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Abstract

In this note, we provide an innovative and simple approach for proving the

existence of a unique solution for multidimensional reflected BSDEs associated

to switching problems. Getting rid of a monotonicity assumption on the driver

function, this approach simplifies and extends the recent results of Hu & Tang [4]

or Hamadene & Zhang [3].
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1 Introduction

The theory of Backward Stochastic Differential Equations (BSDEs for short) offers a

large number of applications in the field of stochastic control or mathematical finance.

Recently, Hu and Tang [4] introduced and studied a new type of BSDE, constrained by

oblique reflections, and associated to optimal switching problems. Via heavy arguments,

Hamadène and Zhang [3] generalized the form of these multidimensional reflected BS-

DEs. They allow for the consideration of more general oblique constraints, as well as

drivers depending on the global solution of the BSDE. Unfortunately, their framework

requires the driver function to be increasing with respect to the components of the global
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solution of the BSDE. In the context of linear reflections of switching type, we are able

to get rid of this limiting monotonicity assumption.

We provide in this note a new method to prove existence and uniqueness for such type

of BSDEs. We follow the classical scheme introduced for e.g. in [2], which consists in

proving that a well chosen operator is a contraction for a given norm. This is done via

the introduction of a convenient one dimensional dominating BSDE and the use of a

standard comparison theorem.

The rest of this note is organized as follows. In Section 2, we present our main result,

namely Theorem 2.1. In Section 3, we give its proof which requires several intermediary

results.

2 Framework and main result

Let T > 0 be a given time horizon and (Ω,F ,P) be a stochastic basis supporting a

q-dimensional Brownian motion W , q ≥ 1. F = (Ft)t≤T is the completed filtration

generated by the Brownian motion W , and P denotes the σ−algebra on [0, T ]×Ω gen-

erated by F−progressively measurable processes. In the following, we shall omit the

dependence on ω ∈ Ω when it is clearly given by the context.

We introduce the following spaces of processes:

• S2 (resp. S2
c ) is the set of R−valued, adapted and càdlàg1 (resp. continuous)

processes (Yt)0≤t≤T such that ‖Y ‖S2 := E

[

supt∈[0,T ] |Yt|
2
]

1
2

< ∞ ,

• H2 is the set of Rq−valued, progressively measurable process (Zt)0≤t≤T such that

‖Z‖H2 := E

[

∫ T

0 |Zt|
2dt

]
1
2

< ∞ ,

• K2 (resp. K2
c) is the subset of nondecreasing processes (Kt)0≤t≤T ∈ S2 (resp.

(Kt)0≤t≤T ∈ S2
c ), starting from K0 = 0.

We are given a matrix valued continuous process C = (Cij)1≤i,j≤d such that Cij ∈ S2
c ,

for i, j ∈ I, where I := {1, . . . , d}, d ≥ 2, and satisfying the following structure condition















(i) Cii
. = 0 , for i ∈ I ;

(ii) inf0≤t≤T C
ij
t > 0 , for i, j ∈ I2 , with i 6= j ;

(iii) inf0≤t≤T C
ij
t +C

jl
t −Cil

t > 0, for i, j, l ∈ I3, with i 6= j, j 6= l ;

(2.1)

1French acronym for right continuous with left limits.
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In “switching problems”, the quantity C interprets as a cost of switching. As in [4] or [3]

in a more general framework, this assumption makes instantaneous switching irrelevant.

We introduce the family of random closed convex sets (Ct)0≤t≤T associated to C:

Ct :=

{

y ∈ R
d | yi ≥ max

j∈I
(yj − C

ij
t ) , i ∈ I

}

, 0 ≤ t ≤ T ,

and the oblique projection operator P onto C defined by

Pt : y ∈ R
d 7→

(

max
j∈I

{

yj − C
ij
t

}

)

i∈I

, 0 ≤ t ≤ T .

We are also given a terminal random variable ξ ∈ [L2(FT )]
d valued in CT , where L2(FT )

is the set of FT -measurable random variable X satisfying E
[

|X|2
]

< ∞.

We then consider the following system of reflected BSDEs:

find (Ẏ , Ż, K̇) ∈ [S2
c ×H2 ×K2

c ]
d such that



















Ẏ i
t = ξi +

∫ T

t
f i(s, Ẏs, Żs)ds−

∫ T

t
Żi
s.dWs + K̇i

T − K̇i
t , 0 ≤ t ≤ T ,

Ẏ i
t ≥ maxj∈I{Ẏ

j
t − C

ij
t } , 0 ≤ t ≤ T ,

∫ T

0 [Ẏ i
t −maxj∈I{Ẏ

j
t − C

ij
t }]dK̇i

t = 0 , 0 ≤ i ≤ d ,

(2.2)

where f : Ω× [0, T ]×R
d×R

q×d → R
m is P⊗B(Rd)⊗B(Rq×d)−measurable and satisfies

the following Lipschitz property: there exists a constant L > 0 such that

|f(t, y, z)− f(t, y′, z′)| ≤ L(|y − y′|+ |z − z′|),

for all (t, y, y′, z, z′) ∈ [0, T ]× [Rd]2 × [Rq×d]2, P−a.s. We also assume that

E

[
∫ T

0
|f(t, 0, 0)|2dt

]

< ∞ .

The existence and uniqueness of a solution to the system (2.2) has already been derived

with the addition of one of the following assumptions:

• (H1) The cost process C is constant and, for i ∈ I, the i−th component of the

driver function f depends only on yi, the i−th component of y, and zi, the i−th

column of z. (see Hu & Tang [4])

• (H2) For i ∈ I, the i−th component of the random driver f depends on y and

the i−th column of z, and is nondecreasing in yj for j 6= i.

(see Hamadène & Zhang [3])
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We now introduce the following weaker assumption:

• (Hf) For i ∈ I, the i−th component of the random function f depends on y and

the i−th column of the variable z:

f i(t, y, z) = f i(t, y, zi) , (t, y, z) ∈ [0, T ]× R
d × R

q×d.

The main contribution of this note is the following result.

Theorem 2.1. Under (Hf), the BSDE (2.2) admits a unique solution.

3 Proof of Theorem 2.1

The proof divides in three steps. First, we slightly generalize the switching represen-

tation result presented in Theorem 3.1 of [4], allowing for the consideration of random

driver and costs. Second, we introduce a Picard type operator associated to the BSDE

(2.2) of interest. Finally, via the introduction of a convenient dominating BSDE and

the use of a comparison argument, we prove that this operator is a contraction for a

well chosen norm.

3.1 The optimal switching representation property

We first give a key representation property for the solution of (2.2) under the following

assumption:

• (H3) For i ∈ I, the i−th component of the random driver f depends only on yi

and the i−th column of the variable z:

f i(t, y, z) = f i(t, yi, zi) , (i, t, y, z) ∈ I × [0, T ]× R
d × R

q×d.

Observe that (H1) =⇒ (H3) =⇒ (H2). We first provide the existence of a solution

to (2.2) under Assumption (H3).

Proposition 3.1. Under (H3), the BSDE (2.2) has at least one solution.

Proof. Since (H3) is stronger than (H2), the existence of a solution is provided by

Theorem 3.2 in [3]. Due to the the particular form of switching oblique reflections and

for sake of completeness, we decide to report here a simplified sketch of proof.

We use Picard iteration. Let (Y .,0, Z .,0) ∈ [S2 × H2]d be the solution to the following

BSDE without reflection:

Y
i,0
t = ξi +

∫ T

t

f i(s, Y i,0
s , Zi,0

s )ds−

∫ T

t

Zi,0
s .dWs, 0 ≤ t ≤ T, i ∈ I . (3.1)
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For i ∈ I and n ≥ 1, define recursively Y i,n as the first component of the unique solution

(see Theorem 5.2 in [1]) of the reflected BSDE


















Y
i,n
t = ξi +

∫ T

t
f i(s, Y i,n

s , Z
i,n
s )ds−

∫ T

t
Z

i,n
s .dWs +K

i,n
T −K

i,n
t , 0 ≤ t ≤ T ,

Y
i,n
t ≥ maxj∈I{Y

j,n−1
t − C

ij
t } , 0 ≤ t ≤ T ,

∫ T

0 [Y i,n
t −maxj∈I{Y

j,n−1
t − C

ij
t }]dKi,n

t = 0 .

For any i ∈ I, one easily verifies by induction that the sequence (Y i,n)n∈N is nonde-

creasing and upper bounded by Ȳ the first component of the unique solution to

Ȳt =
d

∑

i=1

|ξi|+

∫ T

t

d
∑

i=1

|f i(s, Ȳs, Z̄s)|ds−

∫ T

t

Z̄s.dWs, 0 ≤ t ≤ T.

For any i ∈ I, by Peng’s monotonic limit Theorem (see Theorem 3.6 in [5]), the limit

Ẏ i of (Y i,n)n is a càdlàg process and there exists (Żi, K̇i) ∈ H2 ×K2 such that










Ẏ i
t = ξi +

∫ T

t
f i(s, Ẏ i

s , Ż
i
s)ds−

∫ T

t
Żi
s.dWs + K̇i

T − K̇i
t , 0 ≤ t ≤ T ,

Ẏ i
t ≥ maxj∈I{Ẏ

j
t − C

ij
t } , 0 ≤ t ≤ T .

(3.2)

In order to prove that (Ẏ , Ż, K̇) is the minimal solution, we then introduce, in the

spirit of [6] and for any i ∈ I, the smallest f i-supermartingale Ỹ i with lower barrier

maxj 6=i{Ẏ
j − Cij} defined as the solution of



















Ỹ i
t = ξi +

∫ T

t
f i(s, Ỹ i

s , Z̃
i
s)ds−

∫ T

t
Z̃i
s.dWs + K̃i

T − K̃i
t , 0 ≤ t ≤ T ,

Ỹ i
t ≥ maxj 6=i{Ẏ

j
t − C

ij
t } , 0 ≤ t ≤ T ,

∫ T

0 [Ỹ i
t−

−maxj 6=i{Ẏ
j

t−
− C

ij
t }]dK̃i

t = 0 , 0 ≤ i ≤ d .

(3.3)

For i ∈ I, we directly deduce from (3.2) that Ẏ i ≥ Ỹ i, and, since (Y .,n)n∈N is increasing,

a direct comparison argument leads to Y i,n ≤ Ỹ i, for n ∈ N. Therefore, we get Ẏ = Ỹ

so that Ẏ satisfies (2.2).

It only remains to prove that Ẏ is continuous. We look towards a contradiction and

suppose on the contrary the existence of a measurable subset B of Ω satisfying P(B) > 0

and such that

∀ω ∈ B , ∃{t(ω), i0(ω)} ∈ [0, T ]× I s.t. ∆Ẏ
i0(ω)
t(ω) := Ẏ

i0(ω)
t(ω) − Ẏ

i0(ω)
t(ω)−

6= 0 .

We fix ω ∈ B and deduce from (3.3) that ∆Ẏ
i0(ω)
t(ω) = −∆K

i0(ω)
t(ω) < 0 so that Ẏ

i0(ω)
t(ω)−

=

Ẏ
i1(ω)
t(ω)−

− C
i0(ω)i1(ω)
t(ω) for some i1(ω) 6= i0(ω). This leads directly to

Ẏ
i1(ω)
t(ω)−

= Ẏ
i0(ω)
t(ω)−

+ C
i0(ω)i1(ω)
t(ω) > Ẏ

i0(ω)
t(ω) + C

i0(ω)i1(ω)
t(ω) ≥ Ẏ

i1(ω)
t(ω) ,
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which implies ∆Ẏ
i1(ω)
t(ω) < 0. The exact same argument leads to the existence of an

integer i2(ω) ∈ I such that i2(ω) 6= i1(ω) and

Ẏ
i2(ω)
t(ω)−

= Ẏ
i1(ω)
t(ω)−

+ C
i1(ω)i2(ω)
t(ω) > Ẏ

i1(ω)
t(ω) + C

i1(ω)i2(ω)
t(ω) ≥ Ẏ

i2(ω)
t(ω) ,

so that ∆Ẏ
i2(ω)
t(ω) < 0. Since I is finite, we get, after repeating this argument at most d

times, the existence of a finite sequence (ik(ω))0≤k≤n(ω) such that in(ω)(ω) = i0(ω) and

Ẏ
ik(ω)
t(ω)−

= Ẏ
ik+1(ω)

t(ω)−
− C

ik(ω)ik+1(ω)
t(ω) for any k < n(ω). Therefore, we have

n(ω)
∑

k=1

C
ik−1(ω)ik(ω)
t(ω) = 0 . (3.4)

Furthermore, using recursively the structural condition (2.1) (iii), we easily compute

n(ω)
∑

k=1

C
ik−1(ω)ik(ω)
t(ω) ≥ C

i0(ω)i1(ω)
t(ω) + C

i1(ω)in(ω)(ω)

t(ω) .

Since in(ω)(ω) = i0(ω), we deduce from (2.1) (iii) and (i) that

n(ω)
∑

k=1

C
ik−1(ω)ik(ω)
t(ω) > C

i0(ω)i0(ω)
t(ω) = 0 . (3.5)

Since (3.4) and (3.5) hold true for any ω ∈ B, this contradicts P(B) > 0 and concludes

the proof. ✷

Under (H3), a slight generalization of Theorem 3.1 in [4] allows to represent the pro-

cess (Ẏ i)i∈I as the value process of an optimal switching problem on a family of one-

dimensional BSDEs. More precisely, we consider the set of admissible2 strategies A

consisting in the sequence a = (θk, αk)k≥0 with

• (θk)k≥0 a nondecreasing sequence of stopping times valued in [0, T ], and such that

there exists an integer valued random variable Na, FT measurable and θNa = T ,

P− a.s.,

• (αk)k≥0 a sequence of random variables valued in I such that αk is Fθk−measurable

for all k ≥ 0,

• the process Aa defined by Aa
t :=

∑

k≥1C
αk−1αk

θk
1θk≤t belonging to S2.

2 Our definition of admissible strategies slightly differs from the one given in [4] Definition 3.1.

Indeed, the authors assume that N is in L
2(FT ) rather than A ∈ S

2. In fact, it is clear that in the

context of constant cost process C satisfying (2.1), both definitions are equivalent.
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The state process associated to a strategy a ∈ A is denoted (at)0≤t≤T and defined by

at =
∑

k≥1

αk−11(θk−1,θk](t) , 0 ≤ t ≤ T .

For (t, i) ∈ [0, T ] × I, we also define At,i the subset of admissible strategies restricted

to start in state i at time t. For (t, i) ∈ [0, T ]× I and a ∈ At,i, we consider (Ua, V a) ∈

S2 ×H2 the unique solution of the switched BSDE:

Ua
r = ξaT +

∫ T

r

fas(s, Ua
s , V

a
s )ds−

∫ T

r

V a
s .dWs −Aa

T +Aa
r , t ≤ r ≤ T .

As in Theorem 3.1 in [4], the correspondence between Y and the switched BSDEs is

given by the following proposition which provides, as a by-product, the uniqueness of

solution to (2.2) under (H3).

Proposition 3.2. Under (H3), there exists a∗ ∈ At,i such that

Ẏ i
t = Ua∗

t = ess sup
a∈At,i

Ua
t , (t, i) ∈ [0, T ]× I .

Proof. The proof follows from the exact same reasoning as in the proof of Theorem 3.1

in [4] having in mind that in our framework, the driver f and the costs C are random.

This implies that Na∗ , the number of switch of the optimal strategy, is only almost

surely finite. This is the only difference with [4] where Na∗ belongs to L2(FT ). ✷

3.2 The contraction operator

We suppose that (Hf) is in force and introduce the operator Φ : [H2]d → [H2]d, Γ 7→

Y := Φ(Γ), where (Y, Z,K) ∈ (S2 ×H2 ×K2)d is the unique solution of the BSDE


















Y i
t = ξi +

∫ T

t
f i(s,Γs, Z

i
s)ds−

∫ T

t
Zi
s.dWs +Ki

T −Ki
t , 0 ≤ t ≤ T ,

Y i
t ≥ maxj∈I{Y

j
t − C

ij
t } , 0 ≤ t ≤ T ,

∫ T

0 [Y i
t −maxj∈I{Y

j
t − C

ij
t }]dKi

t = 0 , i ∈ I .

(3.6)

Since (Hf) holds, the random driver (ω, t, z) 7→ [f i(t,Γt(ω), z
i)]i∈I satisfies (H3), for

any Γ ∈ [H2]d. Therefore, the existence of a unique solution to (3.6) is given by Propo-

sition 3.1 and Proposition 3.2 and Φ is well defined. Furthermore, observe that Φ is

valued in [S2]d.

In order to prove that Φ is a contraction on [H2]d, we introduce, as in e.g. [2], the norm

‖.‖2,β defined on [H2]d by

‖Y ‖2,β :=
(

E

[

∫ T

0
eβt|Yt|

2dt
])

1
2
.

7



We now state the contraction property for Φ, whose proof is postponed to the last

section of this note.

Proposition 3.3. For β large enough, the operator Φ is a contraction on the Banach

space ([H2]d, ‖.‖2,β), i.e. Φ is k−Lipschitz continuous with k < 1 for this norm.

Proof of Theorem 2.1. As a consequence, there exists a unique fixed point in [H2]d

for Φ. Since Φ is valued in [S2]d, there is a continuous version (still denoted Y ) of this

fixed point belonging to [S2]d, see footnote 5 p. 21 in [2]. Hence, this version Y and the

corresponding processes (Z,K) ∈ [H2 ×K2]d are the unique solution of (2.2). ✷

3.3 Contraction via domination

This section is dedicated to the proof of Proposition 3.3.

Proof of Proposition 3.3. We consider two processes 1Γ and 2Γ belonging to [H2]d

and denote 1Y := Φ(1Γ) and 2Y := Φ(2Γ).

Step 1: Auxiliary dominating BSDE.

Let us introduce the following BSDE:



















Y̌ i
t = ξi +

∫ T

t
f̌ i(s, Ži

s)ds−
∫ T

t
Ži
s.dWs + Ǩi

T − Ǩi
t , 0 ≤ t ≤ T ,

Y̌ i
t ≥ maxj∈I{Y̌

j
t − C

ij
t } , 0 ≤ t ≤ T ,

∫ T

0 [(Y̌t)
i −maxj∈I{Y̌

j
t − C

ij
t }]dǨi

t = 0 , 1 ≤ i ≤ d ,

(3.7)

where f̌ i : (t, zi) 7→ f i(t, 1Γt, z
i)∨f i(t, 2Γt, z

i), for (i, t, z) ∈ I × [0, T ]×R
q. Once again,

since (H3) holds for f̌ , there exists a unique solution to (3.7).

Step 2: Switching representation.

We fix (t, i) ∈ [0, T ] × I and, for any a ∈ At,i, denote by (Ǔa, V̌ a) and (jUa,j V a), for

j = 1 and 2, the respective solutions of the following one-dimensional BSDEs:

Ǔa
s = ξ

aT
T +

∫ T

s

f̌ar(r, V̌ a
r )dr −

∫ T

s

V̌ a
r .dWr −Aa

T +Aa
s , t ≤ s ≤ T,

jUa
s = ξ

aT
T +

∫ T

s

far(r,j Γr,
jV a

r )dr −

∫ T

t

jV a
r .dWr −Aa

T +Aa
r , t ≤ s ≤ T, j = 1, 2 .

Since f(.,1 Γ., .), f(.,
2 Γ., .) and f̌ satisfy (H3), we deduce from Proposition 3.2 that

jY i
t = ess sup

a∈At,i

jUa
t , for j = 1, 2 , and Y̌ i

t = ess sup
a∈At,i

Ǔa
t =: Ǔ ǎ

t , (3.8)
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where ǎ ∈ At,i is the associated optimal strategy given in Proposition 3.2.

Using a comparison argument , we easily check that Ǔa ≥ 1Ua ∨ 2Ua , for any strategy

a ∈ At,i. This estimate combined with (3.8) leads to Y̌ i
t ≥ 1Y

i
t ∨

2Y
i
t . Since ǎ is an

admissible strategy for the representation (3.8) of 1Y i and 2Y i, we deduce that

1U
ǎ

t ≤ 1Y
i

t ≤ Ǔ ǎ
t and 2U

ǎ

t ≤ 2Y
i

t ≤ Ǔ ǎ
t .

This directly leads to

|1Y
i

t −
2Y

i

t| ≤ |Ǔ ǎ
t − 1U

ǎ

t |+ |Ǔ ǎ
t − 2U

ǎ

t | . (3.9)

Step 3: Contraction property.

We first control the first term on the right hand side of (3.9). Denoting δU ǎ := Ǔ ǎ−1U ǎ

and δV ǎ := V̌ ǎ − 1V ǎ, we apply Ito’s formula to the process eβ·|δU ǎ
· |

2 and compute

eβt|δU ǎ
t |

2 +

∫ T

t

eβs|δV ǎ
s |

2ds = −

∫ T

t

βeβs|δU ǎ
s |

2ds− 2

∫ T

t

eβsδU ǎ
s δV

ǎ
s .dWs

+2

∫ T

t

eβsδU ǎ
s [f̌

ǎs(s, V̌ ǎ
s )− f ǎs(s,1 Γs,

1V
ǎ

s)]ds .

Observe that the inequality |x ∨ y − y| ≤ |x− y| combined with the Lipschitz property

of f leads to

|f̌ ǎs(s, V̌ ǎ
s )− f ǎs(s,1 Γs,

1V
ǎ

s)| ≤ L(|1Γs −
2 Γs|+ |V̌ ǎ

s − 1V
ǎ

s |) , t ≤ s ≤ T .

Combining these two estimates with the inequality 2xy ≤ 1
β
x2 + βy2, we get

eβt|δU ǎ
t |

2 ≤ −2

∫ T

t

δU ǎ
s δV

ǎ
s .dWs +

L

β

∫ T

t

eβs|1Γs −
2 Γs|

2ds ,

for β ≥ L. Taking the expectation in the previous expression and observing that the

second term in (3.9) is treated similarly, we deduce

E

[

eβt|1Y
i

t −
2Y

i

t|
2
]

≤
2L

β
E

[
∫ T

0
eβs|1Γs −

2 Γs|
2ds

]

.

Since the last inequality holds true for any (t, i) in [0, T ]× I, we derive

||Φ(1Γ)− Φ(2Γ)||2,β ≤

√

2LTd

β
||1Γ−2 Γ||2,β .

Setting β := max(L, 8LTd), Φ is 1
2 -Lipschitz continuous for the ‖ · ‖2,β norm, which

concludes the proof of the proposition. ✷
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