed.

Conclusion: Genome wide CNV screening with high density arrays provides a tool to detect intragenic deletions in the *COH1* gene. We present an example how microarrays can be used to identify autosomal recessive syndromes and to extend the phenotypic and mutational spectrum of recessive disorders.

Key words: Cohen syndrome, CNV, COH1, mental retardation, array

INTRODUCTION

The phenotype of Cohen syndrome (MIM # 216550), a rare autosomal recessive disorder, has been described to be fairly homogeneous in Finnish patients were the founder mutation c.3348_3349delCT is detected in about 75% of mutant alleles.[1] But in non-Finnish and especially in young Cohen patients, a high genotypic and phenotypic variability occurs. Several clinical diagnostic criteria for Cohen syndrome have been introduced.[2, 3, 4, 5] Chandler et al. proposed that next to significant learning disabilities two of the following criteria should be present for Cohen syndrome diagnosis: facial gestalt, pigmentary retinopathy, and neutropenia.[3] Kohlemainen et al. suggested Cohen syndrome in patients fulfilling at least six of the following criteria: developmental delay, microcephaly, typical facial gestalt, truncal obesity with slender extremities, overly sociable behavior, joint hypermobility, high myopia and/or retinal dystrophy, and neutropenia. [5] El Chehadeh et al. concluded that mutation analysis is not indicated in the absence of chorioretinal dystrophy or neutropenia. [6]

The *COH1* gene (VPS13B, MIM#607817), so far the only gene known to be associated with Cohen syndrome, is one of the largest known genes in the human genome and comprises 62 exons distributed along 864315bp of chromosome 8. More than 96 different mutations in *COH1* gene have been detected in association with Cohen syndrome. The majority of them are terminating mutations predicted to result in a functional null allele.[5, 7, 8, 9] Recently large intragenic deletions and duplications in *COH1* gene have been identified as a cause of Cohen syndrome.[10, 11] Molecular diagnosis of syndromes has been improved by the introduction of oligonucleotide arrays which have reached a resolution facilitating the detection of intragenic copy number variations (CNV).

ARRAY DATASETS AND METHODS

Array datasets

Recruitment of patients (n=1523) had been part of the German Mental Retardation Network (MRNET) study (http://www.german-mrnet.de/). In the present study we focus on three patients, in which CNVs in *COH1* gene were detected. As a control set, CNV data (n=1612) had been generated from the population based KORA study (Cooperative Health Research in the Augsburg Region).

CNV analysis

Genome-wide screening for copy number variations was performed using the Infinium Human550 Genotyping BeadChip (Illumina®) in patients 1 and 2 and the Genome-Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, California) in patient 3. The controls have been investigated with Illumina Infinium Human550-Quad or Human610-Quad arrays. The genomic DNA of the patients and controls was isolated from peripheral blood lymphocytes according to standard procedures and processed following the manufacturer's instructions. Arrays were scanned with the Illumina BeadArrayTM Reader and with the Affymetrix Scanner 3000 7G. Genotypes were called with the Illumina GenomeStudio Software or using the Affymetrix Genotyping Console Software (Version 3.0.2) respectively. Data analysis of the Illumina arrays was performed according to Wagenstaller et al. [12] CNV profiling of the Affymetrix array data was accomplished by using the Segment reporting Tools of the Genotyping Console Software. To determine a deletion we used as a cut off the smoothing median of 5 or more adjacent SNPs with copy number values equal or lower than 1.5 or with log2 intensity ratios equal or lower than -1 for Illumina and Affymetrix arrays respectively. CNVs with copy number values equal or greater than 2.5 or with log2 intensity ratios equal or greater than 1 were suspicious for duplication. All CNVs were checked for gene content and overlap with known genetic variants as provided by the genome browser of the University of California Santa Cruz (UCSC) (http://genome.ucsc.edu, hg 18) and the Database of Genomic Variants (DGV, http://projects.tcag.ca/variation). CNVs not annotated as structural polymorphisms and contained RefSeq genes were genotyped by quantitative PCR. Monitoring of the PCR reaction and setting of baseline and threshold cycle values were accomplished automatically with the Sequence Detection System Version 2.3 Software (SDS 2.3, Applied Biosystems). The relative quantification analysis based on the comparative C_t method was performed using an in-house developed Perl script.

Sequencing

In the patients with a partial heterozygous deletion of the *COH1* gene, direct sequencing of the entire coding region and the exon/intron boundaries of *COH1* was carried out using BigDye[®]Ready Terminator Sequencing Kit and an 48 capillary Abi 3730 Genetic Analyzer (Applied Biosystems) in accordance with standard procedures. All identified variants were genotyped in 676 individuals of a population-based cohort (KORA-cohort) via the MassARRAY system (Sequenom genotyping platform) and the iPLEX Gold chemistry. The assay design used the AssayDesign 3.1.2.2 software with default parameters. Genotype calling was performed by the SpectroTYPER 3.4 software.

Nomenclature

Gene model NM_17890.3/NP_060360 based on UCSC browser was used to describe the detected *COH1* gene variants (http://genome.ucsc.edu).

RESULTS

Molecular findings

Analysis of SNP oligonucleotide array and subsequent qPCR discovered CNVs in the *COH1* gene in three patients: a maternal 67kb deletion encompassing exons 26 to 31 of the *COH1* gene (chr8: 100,573,090 ...100,639,924; c.3871-5024del/p.G1291fsX42) in patient 1, a paternal 193kb deletion encompassing exons 9 to 19 of the *COH1* gene (chr8: 100,216,034 ...100,409,167; c.1207-2824del/p.L403fsX11) in patient 2 and a maternal 315 kb deletion encompassing exons 1 to 17 of the *COH1* gene (chr8:100,015,029...100,347,846; c.1-2515del) in patient 3 (fig 1). There were no such changes in the 1612 controls.

Sequencing of the *COH1* gene identified in patient 1 a paternal missense mutation in exon 32 leading to a stop codon (c.5086C>T/p.R1696X), in patient 2 a maternal 1bp deletion in exon 60 leading to a stop codon (c.11505delA/p.K3835fsX43) and in patient 3 a heterozygous missense mutation in exon 25 (c.3866C>G/p.T1289S) and a heterozygous three base pairs

insertion in exon 62 (c.11827_11828insATG/p.D3942_G3943insD), both inherited from the father (fig 1). These mutations were not present in 676 samples from a general population cohort (KORA) and not annotated as polymorphisms in dbSNP (NCBI, http://www.ncbi.nlm.nih.gov/SNP).

Clinical data

Patient 1

The boy was born after an uneventful pregnancy at term as the first child of unrelated and healthy Arabian parents. Birth weight, length and head circumference were not recorded. A delay in motor development became evident within his first year of life. Sitting started at the age of 18 months, walking at 24 months. A detailed examination at the age of 3 years showed a hypotonic boy with a height of 79cm (-4.8SD), a weight of 9300g (-5.2SD) and a head circumference of 44cm (-4.9SD). A delay in speech development as well as in comprehension was obvious. There was mild craniofacial dysmorphism including horizontal eyebrows, a broad and downturned nasal tip, a broad columella, a short philtrum, a thin upper lip, and an everted lower lip (fig 2). The ophthalmologic examination revealed bilateral myopia, astigmatism and a slightly increased pigmentation of the retina. There was no neutropenia. Patient 2

This boy was born at term after an uneventful pregnancy as the second child of healthy unrelated German parents with a birth weight of 2460g (-2.4SD), a birth length of 46.5cm (-2.3SD), and a head circumference of 31.5cm (-2.9SD). Developmental milestones were delayed with a sitting age of 12 months and a crawling age of 17 months. Examination at the age of 18 months showed a hypotonic toddler with a weight of 10.1kg (-1.5SD), a height of 80cm (-1SD) and a severe microcephaly with an OFC of 42.5cm (-4.8SD). Speech development had not occurred but comprehension was nearly normal. Facial dysmorphism consisted of mild occipital flattening, horizontal eyebrows, almond shaped palpebral fissures, a broad nasal root, a round nasal tip, a thick columella, a short philtrum, an open appearance

of the mouth with a prominent upper gingiva, and a large gap between the incisors (fig 2). Fundoscopy and complete blood count revealed no abnormalities.

Patient 3

The patient is the second child of a healthy non consanguineous German/African couple. The premature birth occurred at 35 weeks of gestation with a birth weight of 2450g (-0.1SD), a birth length of 46cm (-0.4SD) and an OFC of 33.5cm (0.6SD). A heart defect (ASD II and pulmonary stenosis) and arrhythmia were diagnosed after birth. Developmental delay persisted until 2 years of age and improved after surgical correction of the heart defect. The patient started to walk at the age of 24 months and at the age of 2 ³/₄ years she showed normal body measurement with a height of 95cm (0.4SD), a weight of 11.5kg (-1.4SD) and an OFC 50cm (0.6SD). She had a flat face with broad and flat nasal bridge and almond shaped eyes, a short philtrum with thin vermillion border and deep set ears with overfolded helices (fig 2). Fundoscopy and complete blood count revealed normal results.

DISCUSSION

Our report demonstrates that the diagnosis Cohen syndrome can be revealed in patients with unexplained mental retardation applying high resolution oligonucleotide arrays. Although multiple-exon deletions in *COH1* gene have been reported in single patients [5, 7, 8, 13] the distribution of deletions and duplications has only been recognized recently.[10, 11] The frequency of copy number alterations in the *COH1* gene is unknown. Parri et al. disclosed that *COH1* copy number variations account for 42% of *COH1* mutations.[11] Balikova et al. report an increase of the detection rate of 18% (88% instead of 70%) in typical Cohen patients.[10] Arrays targeted at individual exons will further increase the detection rate. We have recently identified - by molecular analysis – a homozygous 66kb deletion comprising exons 32 and 33 of *COH1* which had escaped detection by current array CGH analysis. The fact that we failed to detect CNVs in the *COH1* gene in 1612 controls from a general German

population cohort indicates that CNVs in the *COH1* gene are rare. This is in contrast to the annotation of the *COH1* gene CNVs as benign polymorphisms in the UCSC genome browser and the DGV.

To our knowledge this is the first report on patients with Cohen syndrome diagnosed by molecular whole genome analyses but not by clinical examination. Cohen syndrome was not suspected at first instance in the patients although all of them were examined by experienced paediatricians or clinical geneticists. This can be explained by the young age of patients (16 months, 18 months, 2 ¾ years). The facial appearance of the infant and young children with Cohen syndrome differs from adult patients and myopia/ retinal pigmentary changes usually develop in the pre-school age.[3] The common facial characteristics in our small series of young patients with Cohen syndrome were a hypotonic facial expression, almond shaped palpebral fissures, a prominent nose, and a short philtrum. All patients were affected by mental retardation and delay in motor and speech development. Pigmentary retinopathy and neutropenia were absent in all patients. The unusual phenotype in the patient 3 may due to the fact that in addition to exons 1 to 17 of the *COH1* gene, the deletion affected the neighbouring exon 4 of the *ORS2* gene. Although the gene function of *ORS2* in humans is unknown, an influence of the phenotype cannot be ruled out.

In conclusion, the phenotype of Cohen syndrome defined by *COH1* mutations is fairly unspecific in particular in very young patients but in older children too. In addition, deletions in neighbouring genes may affect the phenotype of Cohen syndrome in the context of a contiguous gene syndrome. Nevertheless young patients with a hypotonic facial expression, almond shaped eyes, short philtrum, mental retardation and motor and speech delay are suspicious of Cohen syndrome. Microarrays have the potential to diagnose Cohen syndrome in very young patients and in patients with an atypical phenotype.

Acknowledgement

We thank all patients and their families for participating in this study. We thank Peter Lichtner, Institute of Human Genetics, Helmholtz Zentrum München for genotyping the *COH* variants in controls and Jürgen Kohlhase, Center for Human Genetics, Freiburg for *CHD7* mutation analysis in patient 3. We also thank Monika Hartig, Ilona Dugdale and Lawrence Haw for critical revision of the manuscript and editorial assistance. This work was supported by a grant from the German Ministry for Education and Research (NGFNplus/www.ngfn.de/englisch/15.htm, project reference numbers 01GS08160, 01GS08161, 01GS08163 and 01GS08167). The research was conducted within the MRNET consortium (http://www.german-mrnet.de/).

Competing Interest

None

Ethics approval

Approval for the study had been obtained by the ethical review boards of the participating

institutions.

Copyright licence statement

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd to permit this article (if accepted) to be published in Journal of Medical Genetics and any other BMJPGL products and sublicences such use and exploit all subsidiary rights, as set out in our licence (http://group.bmj.com/products/journals/instructions-for-authors/licence-forms).

References

1 Kolehmainen J, Black GC, Saarinen A, *et al.* Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. *Am J Hum Genet* 2003;**72**(6):1359-69.

- 2 Horn D, Krebsova A, Kunze J, *et al.* Homozygosity mapping in a family with microcephaly, mental retardation, and short stature to a Cohen syndrome region on 8q21.3-8q22.1: redefining a clinical entity. *Am J Med Genet* 2000;**92**(4):285-92.
- 3 Chandler KE, Kidd A, Al-Gazali L, *et al.* Diagnostic criteria, clinical characteristics, and natural history of Cohen syndrome. *J Med Genet* 2003;**40**(4):233-41.
- 4 Mochida GH, Rajab A, Eyaid W, *et al.* Broader geographical spectrum of Cohen syndrome due to COH1 mutations. *J Med Genet* 2004;**41**(6):e87.
- 5 Kolehmainen J, Wilkinson R, Lehesjoki AE, *et al.* Delineation of Cohen syndrome following a large-scale genotype-phenotype screen. *Am J Hum Genet* 2004;**75**(1):122-7.
- 6 El Chehadeh S, Aral B, Gigot N, *et al.* Search for the best indicators for the presence of a VPS13B gene mutation and confirmation of diagnostic criteria in a series of 34 patients genotyped for suspected Cohen syndrome. *J Med Genet*;**47**(8):549-53.
- 7 Seifert W, Holder-Espinasse M, Spranger S, *et al.* Mutational spectrum of COH1 and clinical heterogeneity in Cohen syndrome. *J Med Genet* 2006;**43**(5):e22.
- 8 Seifert W, Holder-Espinasse M, Kuhnisch J, *et al.* Expanded mutational spectrum in Cohen syndrome, tissue expression, and transcript variants of COH1. *Hum Mutat* 2009;**30**(2):E404-20.
- 9 Hennies HC, Rauch A, Seifert W, *et al.* Allelic heterogeneity in the COH1 gene explains clinical variability in Cohen syndrome. *Am J Hum Genet* 2004;**75**(1):138-45.
- 10 Balikova I, Lehesjoki AE, de Ravel TJ, *et al.* Deletions in the VPS13B (COH1) gene as a cause of Cohen syndrome. *Hum Mutat* 2009;**30**(9):E845-54.
- 11 Parri V, Katzaki E, Uliana V, *et al.* High frequency of COH1 intragenic deletions and duplications detected by MLPA in patients with Cohen syndrome. *Eur J Hum Genet*.
- 12 Wagenstaller J, Spranger S, Lorenz-Depiereux B, *et al.* Copy-number variations measured by single-nucleotide-polymorphism oligonucleotide arrays in patients with mental retardation. *Am J Hum Genet* 2007;**81**(4):768-79.
- 13 Taban M, Memoracion-Peralta DS, Wang H, *et al.* Cohen syndrome: report of nine cases and review of the literature, with emphasis on ophthalmic features. *J AAPOS* 2007;**11**(5):431-7.

Legends to figures:

Figure 1: Array results and electropherograms of the *COH1* mutations in the patients 1 to 3: Patient 1 is affected by a 125kb deletion encompassing exons 26 to 31 of *COH1* gene (chr.8: 100,563,167 ...100,642,020) and a missence mutation c.5197C>T of the second allele; In Patient 2 a 156kb deletion encompassing exons 16 to 19 of *COH1* gene (chr.8:100,250,047...100,405,623) and a one base pair deletion c.1161delA in the second allele was detected; In Patient 3 a 315 kb deletion encompassing exons 1 to 17 of the *COH1* gene (chr8:100,015,029-100,347,846) and missence mutation 3866C>G and three base pair insertion c.11827_11828insATG in the second allele were found.

Figure 2: Craniofacial phenotype of patient 1 to 3: Patient 1 at the age of 3 years with horizontal eyebrows, a broad and down turned nasal tip, a broad columella, a short philtrum, a small upper lip and everted lower lip; Patient 2 at the age of 18 months with horizontal eyebrows, almond shaped and downslanting palpebral fissures, a broad nasal root, a round nasal tip, thick columella, a short philtrum, open appearance of mouth with prominent upper gingiva; Patient 3 at the age of 2 $^{8}/_{12}$ years with round and flat face, bushy eyebrows with lateral flaring, broad nasal bridge, short philtrum and microtia with overfolded helices.

