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Abstract

Information hiding is a general concept which refers to the goal of preventing
an adversary to infer secret information from the observables. Anonymity and
Information Flow are examples of this notion. We study the problem of in-
formation hiding in systems characterized by the coexistence of randomization
and concurrency. It is well known that the presence of nondeterminism, due
to the possible interleavings and interactions of the parallel components, can
cause unintended information leaks. The most established approach to solve
this problem is to fix the strategy of the scheduler beforehand. In this work,
we propose a milder restriction on the schedulers, and we define the notion of
strong (probabilistic) information hiding under various notions of observables.
Furthermore, we propose a method, based on the notion of automorphism, to
verify that a system satisfies the property of strong information hiding, namely
strong anonymity or non-interference, depending on the context. Through the
paper, we use the canonical example of the Dining Cryptographers to illustrate
our ideas and techniques.

1. Introduction

The problem of information hiding consists in trying to prevent the adversary
to infer confidential information from the observables. Instances of this issue
are Anonymity and Information Flow. In both fields there is a growing interest
in the quantitative aspects of the problem, see for instance [25, 3, 40, 14, 15,
29, 30, 4, 17, 11, 12, 38]. This is justified by the fact that often we have some
a priori knowledge about the likelihood of the various secrets (which we can
usually express in terms of a probability distribution), and by the fact that
protocols often use randomized actions to obfuscate the link between secret and
observable, like in the case of the anonymity protocols of DC Nets [13], Crowds
[34], Onion Routing [39], and Freenet [16].
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In a concurrent setting, like in the case of multi-agent systems, there is
also another source of uncertainty, which derives from the fact that the various
entities may interleave and interact in ways that are usually unpredictable, either
because they depend on factors that are too complex to analyze, or because (in
the case of specifications) they are implementation-dependent.

The formal analysis of systems which exhibit probabilistic and nondetermin-
istic behavior usually involves the use of so-called schedulers, which are functions
that, for each path, select only one possible (probabilistic) transition, thus de-
livering a purely probabilistic execution tree, where each event has a precise
probability.

In the area of security, there is the problem that secret choices, like all
choices, give rise to different paths. On the other hand, the decision of the
scheduler may influence the observable behavior of the system. Therefore the
security properties are usually violated if we admit as schedulers all possible
functions of the paths: certain schedulers induce a dependence of the observ-
ables on the secrets, and protocols which would not leak secret information
when running in “real” systems (where the scheduling devices cannot “see” the
internal secrets of the components and therefore cannot depend on them), do
leak secret information under this more permissive notion of scheduler. This is
a well known problem for which various solutions have already been proposed
[7, 8, 10, 9]. We will come back to these in the “Related work” section.

1.1. Contribution

We now list the main contribution of this work:

• We define a class of partial-information schedulers (which we call admis-
sible), schedulers in this class are a restricted version of standard (full-
information) schedulers. The restriction is rather flexible and has strong
structural properties, thus facilitating the reasoning about security prop-
erties. In short, our systems consist of parallel components with certain
restrictions on the secret choices and nondeterministic choices. The sched-
uler selects the next component (or components, in case of synchroniza-
tion) for the subsequent step independently of the secret choices. We
then formalize the notion of quantitative information flow, or degree of
anonymity, using this restricted notion of scheduler.

• We propose alternative definitions to the property of strong anonymity de-
fined in [3]. Our proposal differs from the original definition in two aspects:
(1) the system should be strongly anonymous for all admissible schedulers
instead of all schedulers (which is a very strong condition, never satis-
fied in practice), (2) we consider several variants of adversaries, namely
(in increasing level of power): external adversaries, internal adversaries,
and adversaries in collusion with the scheduler (in a Dolev-Yao fashion).
Additionally, we use admissible schedulers to extend the notions of mul-
tiplicative and additive leakage (proposed in [38] and [5] respectively) to
the case of a concurrent system.
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• We propose a sufficient technique to prove probabilistic strong anonymity,
and probabilistic noninterference, based on automorphisms. The idea is
the following: In the purely nondeterministic setting, the strong anonymity
of a system is often proved (or defined) as follows: take two users A and B
and a trace in which user A is ‘the culprit’. Now find a trace that looks the
same to the adversary, but in which user B is ‘the culprit’ [25, 22, 31, 26].
This new trace is often most easily obtained by switching the behavior of
A and B. Non-interference can be proved in the same way (where A and
B are high information and the trace is the low information).

In this work, we make this technique explicit for anonymity in systems
where probability and nondeterminism coexist, and we need to cope with
the restrictions on the schedulers. We formalize the notion of switching
behaviors by using automorphism (it is possible to switch the behavior of
A and B if there exist an automorphism between them) and then show
that the existence of an automorphism implies strong anonymity.

• We illustrate the problem with full-information schedulers in security,
our solution providing admissible schedulers, and the application of our
proving technique by means of the well known Dining Cryptographers
anonymity protocol.

1.2. Related Work

The problem of the full-information scheduler has already been extensively
investigated in literature. The works [7] and [8] consider probabilistic automata
and introduce a restriction on the scheduler to the purpose of making them suit-
able to applications in security. Their approach is based on dividing the actions
of each component of the system in equivalence classes (tasks). The order of
execution of different tasks is decided in advance by a so-called task scheduler.
The remaining nondeterminism within a task is resolved by a second scheduler,
which models the standard adversarial scheduler of the cryptographic commu-
nity. This second entity has limited knowledge about the other components: it
sees only the information that they communicate during execution. Their no-
tion of task scheduler is similar to our notion of admissible scheduler, but more
restricted since the strategy of the task scheduler is decided entirely before the
execution of the system.

Another work along these lines is [19], which uses partitions on the state-
space to obtain partial-information schedulers. However that work considers a
synchronous parallel composition, so the setting is rather different from ours.

The work in [10, 9] is similar to ours in spirit, but in a sense dual from a
technical point of view. Instead of defining a restriction on the class of sched-
ulers, they provide a way to specify that a choice is transparent to the scheduler.
They achieve this by introducing labels in process terms, used to represent both
the states of the execution tree and the next action or step to be scheduled.
They make two states indistinguishable to schedulers, and hence the choice be-
tween them private, by associating to them the same label. Furthermore, their
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“equivalence classes” (schedulable actions with the same label) can change dy-
namically, because the same action can be associated to different labels during
the execution.

In [1] we have extended the framework presented in this work (by allowing
internal nondeterminism and adding a second type of scheduler to resolve it)
with the aim of investigating angelic vs demonic nondeterminism in equivalence-
based properties.

The fact that full-information schedulers are unrealistic has also been ob-
served in fields other than security. With the aim to cope with general properties
(not only those concerning security), first attempts used restricted schedulers
in order to obtain rules for compositional reasoning [19]. The justification for
those restricted schedulers is the same as for ours, namely, that not all informa-
tion is available to all entities in the system. Later on, it was shown that model
checking is unfeasible in its general form for the kind of restricted schedulers
presented in [19]. See [24] and, more recently, [23].

To the best of our knowledge, this is the first work using automorphisms
as a sound proof technique (in our case to prove strong anonymity and non-
interference). The closest line of work we are aware of is in the field of model
checking. There, isomorphisms can be used to identify symmetries in the system,
and such symmetries can then be exploited to alleviate the state space explosion
(see for instance [28]).

A notion similar to that of authomorphism, namely bisimulation, has been
used in several works to define and verify anonymity and privacy properties (see
for instance [20]). However, the underlying models are different: we annotate
the transitions with a label identifying the active component(s), which means
that an automorphism can relate different states only if they result from different
probabilistic choices. The notion of bisimulation used in the security literature,
on the contrary, usually relates states resulting from different nondeterministic
choices. In [1] we argue that the notion of bisimulation can be too permissive
in certain cases.

A preliminary version of this work, without proofs, appeared in [2].

1.3. Plan of the paper

Looking ahead, after reviewing some preliminaries (Section 2) we formalize
the notions of systems and components (Section 3). In Section 4 we present
admissible schedulers. We then formalize the notions of internal and external
strong anonymity in a probabilistic and nondeterministic setting for admissible
schedulers (Section 5). Finally, we turn our attention to the verification prob-
lem, in Section 6 we present a strong-anonymity proving technique based on
automorphisms. We conclude and outline some future work in Section 7.

2. Preliminaries

In this section we gather preliminary notions and results related to proba-
bilistic automata [37, 36], information theory [18], and information leakage [38,
5].
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2.1. Probabilistic automata

A function µ : Q → [0, 1] is a discrete probability distribution on a set Q if
∑

q∈Q µ(q) = 1. The set of all discrete probability distributions on Q is denoted
by D(Q).

A probabilistic automaton is a quadruple M = (Q,Σ, q̂, θ) where Q is a
countable set of states, Σ a finite set of actions, q̂ the initial state, and θ a
transition function θ : Q → P(D(Σ × Q)). Here P(X) is the set of all subsets
of X .

If θ(q) = ∅, then q is a terminal state. We write q→µ for µ ∈ θ(q), q ∈ Q.
Moreover, we write q

a
→r for q, r ∈ Q whenever q→µ and µ(a, r) > 0. A fully

probabilistic automaton is a probabilistic automaton satisfying |θ(q)| ≤ 1 for all
states. In case θ(q) 6= ∅ in a fully probabilistic automaton, we will overload
notation and use θ(q) to denote the distribution outgoing from q. A path in a

probabilistic automaton is a sequence σ = q0
a1→ q1

a2→ · · · where qi ∈ Q, ai ∈ Σ
and qi

ai+1

→ qi+1. A path can be finite in which case it ends with a state. A path is
complete if it is either infinite or finite ending in a terminal state. Given a path
σ, first(σ) denotes its first state, and if σ is finite then last(σ) denotes its last
state. A cycle is a path σ such that last(σ) = first(σ). Let Pathsq(M) denote
the set of all paths, Paths⋆q(M) the set of all finite paths, and CPathsq(M) the
set of all complete paths of an automaton M , starting from the state q. We will
omit q if q = q̂. Paths are ordered by the prefix relation, which we denote by ≤.
The trace of a path is the sequence of actions in Σ∗ ∪Σ∞ obtained by removing
the states, hence for the above path σ we have trace(σ) = a1a2 . . .. If Σ′ ⊆ Σ,
then traceΣ′(σ) is the projection of trace(σ) on the elements of Σ′.

Let M = (Q,Σ, q̂, θ) be a (fully) probabilistic automaton, q ∈ Q a state,
and let σ ∈ Paths⋆q(M) be a finite path starting in q. The cone generated by σ
is the set of complete paths 〈σ〉 = {σ′ ∈ CPathsq(M) | σ ≤ σ′}. Given a fully
probabilistic automaton M = (Q,Σ, q̂, θ) and a state q, we can calculate the
probability value, denoted by Pq(σ), of any finite path σ starting in q as follows:

Pq(q) = 1 and Pq(σ
a
→ q′) = Pq(σ) µ(a, q

′), where last(σ) → µ.

Let Ωq
def
= CPathsq(M) be the sample space, and let Fq be the smallest σ-

algebra generated by the cones. Then Pq induces a unique probability measure
on Fq (which we will also denote by Pq) such that Pq(〈σ〉) = Pq(σ) for every
finite path σ starting in q. For q = q̂ we write P instead of Pq̂.

A (full-information) scheduler for a probabilistic automaton M is a function
ζ : Paths⋆(M) → (D(Σ×Q)∪{⊥}) such that for all finite paths σ, if θ(last(σ)) 6=
∅ then ζ(σ) ∈ θ(last(σ)), and ζ(σ) = ⊥ otherwise. Hence, a scheduler ζ selects
one of the available transitions in each state, and determines therefore a fully
probabilistic automaton, obtained by pruning from M the alternatives that are
not chosen by ζ. Note that a scheduler is history dependent since it can take
different decisions for the same state s according to the past evolution of the
system.
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2.2. Noisy Channels

This section briefly recalls the notion of noisy channels from Information
Theory [18].

A noisy channel is a tuple C
def
= (X ,Y, P (·|·)) where X = {x1, x2, . . . , xn}

is a finite set of input values, modeling the secrets of the channel, and Y =
{y1, y2, . . . , ym} is a finite set of output values, the observables of the channel.
For xi ∈ X and yj ∈ Y, P(yj |xi) is the conditional probability of obtaining the
output yj given that the input is xi. These conditional probabilities constitute
the so called channel matrix, where P(yj |xi) is the element at the intersection
of the i-th row and the j-th column. For any input distribution PX on X ,
PX and the channel matrix determine a joint probability P∧ on X × Y, and
the corresponding marginal probability PY on Y (and hence a random variable
Y ). PX is also called a priori distribution and it is often denoted by π. The
probability of the input given the output is called a posteriori distribution.

2.3. Information leakage

We recall here the definitions of multiplicative leakage proposed in [38], and
of additive leakage proposed in [5]4. We assume given a noisy channel C =
(X ,Y, P (·|·)) and a random variable X on X . The a priori vulnerability of the

secrets in X is the probability of guessing the right secret, defined as V(X)
def
=

maxx∈X PX(x). The rationale behind this definition is that the adversary’s best
bet is on the secret with highest probability. The a posteriori vulnerability of the
secrets in X is the probability of guessing the right secret, after the output has
been observed, averaged over the probabilities of the observables. The formal

definition is V(X |Y)
def
=

∑

y∈Y PY (y)maxx∈X P (x | y). Again, this definition is
based on the principle that the adversary will choose the secret with the highest
a posteriori probability.

Note that, using the definition of conditional probability, we can write the
a posteriori vulnerability in terms of the joint probability, or in terms of the
channel matrix and the a priori distribution:

V(X |Y)=
∑

y∈Y

max
x∈X

P∧(x, y).=
∑

y∈Y

max
x∈X

(P (y |x)PX(x))

The multiplicative leakage is L×(C, PX)
def
= V(X|Y)

V(X) whereas the additive leak-

age is L+(C, PX)
def
= V(X|Y)−V(X).

2.4. Dining Cryptographers

This problem, described by Chaum in [13], involves a situation in which
three cryptographers are dining together. At the end of the dinner, each of

4The notion proposed by Smith in [38] was given in a (equivalent) logarithmic form, and
called simply leakage. For uniformity sake we use here the terminology and formulation of [5].
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them is secretly informed by a central agency (master) whether he should pay
the bill, or not. So, either the master will pay, or one of the cryptographers will
be asked to pay. The cryptographers (or some external observer) would like to
find out whether the payer is one of them or the master. However, if the payer
is one of them, they also wish to maintain anonymity over the identity of the
payer.

A possible solution to this problem, described in [13], is that each cryptogra-
pher tosses a coin, which is visible to himself and his neighbor to the left. Each
cryptographer observes the two coins that he can see and announces agree or
disagree. If a cryptographer is not paying, he will announce agree if the two sides
are the same and disagree if they are not. The paying cryptographer will say
the opposite. It can be proved that if the number of disagrees is even, then the
master is paying; otherwise, one of the cryptographers is paying. Furthermore,
in case one of the cryptographers is paying, neither an external observer nor the
other two cryptographers can identify, from their individual information, who
exactly is paying (provided that the coins are fair). The Dining Cryptographers
(DC) will be a running example through the paper.

Figure 1: Chaum’s system for the Dining Cryptographers ([13])

3. Systems

In this section we describe the kind of systems we are dealing with. We
start by introducing a variant of probabilistic automata, that we call tagged
probabilistic automata (TPA). These systems are parallel compositions of purely
probabilistic processes, that we call components. They are equipped with a
unique identifier, that we call tag, or label, of the component. Note that, because
of the restriction that the components are fully deterministic, nondeterminism is
generated only from the interleaving of the parallel components. Furthermore,
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because of the uniqueness of the tags, each transition from a node is associated
to a different tag / pair of two tags (one in case only one component makes a
step, and two in case of a synchronization step among two components).

3.1. Tagged Probabilistic Automata

We now formalize the notion of TPA.

Definition 1. A tagged probabilistic automaton (TPA) is a tuple (Q,L,Σ, q̂, θ),
where

• Q is a set of states,

• L is a set of tags, or labels,

• Σ is a set of actions,

• q̂ ∈ Q is the initial state,

• θ : Q → P(L×D(Σ×Q)) is a transition function.

with the additional requirement that for every q ∈ Q and every ℓ ∈ L there is at
most one µ ∈ D(Σ×Q) such that (ℓ, µ) ∈ θ(q).

A path for a TPA is a sequence σ = q0
l1,a1
−→ q1

l2,a2
−→ q2 · · · . In this way, the

process with identifier li induces the system to move from qi−1 to qi performing
the action ai, and it does so with probability µli(ai, qi), where µli is the dis-
tribution associated to the choice made by the component li. Finite paths and
complete paths are defined in a similar manner.

In a TPA, the scheduler’s choice is determined by the choice of the tag. We
will use enab(q) to denote the tags of the components that are enabled to make
a transition. Namely,

enab(q)
def
= {ℓ ∈ L | ∃µ∈D(Σ×Q) : (ℓ, µ) ∈ θ(q)} (1)

We assume that the scheduler is forced to select a component among those
which are enabled, i.e., that the execution does not stop unless all components
are blocked (suspended or terminated). This is in line with the spirit of process
algebra, and also with the tradition of Markov Decision Processes, but contrasts
with that of the Probabilistic Automata of Lynch and Segala [37]. However, the
results in this paper do not depend on this assumption; we could as well allow the
(more general) notion of schedulers which may decide to terminate the execution
even though there are transitions which are possible from the last state. The
reason we did not do it is because it would be confusing in the setting of process
algebra, and also it would complicate the notation and the proofs. On the other
hand, for the purposes of this paper the generality added by the second notion
of scheduler can be captured by adding a component that performs only one
observable action representing termination.

Definition 2. A scheduler for a TPA M = (Q,L,Σ, q̂, θ) is a function ζ :
Paths⋆(M) → (L∪ {⊥}) such that for all finite paths σ, ζ(σ) ∈ enab(last(σ)) if
enab(last(σ)) 6= ∅ and ζ(σ) = ⊥ otherwise.
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3.2. Components

To specify the components we use a sort of probabilistic version of CCS [32,
33]. We assume a set of secret actions ΣS with elements s, s1, s2, · · · , and a
disjoint set of observable actions ΣO with elements a, a1, a2, · · · . Furthermore
we have a disjoint set of communication actions of the form c(x) (receive x on
channel c, where x is a formal parameter), or c̄〈v〉 (send v on channel c, where v
is a value on some domain V ). Sometimes we need only to synchronize without
transmitting any value, in which case we will use simply c and c̄. We denote
the set of channel names by C.

A component q is specified by the following grammar:

Components

q ::= 0 termination
| a.q observable prefix
|

∑

i pi : qi blind choice
|

∑

i pi : si.qi secret choice
| if x = v then q1 else q2 conditional
| A process call

Observables

a ::= c | c̄ simple synchronization
| c(x) | c̄〈v〉 synchronization and communication

The pi, in the blind and secret choices, represents the probability of the
i-th branch and must satisfy 0 ≤ pi ≤ 1 and

∑

i pi = 1. When no confusion
arises, we use simply + for a binary choice. The process call A is a simple
process identifier. For each of them, we assume a corresponding unique process

declaration of the form A
def
= q. The idea is that, whenever A is executed,

it triggers the execution of q. Note that q can contain A or another process
identifier, which means that our language allows (mutual) recursion.

Note that each component contains only probabilistic and sequential con-
structs. In particular, there is no internal parallelism nor nondeterminism (apart
from the input nondeterminism, which disappears in the definition of a system).
Hence each component corresponds to a purely probabilistic automaton, as de-
scribed by the operational semantics below. The main reason to dismiss the use
of internal parallelism and nondeterminism is verification: as mentioned in the
introduction we will present a proving technique for the different definitions of
anonymity proposed in this work. This result would not be possible without
such restriction on the components (see Example 5).

For an extension of this framework allowing the use of internal parallelism
and nondeterminism we refer to [1]. There, the authors combine global nonde-
terminism (arising from the interleaving of the components) and local nonde-
terminism (allowed as a primitive and also arising from the internal parallelism
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of the components). The authors use such (extended) framework for a different
purpose than ours, namely to define a notion of equivalence suitable for security
analysis. No verification mechanisms are provided in [1].

Components’ semantics: The operational semantics consists of probabilistic
transitions of the form q→µ where q ∈ Q is a process, and µ ∈ D(Σ × Q)
is a distribution on actions and processes. They are specified by the following
rules:

PRF1
v ∈ V

c(x).q → δ(c(v), q[v/x])
PRF2

a.q → δ(a, q)
if a 6= c(x)

INT
∑

i pi : qi → ◦
∑

i pi · δ(τ, qi)
SECR

∑

i pi : si.qi → ◦
∑

i pi · δ(si, qi)

CND1 if v = v then q1
else q2 → δ(τ, q1)

CND2

v 6= v′

if v = v′ then q1
else q2 → δ(τ, q2)

CALL
q → µ

A → µ
if A

def
= q

◦
∑

i pi · µi is the distribution µ such that µ(x) =
∑

i piµi(x). We use δ(x) to
represent the delta of Dirac, which assigns probability 1 to x. The silent action,
τ , is a special action different from all the observable and the secret actions.
q[v/x] stands for the process q in which any occurrence of x has been replaced
by v. To shorten the notation, in the examples throughout the paper, we omit
writing explicit termination, i.e., we omit the symbol 0 at the end of a term.

3.3. Systems

A system consists of n processes (components) in parallel, restricted at the
top-level on the set of channel names C:

(C) q1 ‖ q2 ‖ · · · ‖ qn.

The restriction on C enforces synchronization (and possibly communication) on
the channel names belonging to C, in accordance with the CCS spirit. Since
C is the set of all channels, all of them are forced to synchronize. This is to
eliminate, at the level of systems, the nondeterminism generated by the rule for
the receive prefix, PRF1.

Systems’ semantics: The semantics of a system gives rise to a TPA, where the
states are terms representing systems during their evolution. A transition now

is of the form q
ℓ
→ µ where µ ∈ (D(Σ × Q)) and ℓ ∈ L is either the identifier

of the component which makes the move, or a two-element set of identifiers
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representing the two partners of a synchronization. The following two rules
provide the operational semantics rules in the case of interleaving and synchro-
nisation/communication, respectively.

Interleaving.

qi → ◦
∑

j pj · δ(aj , qij)

(C) q1 ‖ · · · ‖ qi ‖ · · · ‖ qn
i
→ ◦

∑

j pj · δ(aj , (C) q1 ‖ · · · ‖ qij ‖ · · · ‖ qn)
If aj 6∈ C

where i indicates the tag of the component making the step.

Synchronization/Communication.

qi → δ(c̄〈v〉, q′i) qj → δ(c(v), q′j)

(C) q1 ‖ · · · ‖ qi ‖ · · · ‖ qn
{i,j}
−→ δ(τ, (C) q1 ‖ · · · ‖ q′i ‖ · · · ‖ q′j ‖ · · · ‖ qn)

here {i, j} is the tag indicating that the components making the step are i and

j. For simplicity we write
i,j
−→ instead of

{i,j}
−→. The rule for synchronization

without communication is similar, the only difference is that we do not have 〈v〉
and (v) in the actions. Note that c can only be an observable action (neither
a secret nor τ), by the assumption that channel names can only be observable
actions.

We note that both interleaving and synchronization rules generate nonde-
terminism. The only other source of nondeterminism is PRF1, the rule for a
receive prefix c(x). However the latter is not real nondeterminism: it is intro-
duced in the semantics of the components but it disappears in the semantics of
the systems, given that the channel c is restricted at the top-level. In fact the
restriction enforces communication, and when communication takes place, only
the branch corresponding to the actual value v transmitted by the corresponding
send action is maintained, all the others disappear.

Proposition 1. The operational semantics of a system is a TPA with the fol-
lowing characteristics:

(a) Every step q
ℓ
→ µ is either

a blind choice: µ = ◦
∑

i pi · δ(τ, qi), or

a secret choice: µ = ◦
∑

i pi · δ(si, qi), or

a delta of Dirac: µ = δ(α, q′) with α ∈ ΣO or α = τ .
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(b) If q
ℓ
→ µ and q

ℓ
→ µ′ then µ = µ′.

Proof.

(a) The rules for the components and the rule for synchronization / commu-
nication can only produce blind choices, secret choices, or deltas of Dirac.
Furthermore, because of the restriction on all channels, the transitions at
the system level cannot contain communication actions. Finally, observe
that the interleaving rule maintains these properties.

(b) At the component level, the only source of nondeterminism is PRF1, the
rule for a receive prefix c(x). At the system level, this action is forced to
synchronize with a corresponding send action, and, in a component, there
can be only one such action available at a time. Hence the tag determines
the value to be sent, which in turn determines the selection of exactly one
branch in the receiving process. The only other sources of nondeterminism
are the interleaving and the synchronization/communication rules, and
they induce a different tag for each alternative.

Example 1. We now present the components for the Dining Cryptographers
using the introduced syntax. They correspond to Figure 1 and to the au-
tomata depicted in Figure 3. As announced before, we omit the symbol 0
for explicit termination at the end of each term. The secret actions si rep-
resent the choice of the payer. The operators ⊕,⊖ represent the sum mod-
ulo 2 and the difference modulo 2, respectively. The test i == n returns
1 (true) if i = n, and 0 otherwise. The set of restricted channel names is
C ={c0,0, c0,1, c1,1, c1,2, c2,0, c2,2,m0,m1,m2}.

Master
def
= p : m0〈0〉 .m1〈0〉 .m2〈0〉+ (1− p) :

∑2
i=0 pi : si .

m0〈i == 0〉 .m1〈i == 1〉 .m2〈i == 2〉

Crypti
def
= mi(pay) . ci,i(coin1) . ci,i⊕1(coin2) . outi〈pay ⊕ coin1 ⊕ coin2〉

Coini
def
= 0.5 : c̄i,i〈0〉 . c̄i⊖1,i〈0〉 + 0.5 : c̄i,i〈1〉 . c̄i⊖1,i〈1〉

System
def
= (C ) Master ‖

∏2
i=0 Crypti ‖

∏2
i=0 Coini

Figure 2: Dining Cryptographers CCS

The operation pay ⊕ coin1 ⊕ coin2 in Figure 2 is syntactic sugar, it can be
defined using the if-then-else operator. Note that, in this way, if a cryptographer
is not paying (pay = 0), then he announces 0 if the two coins are the same (agree)
and 1 if they are not (disagree).
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Figure 3: Dining Cryptographers Automata

4. Admissible Schedulers

We now introduce the class of admissible schedulers.
Standard (full-information) schedulers have access to all the information

about the system and its components, and in particular the secret choices.
Hence, such schedulers can leak secrets by making their decisions depend on the
secret choice of the system. This is the case with the Dining Cryptographers
protocol of Section 2.4: among all possible schedulers for the protocol, there are
several that leak the identity of the payer. In fact the scheduler has the freedom
to decide the order of the announcements of the cryptographers (interleaving),
so a scheduler could choose to let the payer announce lastly. In this way, the
attacker learns the identity of the payer simply by looking at the interleaving
of the announcements.

4.1. The screens intuition

Let us first describe admissible schedulers informally. As mentioned in the
introduction, admissible schedulers can base their decisions only on partial in-
formation about the evolution of the system, in particular admissible schedulers
cannot base their decisions on information concerned with the internal behavior
of components (such as secret choices).

We follow the subsequent intuition: admissible schedulers are entities that
have access to a screen with buttons, where each button represents one (cur-
rent) available option. At each point of the execution the scheduler decides the
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next step among the available options (by pressing the corresponding button).
Then the output (if any) of the selected component becomes available to the
scheduler and the screen is refreshed with the new available options (the ones
corresponding to the system after making the selected step). We impose that the
scheduler can base its decisions only on such information, namely: the screens
and outputs he has seen up to that point of the execution (and, of course, the
decisions he has made).

Example 2. Consider S
def
= ({c1, c2}) r‖q‖ t, where

r
def
= 0.5 : s1.c1.c2 + 0.5 : s2.c1.c2,

q
def
= c1.(0.5 : a1 + 0.5 : b1), t

def
= c2.(0.5 : a2 + 0.5 : b2).

Figure 4 shows the sequence of screens corresponding to a particular sequence
of choices taken by the scheduler5. Interleaving and communication options
are represented by yellow and red buttons, respectively. An arrow between
two screens represents the transition from one to the other (produced by the
scheduler pressing a button), additionally, the decision taken by the scheduler
and corresponding outputs are depicted above each arrow.

Figure 4: Screens intuition

Note that this system has exactly the same problem as the DC protocol:
a full-information scheduler could reveal the secret by basing the interleaving
order (q first or t first) on the secret choice of the component r. However, the
same does not hold anymore for admissible schedulers (the scheduler cannot
deduce the secret choice by just looking at the screens and outputs). This is
also the case for the DC protocol, i.e., admissible schedulers cannot leak the
secret of the protocol.

4.2. The formalization

Before formally defining admissible schedulers we need to formalize the in-
gredients of the screens intuition. The buttons on the screen (available options)

5The transitions from screens 4 and 5 represent 2 steps each (for simplicity we omit the
τ -steps generated by blind choices)
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are the enabled options given by the function enab (see (1) in Section 3), the
decision made by the scheduler is the tag of the selected enabled option, ob-
servable actions are obtained by sifting the secret actions to the schedulers by
means of the following function:

sift(α)
def
=

{

α if α ∈ ΣO ∪ {τ},

τ if α ∈ ΣS .

The partial information of a certain evolution of the system is given by the map
t defined as follows.

Definition 3. Let q̂
ℓ1,α1
−→ · · ·

ℓn,αn
−→ qn+1 be a finite path of the system, then we

define t as:

t
(

q̂
ℓ1,α1
−→ · · ·

ℓn,αn
−→ qn+1

)

def
=

(enab(q̂), ℓ1, sift(α1)) · · · (enab(qn), ℓn, sift(αn)) · enab(qn+1).

Finally, we have all the ingredients needed to define admissible schedulers.

Definition 4 (Admissible schedulers). A scheduler ζ is admissible if for all
σ, σ′ ∈ Paths⋆

t(σ) = t(σ′) implies ζ(σ) = ζ(σ′).

In this way, admissible schedulers are forced to take the same decisions on
paths that they cannot tell apart. Note that this is a restriction on the original
definition of (full-information) schedulers where t is the identity map over finite
paths (and consequently the scheduler is free to choose differently).

In the kind of systems we consider (the TPAs) the only source of nondeter-
minism are the interleaving and interactions of the parallel components. Con-
sequently, in a TPA the notion of scheduler is quite simple: its role, indeed, is
to select, at each step, the component or pair of components which will perform
the next transition. In addition, the TPA model allows us to express in a sim-
ple way the notion of admissibility: in fact the transitions available in the last
state of σ are determined by the set of components enabled in the last state of
σ, and t(σ) gives (among other information) such set. Therefore t(σ) = t(σ′)
implies that the last states of σ and σ′ have the same possible transitions, hence
it is possible to require that ζ(σ) = ζ(σ′) without being too restrictive or too
permissive. In more general systems, where the sources of nondeterminism can
be arbitrary, it is difficult to impose that the scheduler“does not depend on
the secret choices”, because different secret choices in general may give rise to
states with different sets of transitions, and it is unclear whether such difference
should be ruled out as “inadmissible”, or should be considered as part of what
a “real” scheduler can detect.

5. Information-hiding properties in presence of nondeterminism

In this section we revise the standard definition of information flow and
anonymity in our framework of controlled nondeterminism.
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We first consider the notion of adversary. We consider three possible notions
of adversaries, increasingly more powerful.

5.1. Adversaries

External adversaries: Clearly, an adversary should be able, by definition, to see
at least the observable actions. For an adversary external to the system S, it
is natural to assume that these are also the only actions that he is supposed to
see. We also assume that an external adversary has no way to know whether an
internal synchronization has taken place. To this purpose, we need to abstract
from the τ actions. Therefore, we define the observation domain, for an external
adversary, as the set of the (finite) sequences of observable actions, namely:

Oe
def
= Σ∗

O.

Correspondingly, we need a function te : Paths⋆(S) → Oe that extracts the
observables from the executions:

te

(

q0
ℓ1,α1
−→ · · ·

ℓn,αn
−→ qn+1

)

def
= sieve(α1) · · · sieve(αn)

where

sieve(α)
def
=

{

α if α ∈ ΣO,

ǫ if α ∈ ΣS ∪ {τ}.

Note that the difference between sift and sieve is that the latter transforms
the τ actions in empty string, thus making completely invisible to the external
adversary whether an internal synchronization has taken place or not.

Internal adversaries: An internal adversary may be able to see, besides the ob-
servables, also the interleaving and synchronizations of the various components,
i.e. which component(s) are active, at each step of the execution. Hence it
is natural to define the observation domain, for an internal adversary, as the
sequence of pairs of observable action and tag (i.e. the identifier(s) of the active
component(s)), namely:

Oi
def
= (L × (ΣO ∪ {τ}))∗.

Analogously to the case of the external adversaries, we need a function ti :
Paths⋆(S) → Oi that extracts the observables from the executions:

ti

(

q0
ℓ1,α1
−→ · · ·

ℓn,αn
−→ qn+1

)

def
= (ℓ1, sieve(α1)) · · · (ℓn, sieve(αn)).

Note that, in contrast to the case of te, in the definition of ti we could have
used, equivalently, sift instead of sieve.

Adversaries in collusion with the scheduler: Finally, we consider the case in
which the adversary is in collusion with the scheduler, or possibly the adversary

16



is the scheduler. To illustrate the difference between this kind of adversaries
and internal adversaries, consider the scheduler of an operating system. In such
scenario an internal adversary is able to see which process has been schedule
to run next (process in the “running state”) whereas an adversary in collusion
with the scheduler can see as much as the scheduler, thus being able to see (in
addition) which processes are in the “ready state” and which processes are in
the “waiting / blocked” state. We will show later that such additional informa-
tion does not help the adversary to leak information (see Proposition 4). The
observation domain of adversaries in collusion with the scheduler coincides with
the one of the scheduler:

Os
def
= (P(L)× L× (ΣO ∪ {τ}))∗.

The corresponding function

ts : Paths
⋆(S) → Os

is defined as the one of the scheduler, i.e. ts = t.

5.2. Information leakage

In the fields of information flow and anonymity there is a converging consen-
sus for formalizing the notion of leakage as the difference or the ratio between
the a priori uncertainty that the adversary has about the secret, and the a pos-
teriori uncertainty, that is, the residual uncertainty of the adversary once it has
seen the outcome of the computation. The uncertainty can be measured in dif-
ferent ways. One popular approach is the information-theoretic one, according
to which the system is seen as a noisy channel between the secret inputs and
the observable output, and uncertainty corresponds to the entropy of the system
(see preliminaries – Section 2). In this approach, the leakage is represented by
the so-called mutual information, which expresses the correlation between the
input and the output.

In most of the approaches in the information flow literature the notion of
entropy uses is Shannon entropy. However Cachin, in his PhD thesis [6], had
already argued that the right notion of entropy should depend on the notion
of adversary, and on the way we measure its success. More recently, Köpf and
Basin have considered again this intuition, and have developed an information-
theoretic schema to define leakage in terms of mutual information for a large
class of adversaries [27].

In his recent paper, Smith has considerd again the question of the most
suitable notion of entropy, focusing on the particular case of one-try attacks
[38]. He has argued that Shannon entropy is not suitable to represent the
security threats in the case in which the adversary is interested in figuring out
the secret in one try, and he has proposed to use Rényi’s min entropy instead,
or equivalently, the average probability of guessing the secret in one try. This
leads to interpret the uncertainty in terms of the notion of vulnerability defined
in the preliminaries (Section 2). The corresponding notion of leakage, in the
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pure probabilistic case, has been investigated in [38] (multiplicative case) and
in [5] (additive case).

Here we adopt the vulnerability-based approach to define the notion of leak-
age in our probabilistic and nondeterministic context. The Shannon-entropy-
based approach could be extended to our context as well, because in both cases
we only need to specify how to determine the conditional probabilities which
constitute the channel matrix, and the marginal probabilities that constitute
the input and the output distribution.

We will denote by S the random variable associated to the set of secrets
S = ΣS , and by Ox the random variables associated to the set of observables
Ox, where x ∈ {e, i, s}. So, Ox represents the observation domains for the
various kinds of adversaries defined above.

As mentioned before, our results require some structural properties for the
system: we assume that there is a single component in the system containing a
secret choice and this component contains a single secret choice. This hypothesis
is general enough to allow expressing protocols like the Dining Cryptographers,
Crowds, voting protocols, etc., where the secret is chosen only once.

Assumption 1. A system contains exactly one component with a syntactic
occurrence of a secret choice, and such a choice does not occur in the scope of
a recursive call.

Note that the assumption implies that the choice appears exactly once in
the operational semantics of the component. It would be possible to relax the
assumption and allow more than one secret choice in a component, as long as
there are no observable actions between the secret choices. But for the sake
of simplicity in this paper we impose the more restrictive requirement. As a
consequence, we have that the operational semantics of systems satisfies the
following property:

Proposition 2. If q
ℓ
→ µ and q′

ℓ′

→ µ′ are both secret choices, then ℓ = ℓ′ and
there exist pi’s, qi’s and q′i’s such that:

µ = ⊙
∑

i

pi · δ(si, qi) and µ′ = ⊙
∑

i

pi · δ(si, q
′
i)

i.e., µ and µ′ differ only for the continuation states.

Proof. Because of Assumption 1, there is only one component that can generate
a secret choice, and it generates only one such choice. Due to the different
possible interleavings, this choice can appear as an outgoing transition in more
than one state of the TPA, but the probabilities are always the same, because
the interleaving rule does not change them.

Given a system, each scheduler ζ determines a fully probabilistic automaton,
and, as a consequence, the probabilities

Pζ (s, o)
def
= Pζ

(

⋃

{

〈σ〉 | σ ∈ Paths⋆(S), tx(σ) = o, secr(σ) = s
}

)
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for each secret s ∈ S and observable o ∈ Ox, where x ∈ {e, i, s}. Here secr is the
map from paths to their secret action. From these we can derive, in standard
ways, the marginal probabilities Pζ (s), Pζ (o), and the conditional probabilities
Pζ (o | s).

Every scheduler leads to a (generally different) noisy channel, whose matrix
is determined by the conditional probabilities as follows:

Definition 5. Let x ∈ {e, i, s}. Given a system and a scheduler ζ, the corre-
sponding channel matrix Cx

ζ has rows indexed by s ∈ S and columns indexed by
o ∈ Ox. The value in (s, o) is given by

Pζ (o | s)
def
=

Pζ (s, o)

Pζ (s)

Given a scheduler ζ, the multiplicative leakage can be defined as L×(C
x
ζ , Pζ),

while the additive leakage can be defined as L+(C
x
ζ , Pζ) where Pζ is the a priori

distribution on the set of secrets (see preliminaries, Section 2). However, we
want a notion of leakage independent from the scheduler, and therefore it is
natural to consider the worst case over all possible admissible schedulers.

Definition 6 (x-leakage). Let x ∈ {e, i, s}. Given a system, the multiplicative
leakage is defined as

MLx
×

def
= max

ζ∈Adm

L×(C
x
ζ , Pζ),

while the additive leakage is defined as

MLx
+

def
= max

ζ∈Adm

L+(C
x
ζ , Pζ),

where Adm is the class of admissible schedulers defined in the previous section.

We have that the classes of observables e, i, and s determine an increasing
degree of leakage:

Proposition 3. Given a system, for the multiplicative leakage we have

1. For every scheduler ζ, L×(C
e
ζ , Pζ) ≤ L×(C

i
ζ , Pζ) ≤ L×(C

s
ζ , Pζ)

2. MLe
× ≤ MLi

× ≤ MLs
×

Similarly for the additive leakage.

Proof.

1. The property follows immediately from the fact that the domain Oe is an
abstraction of Oi, and Oi is an abstraction of Os.

2. Immediate from previous point and from the definition ofMLx
× andMLx

+.
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5.3. Strong anonymity (revised)

We consider now the situation in which the leakage is the minimum for all
possible admissible schedules. In the purely probabilistic case, we know that
the minimum possible multiplicative leakage is 1, and the minimum possible
additive one is 0. We also know that this is the case for all possible input distri-
butions if and only if the capacity of the channel matrix is 0, which corresponds
to the case in which the rows of the matrix are all the same. This corresponds to
the notion of strong probabilistic anonymity defined in [3]. In the framework of
information flow, it would correspond to probabilistic non-interference. Still in
[3], the authors considered also the extension of this notion in presence of non-
determinism, and required the condition to hold under all possible schedulers.
This is too strong in practice, as we have argued in the introduction: in most
cases we can build a scheduler that leaks the secret by changing the interleaving
order. We therefore tune this notion by requiring the condition to hold only
under the admissible schedulers.

Definition 7 (x-strongly anonymous). Let x ∈ {e, i, s}. We say that a system
is x-strongly-anonymous if for all admissible schedulers ζ we have

Pζ (o | s1) = Pζ (o | s2)

for all s1, s2 ∈ ΣS, and o ∈ Ox.

The following corollary is an immediate consequence of Proposition 3.

Corollary 8.

1. If a system is s-strongly-anonymous, then it is also i-strongly-anonymous.

2. If a system is i-strongly-anonymous, then it is also e-strongly-anonymous.

The converse of point (2), in the previous corollary, does not hold, as shown
by the following example:

Example 3. Consider the system S
def
= ({c1, c2}) P ||Q ||T where

P
def
= (0.5 : s1 . c1) + (0.5 : s2 . c2) Q

def
= c1 . o T

def
= c2 . o

It is easy to check that S is e-strongly anonymous but not i-strongly anony-
mous, showing that (as expected) internal adversaries can “distinguish more”
than external adversaries.

On the contrary, for point (1) of Corollary 8, also the other direction holds:

Proposition 4. A system is s-strongly-anonymous if and only if it is i-strongly-
anonymous.
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Proof. Corollary 8 ensures the only-if part. For the if part, we proceed by contra-
diction. Assume that the system is i-strongly-anonymous but that Pζ (o | s1) 6=
Pζ (o | s2) for some admissible scheduler ζ and observable o ∈ Os. Let o =
(enab(q̂), ℓ1, sift(α1)) · · · (enab(qn), ℓn, sift(αn)) and let o′ be the projection of
o on Oi, i.e. o′ = (ℓ1, sift(α1)) · · · (ℓn, sift(αn)). Since the system is i-strongly-
anonymous, Pζ (o

′ | s1) = Pζ (o
′ | s2), which means that the difference in prob-

ability with respect to o must be due to at least one of the sets of available
processes. Let us consider the first set L in o which exhibits a difference in
the probabilities, and let o′′ be the prefix of o up to the tuple containing L.
Since the probabilities are determined by the distributions on the probabilistic
choices which occur in the individual components, the probability of each ℓ ∈ L
to be available (given the trace o′′) is independent of the other labels in L.
At least one such ℓ must therefore have a different probability, given the trace
o′′, depending on whether the secret choice was s1 or s2. And, because of the
assumption on L, we can replace the conditioning on trace o′′ with the condi-
tioning on the projection o′′′ of o′′ on Oi. Consider now an admissible scheduler
ζ′ that acts like ζ up to o′′, and then selects ℓ if and only if it is available. Since
the probability that ℓ is not available depends on the choice of s1 or s2, we have
Pζ (o

′′′ | s1) 6= Pζ (o
′′′ | s2), which contradicts the hypothesis that the system is

i-strongly-anonymous.

Intuitively, this result means that an s-adversary can leak information if and
only if an i-adversary can leak information or, in other words, s-adversaries are
as powerful as i-adversaries (even when the former can observe more informa-
tion).

6. On the verification of strong anonymity: a proving technique based

on automorphisms

As mentioned in the introduction, several problems involving restricted sched-
ulers have been shown undecidable (including computing maximum/minimum
probabilities for the case of standard model checking [24], [23]). These results are
discouraging in the aim to find algorithms for verifying strong anonymity/non-
interference using our notion of admissible schedulers (and most definitions
based on restricted schedulers). Despite the fact that the problem seems to be
undecidable in general, in this section we present a sufficient (but not necessary)
anonymity proving technique: we show that the existence of automorphisms be-
tween each pair of secrets implies strong anonymity. We conclude this section
illustrating the applicability of our proving technique by means of the DC pro-
tocol, i.e., we prove that the protocol does not leak information by constructing
automorphisms between pairs of cryptographers. It is worth mentioning that
our proving technique is general enough to be used for the analysis of leakage
information of a broad family of protocols, namely any protocol that can be
modeled in our framework.
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6.1. The proving technique

In practice proving anonymity often happens in the following way. Given a
trace in which user A is the ‘culprit’, we construct an observationally equivalent
trace in which user B is the ‘culprit’ [25, 22, 31, 26]. This new trace is typically
obtained by ‘switching’ the behavior of users A and B. We formalize this idea
by using the notion of automorphism, cf. e.g. [35].

Definition 9 (Automorphism). Given a TPA (Q,L,Σ, q̂, θ) we say that a bi-
jection f : Q → Q is an automorphism if it satisfies f(q̂) = q̂ and

q
ℓ
→ ⊙

∑

i

pi · δ(αi, qi) ⇐⇒ f(q)
ℓ
→ ⊙

∑

i

pi · δ(αi, f(qi)).

In order to prove anonymity it is sufficient to prove that the behaviors of
any two ’culprits’ can be exchanged without the adversary noticing. We will
express this by means of the existence of automorphisms that exchange a given
pair of secret si and sj .

Before presenting the main theorem of this section we need to introduce one
last definition. Let S = (C) q1|| · · · || qn be a system and M its corresponding
TPA. We define Mτ as the automaton obtained after “hiding” all the secret
actions of M . The idea is to replace every occurrence of a secret s in M by the
silent action τ . Note that this can be formalized by replacing the secret choice
by a blind choice in the corresponding component qi of the system S.

We now formalize the relation between automorphisms and strong anonymity.
We will first show that the existence of automorphisms exchanging pairs of se-
crets implies s-strong anonymity (Theorem 1). After, we will show that the
converse does not hold, i.e., s-strongly-anonymous systems are not necessarily
automorphic (Example 4).

Theorem 1. Let S be a system satisfying Assumption 1 and M its tagged
probabilistic automaton. If for every pair of secrets si, sj ∈ ΣS there exists an
automorphism f of Mτ such that for any state q we have

q
ℓ,si
−→M q′ =⇒ f(q)

ℓ,sj
−→M f(q′), (2)

then S is s-strongly-anonymous.

Proof. Assume that for every pair of secrets si, sj we have an automorphism
f satisfying the hypothesis of the theorem. We have to show that, for every
admissible scheduler ζ we have:

∀ o∈Os : Pζ (o | s1) = Pζ (o | s2) .

We start by observing that for si, by Proposition 2, there exists a unique pi
such that, for all transitions q

l
→ µ, if µ is a (probabilistic) secret choice, then

µ(si,−) = pi. Similarly for sj, there exists a unique pj such that µ(sj ,−) = pj
for all secret choices µ.
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Let us now recall the definition of Pζ (o | s):

Pζ (o | s)
def
=

Pζ (o ∧ s)

Pζ (s)

where
Pζ (o ∧ s)

def
= Pζ ({π∈CPaths | ts(π)=o ∧ secr(π) = s})

with secr(π) being the (either empty or singleton) sequence of secret actions of
π, and

Pζ (s)
def
= Pζ ({π∈CPaths | secr(π) = s}) .

Note that, since a secret appears at most once on a complete path, we have:

Pζ (si) = Pζ

(

{π
ℓ,si
−→ σ ∈ CPaths | π, σ}

)

=
∑

π
ℓ,si−→qi∈Paths⋆

Pζ

(

π
ℓ,si
−→ qi

)

=
∑

last(π)
ℓ
→µ

µ secret choice

Pζ (π) · pi

and analogously

Pζ (sj) = Pζ

(

{π
ℓ,sj
−→ σ ∈ CPaths | π, σ}

)

=
∑

π
ℓ,sj
−→qj∈Paths⋆

Pζ

(

π
ℓ,sj
−→ qj

)

=
∑

last(π)
ℓ
→µ

µ secret choice

Pζ (π) · pj

Let us now consider Pζ (o | si) and Pζ (o | sj). We have:

Pζ (o ∧ si)

= Pζ

({

π
ℓ,si
−→ σ ∈ CPaths | ts(π

ℓ,si
−→ σ) = o

})

=
∑

π

last(π)
ℓ
→µ

µ secret choice

Pζ (π) · pi ·
∑

σ

π
ℓ,si−→σ∈Paths⋆

ts(π
ℓ,si−→σ)=o∧last(te(σ)) 6=τ

Pζ (σ)
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again using that a secret appears at most once on a complete path. Moreover,
note that we have overloaded the notation Pζ by using it for different measures
when writing Pζ (σ), since σ need not start in the initial state q̂.
Analogously we have:

Pζ (o ∧ sj)

= Pζ

({

π
ℓ,sj
−→ σ ∈ CPaths | ts(π

ℓ,sj
−→ σ) = o

})

=
∑

π

last(π)
ℓ
→µ

µ secret choice

Pζ (π) · pj ·
∑

σ

π
ℓ,sj
−→ σ∈Paths⋆

ts(π
ℓ,sj
−→ σ)=o∧last(te(σ)) 6=τ

Pζ (σ)

Therefore, we derive

Pζ (o | si) =

∑

π

last(π)
ℓ
→µ

µ secret choice

∑

σ

π
ℓ,si−→ σ∈Paths⋆

ts(π
ℓ,si−→ σ)=o∧last(te(σ)) 6=τ

Pζ (π) ·Pζ (σ)

∑

last(π)
ℓ
→µ

µ secret choice

Pζ (π)
(3)

Pζ (o | sj) =

∑

π

last(π)
ℓ
→µ

µ secret choice

∑

σ

π
ℓ,sj
−→σ∈Paths⋆

ts(π
ℓ,sj
−→σ)=o∧last(te(σ)) 6=τ

Pζ (π) ·Pζ (σ)

∑

last(π)
ℓ
→µ

µ secret choice

Pζ (π)
(4)

Observe that the denominators of both formulae (3) and (4) are the same. Also
note that, since f is an automorphism, for every path π, f(π) obtained by
replacing each state in π with its image under f is also a path. Moreover, since
f satisfies (2), for every path π

ℓ,si
−→ σ we have that f(π)

ℓ,sj
−→ f(σ) is also a path.

Furthermore f induces a bijection between the sets

{(π, σ) | last(π)
ℓ′

→ µ s.t. µ secret choice, π
ℓ,si
−→ σ ∈ Paths⋆

ts(π
ℓ,si
−→ σ) = o, last(te(σ)) 6= τ }

and

{(π, σ) | last(π)
ℓ′

→ µ s.t. µ secret choice, π
ℓ,sj
−→ σ ∈ Paths⋆

ts(π
ℓ,sj
−→ σ) = o, last(te(σ)) 6= τ }

given by (π, σ) ↔ (f(π), f(σ)).
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Finally, since ζ is admissible, ts(π) = ts(f(π)), and f is an automorphism,
it is easy to prove by induction that Pζ (π) = Pζ (f(π)). Similarly, Pζ (σ) =
Pζ (f(σ)). Hence the numerators of (3) and (4) coincide which concludes the
proof.

Note that, since s-strong anonymity implies i-strong anonymity and e-strong
anonymity, the existence of such an automorphism implies all the notions of
strong anonymity presented in this work. We now proceed to show that the
converse does not hold, i.e., strongly-anonymous systems are not necessarily
automorphic.

Example 4. Consider the following (single component) system

0.5 : s1.(0.5 : (p : a+ (1−p) : b) + 0.5 : ((1−p) : a+ p : b))
+

0.5 : s2.(0.5 : (q : a+ (1−q) : b) + 0.5 : ((1−q) : a+ q : b))

It is easy to see that such system is s-strongly-anonymous, however if p 6= q and
p 6= 1− q there does not exist an automorphism for the pair of secrets (s1, s2).

The following example demonstrates that our proving technique does not
carry over to systems whose components admit internal parallelism.

Example 5. Consider S
def
= ({c1, c2}) r‖q‖ t, where

r
def
= 0.5 : s1.c1 + 0.5 : s2.c2,

q
def
= c1.(a | b), t

def
= c2.(a | b).

where q1|q2 represents the parallel composition of q1 and q2. It is easy to show
that there exists an automorphism for s1 and s2. However, admissible sched-
ulers are able to leak such secrets. This is due to the fact that component r
synchronizes with q and t on different channels, thus a scheduler of S is not
restricted to select the same transitions on the branches associated to s1 and s2
(remember that schedulers can observe synchronization).

For the same reason, our proving technique does not extend to systems
whose components contain nondeterminism. An example proving this point can
be obtained from the previous one by replacing the parallel composition q1|q2
with the nondeterministic composition q1 + q2.

We now show that the definition of x-strong-anonymity is independent of the
particular distribution over secrets, i.e., if a system is x-strongly-anonymous for
a particular distribution over secrets, then it is x-strongly-anonymous for all
distributions over secrets. This result is useful because it allows us to prove
systems to be strongly anonymous even when their distribution over secrets is
not known.

Theorem 2. Consider a system S = (C) q1 ‖ · · · ‖ qi ‖ · · · ‖ qn. Let qi be the
component which contains the secret choice, and assume that it is of the form
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∑

j pj : sj . qj. Consider now the system S′ = (C) q1 ‖ · · · ‖ q′i ‖ · · · ‖ qn,
where q′i is identical to qi except for the secret choice, which is replaced by
∑

j p
′
j : sj . qj. Then we have that:

1. For every si, sj there is an automorphism on S satisfying the assumption
of Theorem 1 if and only if the same holds for S′.

2. S is x-strongly-anonymous if and only if S′ is x-strongly-anonymous.

Note: 1) does not imply 2), because in principle neither S not S′ may have
the automorphism, and still one of the two could be strongly anonymous.

Proof. We note that the PAs generated by S and S′ coincide except for the
probability distribution on the secret choices. Since the definition of automor-
phism and the assumption of Theorem 1 do not depend on these probability
distributions, (1) is immediate. As for (2), we observe that x-strong anonymity
only depends on the conditional probabilities Pζ (o | s). By looking at the proof
of Theorem 1, we can see that in the computation of Pζ (o | s) the probabilities
on the secret choices (i.e. the pj ’s) are eliminated. Namely Pζ (o | s) does not
depend on the pj ’s, which means that the value of the pj ’s has no influence on
whether the system is x-strong anonymous or not.

6.2. An Application: Dining Cryptographers

Now we show how to apply the proving technique presented in this section
to the Dining Cryptographers protocol. Concretely, we show that there exists
an automorphism f exchanging the behavior of the Crypt0 and Crypt1; by
symmetry, the same holds for the other two combinations.

Consider the automorphisms of Master and Coin1 indicated in Figure 5.
The states that are not explicitly mapped (by a dotted arrow) are mapped to
themselves.

Also consider the identity automorphism on Crypti (for i = 0, 1, 2) and
on Coini (for i = 0, 2). It is easy to check that the product of these seven
automorphisms is an automorphism for Crypt0 and Crypt1.

7. Conclusion and future work

We have defined a class of partial-information schedulers which can only
base their decisions on the information they have available. In particular they
cannot base their decisions on the internal behavior of the components. We
have used admissible schedulers to resolve nondeterminism in a realistic way,
and to tune the definition of strong anonymity proposed in [3].

Furthermore, we have presented a technique to prove the various definitions
of strong anonymity proposed in the paper. This is particularly interesting con-
sidering that many problems related to restricted schedulers have been shown
to be undecidable. In particular we have shown how to use the technique to
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Figure 5: Automorphism between Crypt0 and Crypt1

prove that the DC protocol is strongly anonymous when considering admissi-
ble schedulers, in contrast to the situation when considering full-information
schedulers.

We think that the results of this paper would hold also if we considered
probabilistic schedulers (instead than deterministic ones). In a sense, the is-
sue of probabilistic versus deterministic schedulers is orthogonal to the issue
of partial versus full information schedulers, and to the problem of “taming”
nondeterminism to avoid leakage.

For future work, we plan to investigate the decidability problem for the
various definitions of strong anonymity we have proposed. Another interest-
ing direction for future work is to extend well known isomorphism-checking
algorithms and tools (see [21] for a survey) to our setting in order to verify
automatically strong anonymity (in case an automorphism exists - recall that
this is not a necessary condition).

Moreover, we plan to investigate the type of protocols that can be captured
by our framework. We believe that we can cope also with systems which do not
satisfy the restriction of secret choices being generated by a single component
(Assumption 1). More precisely, we believe that our framework can be applied
also to the case of system in which secret choices can occur in more than one
component, provided that they occur at the beginning of the code (as it is often
the case). The idea is to automatically transform the system into a new one
satisfying Assumption 1, whose secret choice corresponds to the combination of
the original ones, and in such a way that the new system is equivalent to the
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original one w.r.t. anonymity. The following example illustrates our intuition.

Example 6. Consider an electronic voting system EVS consisting of two com-
ponents, P and Q, who can vote for two candidates 0 and 1. Each component
selects the candidate by making a probabilistic choice:

EVS = (p : 0.P [0]) + ((1− p) : 1.P [1]) ‖ (q : 0.Q[0]) + ((1− q) : 1.Q[1]).

We can transform EVS in the following system EVS ′ where the probabilistic
choices are “centralized” and combined into one single choice, as follows:

EVS ′ = (c, d) VotesGenerator ‖ c(v).P [v] ‖ d(v).Q[v]

where

VotesGenerator = (p q : c̄〈0〉.d̄〈0〉) + (p (1− q) : c̄〈0〉.d̄〈1〉)
+
((1− p) q : c̄〈1〉.d̄〈0〉) + ((1 − p) (1− q) : c̄〈1〉.d̄〈1〉)

We believe that EVS and EVS ′ are equivalent, in the sense that EVS satisfies
strong anonymity iff EVS ′ satisfies strong anonymity.
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