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David Gérard-Varét Matthieu Hillairet
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Abstract

We consider the effect of surface roughness on solid-solidact in a Stokes flow. Various
models for the roughness are considered, and a unified nwtyydis given to derive the corre-
sponding asymptotics of the drag force. In this way, we recand clarify the various expressions
that can be found in the litterature.

1 Introduction

The dynamics of solid particles in a viscous fluid is cructahtany phenomena, such as blood flow,
sedimentation or filtration. The drag force exerted by thiel ftun the solids plays of course a central
role in this dynamics. It has been the matter of many studibs.first ones focused on the dynamics
of a rigid sphere near a plane wall, that moves in a Stokes fludeuno-slip conditions: we refer
to the pioneering workd][9, P{] 7.]22]. The main conclusiorthefse works is that the drag force
is inversely proportional to the distanée= h(t) between the sphere and the plane at ttm&he
reduced ordinary differential equation that governs therenment of the sphere is then of the type:
h+ h/h = f, which prevents collision between the sphere and the wiilhite time. We quote that
this striking conclusion holds for any value of the fluid \dsity and of the sphere density. Moreover,
it is still valid for arbitrary solids with smooth surfaceand it is still valid within an unsteady Navier-
Stokes flow (sedT12]).

This theoretical no-collision result, that goes againsthimedes’ principle, is clearly unrealistic
at the scale of macroscopic solids. Even at microscopiescétlry collisions” have been clearly
recognized. Therefore, many articles have tried to idente flaw of the previous modelling, in
order to circumvent the paradox. Among possible flaws thet lb@en suggested one can mention:

e The rigidity assumption. Elasticity, even weak could allimwsolid contact: sed]8].

e The no-slip condition, that is no longer valid when the dis& between the solids is of the
order of the mean free path of the fluid particles: §ep [14].

e the incompressibility assumption : s¢k [2].
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We shall focus here on another very popular explanatiornfonb-collision paradox: roughness. The
basic idea is that nothing is as smooth as a plane or a sphegularity of the surface can thus affect
the fluid-solid interaction. Thisredohas led to many experimental and theoretical studies, fiogus

on roughness-induced effects on drag forcd ([RB.]9, 19i¢hStudies will be discussed in the core
of the paper.

We quote that the interest in roughness issues has beenegrtkease last years, notably in con-
nection to microfluidics. Indeed, it has been recognizedttieaclassical no-slip boundary condition,
which is relevant at the macroscopic scale, may fail at theranior nanoscale. This happens for in-
stance for some corrugated hydrophobic surfaces, whiptgaa bubbles in their humps and generate
in this way some substantial slip. More generally, to deteenthe appropriate boundary condition at
a rough surface is a matter of current debate. In this cgnifectie has theoretical formulas that ex-
press how the drag force depends on the "rough” boundaryitbmmsl one may check experimentally
through the force measurement what the right boundary tionds. This interesting point of view is
for instance developed ifi [[L,]24].

The aim of this paper is to investigate mathematically and imified way the relation between
the roughness and the drag force. Namely, we study the ewolwith time ¢ of a rough solidS(t),
falling towards a rough walP in a Stokes flow. We assume for simplicity that the solid mdwes
translating along the vertical axis= 0, where(r, 6, z) are cylindrical coordinates. We shall comment
on this simplification later on. Various models for the rongbs are to be considered. In all models,
the moving solid is described at timéy S(t) = h(t) + S for a fixed S. We assume thaf has its
lower tip atr = 0, and that in the vicinity of its lower tip, its surface is debed by:

z=n"s(r), r<ry, 6¢€(0,2m)

for somery < 1 and some Lipschitz functiong with v5(0) = 0, vs > 0. Notice that the solid
velocity is given byh(t) e.. Similarly, the wallP is described in cartesian coordinatesy, z), by

z=9p(z,y), (z,y)€R?

for some Lipschitz functioryp, with vp(0,0) = 0, vp < 0. Accordingly, we denote the fluid domain

F(t) = {X = (:U,y,z), X ¢ S(t)? z > ’7P($,y)}.

If u=u(t,x) = (ug(t, x), uy(t,x), u;(t,x)) andp = p(t, x) stand for the fluid velocity and pressure,
the steady Stokes equations read

—Au+Vp=0, divu=0, t>0,x¢€F(t). 1.2)

We neglect gravity, as it plays no role in the discussion. @hal is to study the force on the sphere,
that is

Fa(t) == / (2D(u)n —pn)do - e,. (1.2)
8(1)

The notations: and D(u) refer to the normal vector pointing outside the fluid domaid ¢he sym-
metric part of the gradient respectively.

In order to determiné-;(¢), one needs to specify the boundary conditions at the soifdeiand
at the plane. In all our models for roughness, such conditimve the following general form:

(u—h(t)e:) nlosey = 0, (u—h(t)e:) x nlasey = —2Bs [D(u)n] x nlgsw (1.3)
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and
u-nlp =0, uxnlp = —=20p[D(u)n] xnlp (1.4)

whereggs, Sp € [0,+00). These are boundary conditions of Navier type, the corstgntand 5s
being the slip lengths. Of special importance is the ¢ase= 5p = 0, which corresponds to the
no-slip condition.

We model the roughness in three different ways:

1. through a lack of differentiabilityNamely, we consider a solisl which is axisymmetric around
{r = 0}, and satisfies

5(r) == 1—V1—=r24erlt®  ac(0,1), r<r.

This means that the solid surface is locally a smooth spherd —+/1 — r2, perturbed by a less
regular "rough profile” of amplitude. For« = 0, this profile is a spike, which has Lipschitz
regularity. Fora > 0, the profile is differentiable, with a Holder derivativeorrsimplicity, we

do not consider any roughness on the wall, and take the c#sgi-slip boundary conditions:

vp =0, Bp = fBs = 0.

2. through a slip condition We consider the case of a bal] of radiusl1, falling vertically above
a plane wall, with positive slip coefficients:

’)/S(T):l— Vl_r27 ’YPZO, BS?BP>O~

Let us stress that such modelling of the roughness by thdiaaldif (small) slip is commonly
used. Itis well-accepted in the context of rough hydropbahbirfaces[[4], and a topic of debate
in the context of hydrophilic onesf [[[7, [24].

3. through a small parameteNamely, the roughness is modelled through a small amgjthidyh
frequency perturbation of a plane wall. That meahis described by the equation

= Vp(xay) = 6’7($/6,y/5), ekl

for some periodic and smooth non-positive functigiX, Y'), with v(0,0) = 0. In parallel,
we assume no roughness on the solid surfagér() = 1 — v/1 — r2), and the classical no-slip
conditions:8s = Bp = 0.

Note that if we take the parametersss andSp to be zero in the previous models, we are back
to the classical situation of a curved and smooth solidfgltowards a plane wall. The whole point
is to derive the next order terms that are involved in the esgion ofF,;. Note also that, in view of
our models, the assumption that the solid translates aload) is natural. For the first two models,
the whole geometry is axisymmetric. For the third one, one @ansider rough wall$>c that are
symmetric with respect to andy. In all these configurations, if the initial velocity field tife solid
is alongr = 0, both the geometry and the Stokes flow inherit strong symnpetperties, forcing the
velocity field of the solid to be along = 0 for all time.

The ambition of this paper is to provide a rigorous and gdnmasthodology to derive the drag
term F,, in the regime of small distandebetween the solid and the wall. This methodology, which
relies on the calculus of variations, will be explained int&m @. Then, in sectioﬂ 3, it will be applied
to our first two models of rough surfaces. In this way, we wittemd results from former formal
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computations, notably those 19]. In the last sedfione will turn to the third model of a small
amplitude and high frequency boundary. This model is ofipadr interest, as it is connected to the
phenomenon of apparent slip, which is a topic of currentré@stein fluid mechanics, sef J18]. We
will notably discuss the introduction of an effective slgngth as a modelling for hydrophilic rough
surfaces.

2 Methodology for drag derivation

We present in this section a general approach to the demivafi the drag forceF,(¢) on the solid
sphereS(t). We first remark that the geometric configuration at titvie entirely characterized by
the distanceh(t) between the lower tip of the solid and the origin= 0. Thus, we can rewrite
S(t) = Sh), F(t) = Fy), with the family (S, F, ), satisfying

Sh:h+S7 Fh:{x7 ng_hv Z>7P($,y)}

Moreover, considering the linear Stokes equation] (1.1)uhdary conditions[(J.3]-(1.4), we can
write u(t, ) = h(t)upy) (z) andp(t, ©) = h(t)pp) (v) whereuy, py, satisfy the steady problem

— Aup +Vp, =0, divu,=0, x€F (2.1)
together with the boundary conditions
(uh — ez) nlps, = 0, (uh - ez) X nlgs, = —2Bs[D(up)n] x nlas, (2.2)
and
up -nlp = 0, up xnlp = =2Bp [D(up)n] x nlgp (2.3)

Accordingly, we can write

Fa(t) = h(t)Frwy,  Fn = /as (2D(up)n — ppn) do - e..
h

The problem is to determine the behaviourff in the limit » — 0. Our method to address this
problem has three main steps:

1. In afirst step, we express the drag as the minimum of some energy functional. One can do
it using the variational interpretation df (2.1)-.2)3p It allows to identify for all our models
of roughness an energy functiorfal and a set of "admissible fieldsi;, such that

F, = in £ .
h = min n(uw)

The explicit definitions o}, and.A;, will be given at the end of this section.

2. In a second step, we rely on the minimization problem guoed in Step 1 to find an accurate
lower bound forF,,. Namely, we choose some appropriate energy functiépak &, and
some appropriate set of admissible fields O A;, for which we can compute explicitly the
minimimum and corresponding minimizér In this way, we get

Ep(i) = min &, (u) < min &, (u) = F
ue_Ah UE.Ah
which yields a lower bound. Of course, the relaxed funciighaand admissible sefl;, must

remain close enough to the original ones, in order for thisslobound to be accurate. We will
make them explicit for our various roughness models later on
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3. In a third step, we choose some appropriate fiedd.A;, so that

Fi = min & (u) < E(a)
uEAy
provides an accurate upper bound for the drag (that is wilséme type of behaviour as the
lower one). In many cases, as will be seen later on, the mieinii € A, of the second step
generally belongs to the original set of admissible fielgs or at least can be slightly modified
to belong taA;,. Thus, one can take in generak: .

Our goal in the present paper is to apply this methodologyaieha better understanding of
roughness effects. In this section, we carry out step 1,ishéte formulation of the drag in terms
of some minimization problem. This step is very general, imdeépendent of the roughness issues.
In the next sections, when turning to step 2 and step 3, eagfhness model will of course require
specific calculations.

To link the drag to an extremum problem, we must distinguistwieen the case of no slip4 =
Bp = 0) and the case of non-zero slig{ > 0, B3p > 0).

e In the case of no-slip, the divergence free-condition iewli

/ |V, |? :2/ |D(up)|?.
Fh Fh

Hence, multiplying the Stokes equatidn {2.1)dhyand integrating over the fluid domain,,
we obtain by Stokes formula

2/ |D(uh)|2 = / (2D(up)n — ppn) -up do = / (2D(up)n — ppn)do -e, = Fp,.
Fy aSpuP S

Moreover, we know that equatiop (P.1) (together with theratary conditions[(2]2)F(2.3)) is
the Euler equation of a minimization problem. Namely,

/ |V, |* = min{/
Fy Fy

(We remind that the Sobolev spabig . is the space of fields that are locally square integrable,
with distributional derivativevu also locally square integrabld).

Indeed, ifu has the properties mentioned above, theny, is zero along the boundadys, U P.
So, multiplying {Z.1L) by — u;, and integrating by parts, we end up with

1/2 1/2
/ [V |* < Vup:Vu < </ ]Vuh]2> (/ ]Vu\2> ,
Fy Fp Fj Fy

using the Cauchy-Schwarz inequality. The characteriaaifa.;, follows, and eventually yields
that 7, = minye 4, En(u), with

]Vu\Q, u € Hlloc(Fh), V-u=0, ulp=0,ulg, = ez}

1 1

1 1 1

En(u) = /F \Vul?,  Ap = {u € Ho.(F), V-u=0, ulp=0,ulss, = ez} (2.4)
h

1 As no abstract theory is needed in the remainder of the @rioich mathematical details can be skipped without harm.



In the case of positive slip lengtlis;, 5p, the computation is slightly different: multiplying the
Stokes equation by, — u, u € Aj,, we obtain after integrating by parts:

L
Bs

1
+ ﬁ_P/P(uhxn)-((uh—u)xn)dJ = 0.

/ 2D(up) : D(up — u) / ((up, —ez) xn) - ((up, —u) X n) do
Fy, aSh,

(2.5)

In order to recover full gradients instead of symmetric ggats, we proceed as follows. On one
hand, by standard identities of differential geometry (&eenstance [[6, Lemma 1, p. 233]),
we have

D(v)n xn = %&w xn+ %v x n atosy,
for any smoothy satisfyingv - n = 0 at 9S,. The last term at the r.h.s is connected to the
curvature of)S, which is simply1 by our choice ofS. Similarly,
D(v)nxn:% v X n atP
for any smoothy satisfyingv - n = 0 at P. On the other hand, writing
Av =div (Vv), respectivelyAv = 2div (D(v)),
and integrating by parts, we get that for any smootim A, and any smoothy satisfying

w-n=0atdsS, U P:

Av-w=— Vv:Vw+/

F), F s, (On(v—e2) xn)-(wxn) + / (0pv X 1) - (w x 1),

P
respectively

Avw = —/ 2D(v) : D(w)—|—/ (2D(v —e,)n x n)-(wxn)+/ (2D(v)n x n)-(wxn).

Fr Fy asy, P
Combining the previous identities, we get
/ 2D(v) : D(w) = Vv :Vw + / ((v—-ez) xn)-(wxn).
Fy, F, oS,
We takev = uy,, w = u — uy, and inject this last equality intg (2.5) to obtain
/ |Vup* + (i—kl) / |(up, —e,) x n|>do + L/ lup, x n|? do = Vup : Vu
Fy, ﬂs oSh ﬂP I Fy,

+ (i—i—l)/ ((up —ez) xn)-((u—ey) xn)do + i/(uh xn) - (uxn)do.

Bs a5, Bp Jp
Use of the Cauchy-Schwartz inequality and of the Young iaétyuv/ab < 1(a+b) leaves us
with

1 1
Vup|* + (— + 1) / \(up, — e,) x n|*do + —/ lup, x n|?do
P, Bs a5, Bp Jp

1 1
<[ |Vu* + (— + 1) / ((u—e.) x n|?do + —/ lu x n|? do.
P, Bs S, Bp Jp
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Thus, we have this time th&f, = minyc 4, &,(u), with

,: 2 1 _ 2 L 2
En(u) : /F} |Vul” + <5S+1>/¢95h‘(u e;) X n| +5P/P]u><n\,

Ay = {uGHlloc(Fh), V-u=0, u-nlp=0, (u—e;)- nlss, :O}.

1

(2.6)

We note that contrary to the no-slip case, only the impertifigabondition is included in the def-
inition of the spaceA,,. It can be shown that the Euler equation for the latter miningizoroblem
includes the boundary conditions (2.£)-]2.3) on the tatigepart of the velocity-field by standard
integration by parts as in the no-slip cas@r brevity, we shall replace the coefficiehtss + 1 by
1/Bs in what follows This means that we shall include curvature effects in tipecslefficient. The
characterization of the drag through energy functiorfai)(@nd [26) will be applied to our first two
roughness models in the next section.

3 Application to variousroughness models

In this section, we detail the steps 2 and 3 of our methodolbgsh in the case of a non-smooth
boundary (model 1) and in the case of slip boundary condit{omodel 2).
3.1 Thecase of non-smooth solids
As emphasized in the introduction, we consider here the chs@ axisymmetric solidS, whose
boundary is described near its lower tip by

vs(r) =1 =1 =r24ertt™ o c[0,1], =<
The wall is flat, and no slip conditions are imposed at all latawies. The drag is given by

Fn, = min &, (u
h uE.Ah h( )7

with the energy;, and the set of admissible field§, given in (2.4).

As the fluid domainZ}, is invariant by rotations aroung,, much can be said about the minimizer
u = uy. Indeed, for any rotatiorRy arounde,, Ryu,R_g still belongs toA;, and has the same
energy asi;,. Uniqueness of this minimizer yields

Ry uh(R,gx) = uh(x), Vx € Fj,. (31)
This means that,;, has the following structure:
up = upr(r,2)er + upg(r,z)eg + up (1, 2)e,

where(r, 6, z), resp.(e,, ey, e,) are the cylindrical coordinates, resp. the cylindricaltuebasis. One
then remarks that, = uy, , (7, 2)e, + up .(r, 2)e. still belongs taAy,, with &, (vy) < &, (uyp). Again,
by uniqueness of the minimizer, we gef = v, anduy, ¢ = 0. Thus, the divergence free condition
resumes to

1
;&(ruh,r) + Oz up . = 0.



Together with the boundary conditian, .(r,0) = 0, it leads to

1
up = —0.¢er + ;ar(r(b) €z, (32)
with streamfunctionj(r, z) := — [ us.(r, 2) dz’. The boundary conditions ahare
az¢‘85 = 8z¢‘P =0, 87“(70(?)’35 =, (MP =0. (3.3)

Thus, we can without restriction include these last coodgiin the set of admissible fields: instead
of the original definition in[(2]6), we take

1 e
Ap, = {u € HE (Fp), u=—0.¢e + ;ar(m) e, for some¢ satisfying )}
We quote that the boundary conditions @at 0S yield

0,0(r,h+v5(r)) =0, Or(ro)(r,h+~s(r))=r, r<r.

They imply in turn thatp(r, h + v5(r)) = § + < for some constant. As ¢(r, z) = — [ u,(r, ') dz’
is regular enough near= 0, we deduce: = 0. Eventually

az(b(r? h + ’YS(T)) = 07 (b(?“, h + ’YS(T)) =
9:9(r,0) =0, ¢(r,0) =

r
-, r<ro,
2 (3.4)
0, r<nmrgp.

From there, we obtain an accurate lower bound as followsickgtthat
Vul? = 10,20%| +18:0/71* + 18220 + 10,10, (ré) /r]* + 10,2 (ro) /7[>,

we anticipate that in the limit of small, most of the energy;, will come from a neighborhood of the
lower tip of the spherd}) := {r < ro, 0 < z < h + ~vs(r)}, and will be due to the derivatives
of the stream functior. Accordingly, we introduce the following relaxed minimigi set and energy
functional:

Ay = {u € HY(F?), u=—0.¢e, + %&(m)ez for someg satisfying @)},

&pz/ﬁ@mﬁz/|£m?
Fo Fo

h h

(3.5)

From the Euler equatiof?¢ = 0 and the boundary condition§ (B.4), it follows easily that th
latter minimum is realized with

on(r, z) = gcb (#s(?“)) . where ®(t)=t*(3-2t), Vte[0,1]

and has for value:

~ 7o r3dr
ﬂ‘%ﬂ h T s () &0



We emphasize that this formula is general for no-slip bomndanditions. It does not require any
special assumption on the solid surface. In the egge) = 1 — /1 — r2 + er' ™, our lower bound
satisfies

5 T0 3
Fn = 677/ 5 ridr
0 (h+ Z teritat ()
_ %”z(ah“%) + O(T(hT", b)) + O(1)

where

> s3ds ro/Vh s'ds
T = h) = . 3.7
@ = | ey e A0 / T e @7

The computation of the asymptotic behavioursZoéind 7 is detailed inAppendix [Al. It yields the
following results:
e Whenpj « 1, we obtain :
B 1 2 _
() = 1555 T OB, T(B.h) = O(m(n) (3.8)

with an explicit constanh,, given in the appendix.

e Wheng > 1, we have:

(L5 40 <%> for a > 1/3,
7(8) = zlnﬁ(f) +0 (%) fora—1/3, (3.9)
Maﬁ_% +0 <%> , fora < 1/3,

where the value of.,, is also provided in the appendix. As regards the remaindehave the

following bound:
1 -«

J (B h) = O(|In(B) + In(h)])

Back to the drag force[ (3.8) and (B.9) yield the following/é&r bound: for3 = eh*s <1

~ 61
Fh=———27 (1 +0(B) + O(/In(h)]) (3.10)
h+ Mgch 2
and forg = eh“7 > 1
6 o 1o
(e (1485 ) +O((h))), fora>1/3,
€1+a h a+1
_ 1 1
Fin = 79”‘2“@‘ 1o <—‘ n(f)‘> : for o = 1/3, (3.11)
9) &
e (14 5% ) +o(mE),  fora<1/3,
glfa




Note that the expression given in the case 1/3 only matters whes < 1 (otherwise, one can just
retain that#;, = O(1)).

This concludes our study of a lower bound for the drag. Suembas accurate, as we can with
minor modifications obtain a similar upper bound. Indeeds ian easy exercise to find a regular
stream functionp;, = ¢,(r, z) defined onk},, equallinge;, say onFy N {r < r¢/2}, such that

Uy, =V x (¢neq) € Ap,

and such that
©20n = [ 126n + 0)
F, FY

uniformly in h ande. We quote that the remainder term is uniformly bounded, bszao singularity
is created outside of the contact zone (that is outside aityicof » = 0). We refer the reader to
[£3, 13 [1B] for more details in the case= 0. Hence, we have:

.;Eh < 5h(?2h)
= F +/ Uarz(ﬁh‘Q + laz(ﬁh/rp + ‘Br[ar(r(ﬁh)/r]\Q + ’87“2(74(%)/7”‘2] + 0(1)

Ly,

= j:h + /0 [larz(lzhp + laz(lzh/r‘Q + ‘8T[8r(7°(2~5h)/7°”2 + ‘arz(r(lzh)/r’ﬂ + 0(1)

Fh

The computation of the integral terms at the r.h.s. folloles lines ofAppendix [A. It yields some
O(min(|In(h)|, |In(e)|)) error term. The main reason for these integrals to be lowaraerms is
that in the "curved” contact zone, the typical lengthscates andr are respectively: andv/h, so
that z-derivatives are more singular tharderivatives. Eventually,

Fn = Fn + O (min(|In(e)], [In(h)]))

We stress that this modelling of the roughness solves thedamo-collision paradox discussed in the
introduction. Indeed, ak goes to zero for a given, 5 goes to infinity and the roughness effect yields
a drag forceF;,, which is always bounded by A~ for somey < 1. In particular, it is weaker than in
the smooth case, and the solid dynamics, which is governdieay.d.e.

h+hfh20

allows for i to cancel in finite time.

3.2 Thecaseof dip boundary conditions

We turn in this paragraph to our second model, in which roeghris involved through slip coeffi-
cients. We want to have a close approximation/pf = min 4, &,, where this time4,, and&,, are
defined in [26). We still have a rotational invariance irstbase, so that we can again redugeby
restricting to velocity fields of the type

u = —0,0e, + %&[rgb] €.
The impermeability condition &® yields again

¢(r,0) =0, VYre(0,rg). (3.12)
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As regards).S, we have for all- € (0,7)
1

N (745(74)93(;5@, h+75(r)) + %&(Wb)(s, h+ vs(?“))) : (3.13)

VI+s(r)P

1 1d
I+ e rdr

so that the impermeability condition leads to

€, n=

[ré(r,h + s (r))];

o(r, b +~s(r)) = g Yr € (0,7). (3.14)

Accordingly, we introduce the relaxed set
Ay = {u e H'(F)), uw=—0.6¢, + ~0,[rd]e.. ¢ satislying [3R) andé})-
T

with F}) defined in the previous section. We then need to define theetlanergye,. As in the
previous section, we shall keep orily, ¢ in the gradient terms. But we shall not change the boundary
integrals involved in[(2]6). Therefore, we compute:

e ONP, uxn=0,pey

e 0ndSN{r <ry}, because of (3.13J-(BN4Ju —e.) x n = /1 + |75(r)[*D.¢ eq.

Hence, we introduce the approximate energy

3
2

& ::/ 10..4(r, 2)|*rdrdfdz
FPn{r<ro}
L+ s(r)?)

T0
+ 27 /
0 Bs

The corresponding mimimization problem is easy, becawsadunts to find, for each value ok rg,
the minimizer of the functional

|0.p(r, h + ’yg(r))]Q + i]@(ﬁ(r, O)]QI rdr.
Bp

(14 s(r)P)*
Bs

over functionsp, = ¢,.(z) satisfying the inhomogeneous Dirichlet conditions

B h+vs(r) . )
Enr) = /0 6(2)Pdz +

6L (R + ()P + Biw;(mﬁ]
P

¢-(0) =0, ¢p(h+7s(r)) = g

This is a one-dimensional minimization problem, with ELéquation¢$4) = 0, endowed with above
Dirichlet conditions, plus Robin type condition gh:

(1+ [vs(r)?)
Bs

W

r(h+7s(r) + ¢r(h+7s(r)) =0,

1

H0) -~ 5 61(0) =0,

11



After a few computations, the minimum 5)‘1 is obtained for

intrs) = 5o (roes ).

where®(r, t) is the polynomial of degregin ¢ given by

B(r 1) = — 2 (ag +ag ap+ap) 3 324+ ag)ap 2
) 1244 (g +ap) +ap ag 12 +4 (a5 + ap) + ap ag (3.15)
n 6(24—045) :
12+4((XS+C¥P)+0413045 ’
where:
1+ |vg(r 2)3 h+ ~s(r h+ ~a(r
s — ag(r) o OEDEO) 5)5( 0D e i 57;( )

Note that the coefficients @ are uniformly bounded img, ap, that is inr < rg, 8p, Bs, h. In the
limiting casefs = Bp = 0 (no-slip limit), we obtain formallyd(¢) = —2t3 + 3t2, in agreement with
the computations of the previous section.

We now turn to the lower bound

fh = mjngh
Ap,
_ 2w/r° /1|a B(r, 5)ds + agl®(r, D + ap|o®(r, 0)2] — 2
- 0 0 tt ) S|Vt ) P|Ut ) (h+75(r))3

We make the last integral more explicit by replacibdpy its value. We obtain

~ m

o 7“3 P
Fn = 5/0 (11(r) + Ix(r)) m

where the integrands andl, are given by

12 (a% o + 5 (ot ap+abag) + 4 (04 +a%) + 20agap)
(12 + 4(0[5 + Ozp) + agap)2
144(0[5 + Ozp)
(12 + 4 (as + ap) + asap)’

Il =

Note that/; and/s are uniformly bounded imvg, ap, that is inr < rq, Bp, Bs, h. Thus, expanding
~s, we obtain:

r3dr
(h+ 53

r3dr
(h+5)?

~ s

F o= /0 " (L) + L))

d + 0T (0,h)

(3.16)

™

_ E/OTO (L) + Io(r)) + O(|(h)))

whereJ (0, h) was introduced in[(3] 7) and shown to®€| In(h)|). We must now distinguish between
two cases, depending on the behaviouh 685 andh /5 p:

12



1. Eitherh/j3s or h/Bp is of orderl or larger. Then, eithets or ap is of orderl or larger. It
follows that
¢ < Li(r) + I(r) < C,

for all » < rg, where the constants C' are uniform with respect to all parameters. We then
deduce from[(3.16) that

d - c’
— < Fp < —.
hoo U=y
Note that in the limiting casgs = Sp = 0 (no-slip limit), we obtain formally:
~ 6
ag =ap =-4oo, [ =12, I, =0, fh:%

recovering the classical result. We also emphasize thattiime considered here includes the
case where one of the slip coefficients is zero. In partictih@rdrag force is stronger thafy
in such a case, preventing any collision.

2. Bothh/Bs andh/Sp are small. This case requires more care. We first notice that

ap = ﬁlp <h+—2+0( )), ag = 515 <h+—2+0( (h+r2))>. (3.17)

From there, fory andh small enough, we get

2
chi(r) < Li(r) < CJi(r), Ji(r) = <1ipap X 1jl_sas>

wherec, C' > 0 and

1 72 1 72
ap(r) = i (h + 5> , ag(r) == — (h + —> . (3.18)

Then, with the change of variable= v/hu , we write

7o r3dr
/ Nr) =
0 (h+%)3

2

L (e (a?f2) o hBs(u2) \ uda
h/o 1+h/Bp (1 +u?/2) * 14+ h/Bs(1+u?/2) ) (1+u?/2)3

In the regime of smalt/Sp andh /g, we get that this last integral ig1/5p +1/8s). Finally,
all of this leads to 3,
i rodr
— Li(r) ——— = o(1 +1 . 3.19
3/ ) Gy = o0/Be+1/8) (3.19)

It now remains to evaluate the contributionlef which will yield the leading behaviour of;,.
The use of[3.77) gives first

W/TOI r) r3dr 71'/”’ 144 (ag + ap) r3dr
x o(r) ——— = =
2.Jo (h+%)3  2Jo (12 + 4(as + ap) + asap)® (h+%)3

+ O(1/Bp +1/Bs).

13



Then, straightforward manipulations show that

as ap 144 (as + ap)
+ + O(J <
(rep * Traame) + OG0 (12 & 4(as + ap) + asar)’

as ap
< + + O(Ji(r
B <(1+CQCL5)2 (1+Cgap)2> ( 1( ))
for somec;,ca > 0. As seen in the treatment éf, the O(.J;(r)) term will only contribute

to the drag through a(1/8p + 1/8s) term. The main contribution of, to the drag will be
governed by

z/”’( ag N ap > r3dr
2Jo \(1+cag)? (1+4cap)? (h+§)3

o fwm ( hBs (1+u/2) h/Bp (1+u?/2) W
- 2h ), (L+ch/Bs (1 +u?/2))2 ~ (L+ch/Bp(1+u?/2))? | (14 )3

_ )L HaE (z—1)de 1 5 (z—1)da
- W{BS/l (14 ch/Bs z)*x? " /BP/l (1+ch/5px)2x2}

1+ da |l e
”{5_5/1 (It ch/Bsa)a & ﬁ_p/l (1+ch/ﬁpw)gw}+0<1//3p+1//3s>
=7 (i + i) |In(h)| + O(1/Bp +1/Bs)
Bs  Bp

—_

through standard manipulations. It yields eventually

T [T0 r3dr 1 1
2 ["n0 e (5 + 5 ) ml + 00/se+1/5) (20

Combining [3.1p),[(3.19) and (3]20), we end up with the felteg lower bound for the drag:
~ 1 1
Fa = w55+ 5 ) 1m0 + 0Q/8p + 1/55) + O m(m).
Bs  Bp

This lower bound is similar to the one derived by L.M. Hockisge [1}]).

This concludes our study of a lower bound for the drag. Heitaemains to obtain a similar
upper bound. One could develop the same approach as in theyseection. Namely, one could
look for some suitable extensiaf), of ¢, with similar behaviour for its energy. However, due to

the elaborate expression (3.15), this would lead to tedtousputations. We overcome this technical
difficulty as follows:

1. Whenh/jp or h/Bs is of order 1 or larger, we take, = V x (theg), with the "no-slip”

streamfunctionp;, built in the previous section. We obtain with this choice sait1/h) upper
bound as expected.

14



2. Whenh/pp apdh/ﬁs are small, a good way to recover the right asymptotic belhav#to set
ap = V X [pn(r, z)eg] with

ontr2) = 50 (rg ).

in F}, where

1 1 t ap ag 12
d(r,t) = — —.
(r;?) <1+04P+1—|—C¥S>2+<1—|—04p+1—|—045>2

We extend ther,, to the whole ofF}, with a stream function having bounded gradients. Calcu-
lations similar to the previous ones vyield:

1 1
Eun) = 7 (52 + 5 ) 1]+ O0/Be +1/85) + O(|u)
Bs  Bp
where we insist that th&(|In £|) is uniform with respect t@p ands. In particular, in the
realistic regime of small slip lenghts, we obtain the exachs leading behaviour for the lower
and upper bounds. For the sake of brevity, we leave the détaihe reader.

4 The caseof a corrugated wall

In this section, we focus on the third model of roughnessriles in the introduction, in which the
wall has a small amplitude and high frequency oscillaticamasly,

z = ey <—, —) , €>0, v=~(X,Y)1-periodic,y <0, maxvy = ~(0,0) = 0.

We remind that the solid is assumed to be smooth, and thdipmoesmditions hold both at the solid
surface and the wall. We shall pay special attention to themes <« h < 1, that is when the
distance between the solid and the wall is much greater ti@size of the roughness.

Such roughness model with a small parameter is very popagait,allows for multiscale analy-
sis. This analysis has been notably performed in the cowfewtall laws. In this context, the idea
is to replace the rough boundary by a flat one, and to impose #mne good homogenized bound-
ary condition, that expresses the mean effect of roughriEsis. homogenization problem has been
considered by physicists since the early 90's, through miesiand explicit calculations for special
geometries: see for instande][20]. It has been adressedlaia some mathematical works, based
on homogenization theory. We refer {9 [I] 15] for perioditt@@ns of roughness, and tg [3] 10] for
random roughness. The conclusion of these works is thasn@ll enoughe, one can replace the
oscillating boundary by the flat o{e = 0}, and impose there some Navier-type boundary condition:

u, =0, (ug,uy) = eB0.(ug, uy)

for some two by two positive matrix3, which is sometimes called the "mobility tensor”. There has
been a recent interest on qualitative properties of thisaerfor instance for shape optimization in
microfluidics,cf [[Lg].

Another frequent idea is that a slip condition amounts to @lipcondition at a shifted wall.
Combining this idea with the previous one, some recentlasticave suggested a drag force of the

15



type F, ~ ﬁﬁg for some positive3: see [17[79]. We will discuss this result in a rigorous manne
here.

First, one can use the methodology of secfion 2 to derive $ower and upper bounds.

e As regards the lower bound, let us show that

(%

>
]:h_h+)\s

+ O(|In(h + Ae)|), for A := —min~y > 0.

Indeed, we have
Fp, = min &y (u)

uE.Ah

where&, (u) and.Ay, are given by[(2]4). Let us now define
PN = {z=—e)\}, F} :={x, x¢8, z>-e\}.

Any field » of A; can be extended by zero below the rough wall so that it can & @& an
element of the larger set

Ay = {u € Hlloc(F,f‘), V-u=0, u|lpr=0, ulps, = ez}.

Then, obviously,

Fr > min &, (u).
uE.Ah

But the r.h.s of this inequality is exactly the drag forceocasasted to the (smooth) solif};, and
the (smooth) plané®*. As the distance between the twolis+ \e, we deduce the expected
lower bound.

e With similar arguments, one has the upper bound:

Fi < 6% + O(|In(h)).

Indeed, let us define this time
P’ = {z=0}, F):={x, x¢8S, =z>0}

Letu) be the Stokes flow in the smooth domdifi. As the distance betwee$), and P is h,
the drag force satisfies

6
[ vutp = 5+ omm)
B

Now, u) can be extended by zero beld®” and defines in this way an element.df,. In
particular, 7, < th [Vl |2
Hence, our methodology allows to derive quickly the inejigsl

6 67
< < — .
e T Ot A)) < Fi < 5= + O(In(h)])

Interestingly, these bounds are satisfied for any réginpauameters andh. In particular, it provides
the right asymptotic whenandh are of the same order.
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Nevertheless, whea < h, it is fair to notice that a multiscale analysis gives a muefined
description of the drag. For the sake of completeness, vedlompresent it here. It relies on an
asymptotic expansion of the Stokes flay = uj with respect te. This expansion has already been
described in close contexts, for instance[if [15], and wg aetall its main elements. To keep track
of thee dependency, we writé* instead ofP, I instead ofF},. We denote agai®® and F} their
smooth counterparts.

The basic idea is to build an approximate solutign, ,(x) of @.3)-@.2)-[2.B), in the form of an
expansion in powers af.

uﬁapp(x) = ug(x) + €<u}L(X) + Uﬁ(m,y,x/s)) + ...+ &N (uhN(X) + U}{V(x,y,x/g)> (4.1)
Each term of this expansion has two parts:
e Aregular partuj, = u},(x) which models the macroscopic variations of the solution.

e A boundary layer correctiot/; = U} (x,y,X), which accounts for the fast variations of the
solution near the oscillating boundary. Hence, it depemdhe macroscopic variablesy, but
also on the microscopic variable = x/¢. It is defined for all

r,y € R?, X =(X,Y,Z) suchthatZ > v(X,Y).

Moreover,U; is periodic inX,Y (due to the periodicity of the rough bondapyin X,Y’) and
satisfies ‘
im U (z,y, X,Y,Z) =0, asZ — +oo

Back to the original variable, this last condition corresponds to a boundary layer ofcfpi
sizee near the rough walP.

Accordingly, the corresponding pressure field should read
Brannl) = B0+ PR /o) + 2 (00 + PhCon/e)) + .

We remind here the derivation of ti¢(1) and O(¢) terms, which are enough for our purpose.
First, if we inject the above expansions jn [2.[){(2[28f2and letZ — +oo,we obtain by standard
manipulations that

—Au) +Vph =0 and divu) =0 in FY, u)lss, =es, uh|po = 0.

Thus, we recover as expected that the leading term of theneiqrais the Stokes flow without rough-
ness. We then extend, andp! by zero belowP?, so that they are defined over the whélg. Such
extensions trivially satisfy the Stokes equationfot 0, as well as the no-slip condition & . More-
over, the velocity is continuous across the plgae= 0}. But there is aJ(1) jump in the normal
derivative. This explains the introduction of a boundasgelacorrector with amplitudé®(e). Indeed,
its gradient has amplitud@(1), and allows to correct this artificial jump.

Let us introduce the following notations:
Vi(z,y,X) = ui(x,y,0) + Ul(z,y,X), Z>~(X,Y),
Ph(xaan) = P}?(x,y,X)—pg(:U,y,O), Z>Oa
Py(z,y,X) == PX(z,y,X), 0>27Z>~(X,Y).
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Note that, following the expansiof (#.1))(z,y,0) + Vi (x, y, /<) should be an approximation
of the whole flow in the boundary layer. Pluggirg [4.1) inte #quations, we derive formally the
following Stokes system:

—AxV, +VxP, =0, Z> ’}/(X,Y), Z 75 0,
VX'Vh:O, Z>0727é07
Vi, =0, Z=~(X,Y).

together with the jump conditions
Vilz—ot = Valz=o- =0,  (0zVi — Prez) |z—o+ — (02Vi — Prez) | z—0- = —0:uj(2,y,0).

Again, we stress that these jump conditions ensure the smess of the whole flow across the artifi-
cial boundary{z = 0}. Note that by the divergence-free conditiﬁ;u%z(:c,y, 0) = 0, so that only
the horizontal components 6fu) (z,y, 0) are non-zero. Let us also point out that the variablgs
are just parameters in the system. In other words, one has

Vi(z,y,X) = V(X)d.up (2,9,0),  Pyla,y,X) = P(X) - doup(x,y,0)
for some 3-by-3 matrix functioiy and some 3d vectd? which satisfy the (matricial) Stokes system

_AXV + VXP = 07 Z > 7(X7 Y)a
Vx-V =0, Z>~X,Y), (4.2)
V=0 Z= ’)/(X,Y),

together with
100
V0z=o+ — V|z=0- =0, (02V —P®ez)|z—or —(02V —PRez)|z—0- = — (8 1 8)

This system of pde’s, depending only &5y with periodic boundary conditions in the horizontal
variable X, Y, has been extensively studied. We remind the following psin, extracted from

[£3]:
Proposition 1 The solution of systenf.2) converges exponentially at infinity, that is

V(X,Y,Z) - V>®| < Ce%?

for some constant 3-by-3 matriX*° and some& > 0. Moreover,V>° is of the form

0

Ve = B 0

0 00

for some symmetric positive definite 2-by-2 malix

The non-zero bloclB is sometimes called the mobility tensor, seé [16]. We stiess3 is symmetric
and definite positive, so diagonalizable in an orthonornaaliswith positive eigenvalues. This fact
will be used below.

Back toV},, we obtain that

(Vh7m,Vh,y) (z,y,X) = B, (u%m,ug,y) (,9,0), Vh.(z,y,X) =0, asZ — +oo.
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As the boundary layer correctidﬂg should decay at infinity, we obtain the boundary condition fo
the macroscopic correctiar), at P°. That is

(u}ll,$7 u%b,y) = Baz (u%Jﬂ u27y) 9 u]:h - O, atPO

s2

Together with the Stokes equations
—Auj + Vp}, =0 and divu} =0 in Fp,
and the boundary condition at the solid surface
uplos, =0

this determines:}, and ends the derivation of tt@(c) term of the expansion. The next order terms
solve the same kind of equations, with inhomogeneous daténgofrom lower order profile.

In a second step, one can show rigorously that the approiswaitionu;, app is close to the exact
solutionw; . Indeed, introducing the differences

v o= ui,app - ui? and ¢ := pz,app o pz
leads to
~Av+Vg=R;, divv=rf, vlss, =¢5.

with remainder terms?;, r; and ¢;. For instance, the boundary dat§ is due to the boundary
layer termsU*(x, x/¢), that do not vanish a8S). We stress that the assumptien< h is crucial
for these remainders to be small. First, the boundary lagaections decay exponentially over a
typical lengthscale. To make it exponentially small &S}, one needs < h. Moreover, all other
remainder terms are small with respect tbut diverging with respect th. Very roughly, they behave
like O((¢/h)N) whereN is the number of terms in the expansi¢n](4.1). The divergimggss ofh
come from taking derivatives of theﬁl, which are singular with respect fa Again, the smallness
conditione < h is necessatry.

From there, as the remainder terms are small, one can themeglyy estimates deduce the small-
ness ofv, that isuj ~ uj, app- 1N particular, fors small enough compared tq the drag force 0.5,

reads
O A(u) + euy
fh:/ < h—p€n>-ez:/ (M—poJrepln)-ezﬂLoe-
os, \on " oSy, on (o i) )

Moreover, it is easily seen that the fields := v +cu}, 5 := p)) +ep;, satisfy the Stokes equation
in F,? together with the boundary conditions

ﬂi‘ash =e,, and ai,z‘PO =0, (ﬂz7m,ﬁz7y) ‘Po =eB0, (u27m,u27y) ‘Po.

By the axisymmetry of?, Ry u? = uf R, for any horizontal rotatiory. As B is symmetric definite
positive, this allows us to assume, up to a change of ortmoaldpasis, thaB is diagonal with positive
coefficientss,, 5,. Now, there are two ways to interpret the effect of roughness

e On one hand, one can write the latter boundary condition &p aandition of Navier type:
(@, 2> U5, y) |po = B O (1, 5, 5, ,) |po + o0(€).
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This is the so-called phenomenon of apparent slip,[s¢e [18}e isotropic casg := 3, = 3,
one can use the bounds on the drag force derived in sddtiom the Irégime=—'h > 1, this
yields:

c C

< F <= . 4.

h_./—"h_h, C,C>0 (3)
e On the other hand, the drag force reads

ou? ou}t
F z/ (—h—p°n>-ez+€/ (—h—p1n>-ez
h Sy, on h a5y, on h

Oup g 1. 7,0
= B Phn ey +e€ Vuy, : Vuy,
dSy, n Fp

au% 0 1 au% 0
- /ash (a_n_p"”> 'BZ“/po“"' <8n _p"n>
:/ O o, .ez_g/ (Bol0ud L2 + B0l )
s, 8n o T Y Y

Using again the symmetry propertiesu_%f, we obtain that

8U2 0 0 |2 0 |2 ﬁx"’ﬁy
~ — ce, — 3 3 : _ PatBy py
T /ash<an in)-ec = [ (0l rloa, ). 5= R s

But this last expression can be seen as the drag force cigatedtokes f|OV\’LL£, between the
solid S, and a shifted walPs := z = —¢ 3. Indeed, following [IP], we get

Using that
uh (2,y,0) = uf) (z,y, —£8) + 804’ (x,y, —B) + o(e) = ef,uf(x,y,0) + o(e)

we recover the same expression ag in|(4.4). This interfoetaf the roughness effect as a shift

of the smooth wall yields
6m

h+eB’
Note that boundg (4.3) and (4.5) are coherent, since we ezanliiin the asymptotics < h < 1. Of

course, these bounds would lead to very different behasitarrsmallerh, as [IB) forbids collision
whereas[(4]5) allows it.

Fi ~ (4.5)

A Asymptoticsof Z and J

In this appendix, we detail the computation®f3) and 7 (3, h) defined in [3]7) depending on the
values off3.
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Casef << 1. Wheng is small, we expand with respect fo:

$3

83 4+a ) S5+2a
= —3——— 4O
G+ +psito) (1450 (1+5) (1+5)

o g3ds o0 3gdta g
I = RS — O 2
=) 1+ g (ST

This yields:

where routine calculations yield:

/‘x’ s3ds /‘x’ 3s@ds 272 w3+ a)(l —a?)
2 = 17 2 - = )\a.
0o (1+%)° o (1+%) 8 cos (75*)
Replacing inZ (), we obtain,
1
Z(5) = 1= haff + O(8%) = 155 + O(F")

Case 3 >> 1. Whengis large, we spliZ(3) = Z°(3) + Z°°(;3) where:

! s3ds o o s3ds
IO(/B) :/ 52 1 37 Iﬁ :/ 52 1 37
0 (1+7+58+O‘) 1 (1+7+58+0‘)

To computeZ°(3), we sets = ﬁﬁg and expand the integrand with respectl]ztw%). This

yields:
1 o0 33 ds 1
(8) s /B_ﬁ (Z 4+ 5lto)s <54>

Consequently, we distinguish three cases :

o fora>1/3, I*(3) =0 (%)

+razis 7 =210 4 o(4)

S22 B e
o fora < 1/3, Z(B) = o 40 <i> = /wﬂ

In Z°(B), we setu = Bs'T and expand the integrand w.rlt/ﬁl%a. This yields:

1 B u% du 1
79(8) = - 0] <—> .
) (1+ )BT+ /0 (14 u)? EVET

with :

o fora < 1/3, 7°(8) = O <@>
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fora=1/3 7°0) = 1757 + 05

-1
3—«a
1 1 Fultae du

for 1/3, 7° _ Ha O =1, fa:= /
Plraz s TO = ﬁ3> T T T ey Tt up

We obtain [3]9) comparing the values®f(3) andZ> () in the three cases < 1/3, « = 1/3 and
a>1/3.

It remains to handle the remainder tetf(3, h). As previously, we split it into7°(3, h) +
J> (5, h) where:

1 s7ds ro/Vh s7ds
7o = [ — o, g - [ .
o (14 % + pstte) 1 (14 %5 + pstto)t
We sets = ﬁﬁé in the last integral. This yields:
ro/(VhB/(1=)) 37ds O(|In(h)|) if <1
T>(B,h) < / o aau s - :
1/81/(1—a) (5 + §to) O(|In(B) + 5%1nh|) if > 1.
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