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Abstract
Considering a positive portfolio diffusion X with negative drift, we investigate op-

timal stopping problems of the form

inf
θ
E

f
 Xθ

sup
s∈[0,τ ]

Xs


 ,

where f is a non-increasing function, τ is the next random time where the portfolio X
crosses zero and θ is any stopping time smaller than τ . Hereby, our motivation is the
obtention of an optimal selling strategy minimizing the relative distance between the
liquidation value of the portfolio and its highest possible value before it reaches zero.
This paper unifies optimal selling rules observed by [5] for quadratic absolute distance
criteria with bang-bang type ones observed in [1, 4, 9]. More precisely, we provide
a verification result for the general stopping problem of interest and derive the exact
solution for two classical criteria f of the literature. For the power utility criterion
f : y 7→ −yλ with λ > 0, instantaneous selling is always optimal, which is consistent
with the observations of [1] or [9] for the Black-Scholes model in finite horizon. On the
contrary, for a relative quadratic error criterion, f : y 7→ (1− y)2, selling is optimal as
soon as the process X crosses a specified function ϕ of its running maximum X∗. These
results reinforce the idea that optimal stopping problems of similar type lead easily to
selling rules of very different nature. Nevertheless, our numerical experiments suggest
that the practical optimal selling rule for the relative quadratic error criterion is in fact
very close to immediate selling.

Key words: optimal stopping, optimal prediction, running maximum, free boundary PDE,
verification
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1 Introduction

At a first glance, trying to liquidate a portfolio as close as possible to its ultimate maximum
may be viewed as a hopeless ambition for a fund manager. From a mathematical point of
view, the random time of interest is not a stopping time. Nevertheless, for a given criterion
choice, this kind of optimal prediction problem has remarkably already been addressed in the
literature. Graversen, Peskir and Shiryaev were the first authors who tackled successfully
this challenging problem. Considering a portfolio W with Brownian motion dynamics on
the time interval [0, 1], they solve in [6] the optimal stopping problem infθ E

[
|Wθ −W ∗1 |2

]
,

whereW ∗1 denotes the maximum of the Brownian motionW at time 1 and θ is any stopping
time smaller than 1. Selling is optimal as soon as the drawdown of the portfolio, i.e. the
gap between its current maximum and its value, goes below the function t 7→ c∗

√
1− t, for

a specified constant c∗. Urusov [10] observes that this strategy provides also a good ap-
proximation of the last time τ∗ where the portfolio reaches its maximum, since it solves the
problem infθ E [|θ − τ∗|]. For a portfolio driven by a drifted Brownian motion, this property
is no longer satisfied, and Du Toit and Peskir [2, 3] characterize both solutions of these
problems. Once again, stopping is optimal as soon as the drawdown of the portfolio enters
a time-to-horizon dependent region.

Considering instead a portfolio composed by one stock (St)0≤t≤1 with Black-Scholes dynam-
ics, several authors (Shiryaev, Xu and Zhou [9], Du Toit and Peskir [4] or Dai, Jin, Zhong
and Zhou [1]) tried to minimize the relative distance between the stopped stock Sθ and its
ultimate maximum S∗1 . In particular they characterize the optimal selling rule associated
to the natural stopping problem supθ E [Sθ/S

∗
1 ]. As pointed out in [4], the formulation in

terms of ratio between the stopped process and its maximum has the effect of stripping
away the monetary value of the stock, focusing only on the underlying randomness. Using
either probabilistic or deterministic methods, the common interpretation of the solution
derived in these papers is that one should "sell bad stocks and keep good ones". Indeed,
introducing the "goodness index" α of the stock as the ratio between its excess return rate
and its square volatility rate, the optimal strategy appears to be of "bang-bang" type: one
should immediately sell the stock if α ≤ 1/2 and keep it until maturity otherwise. Fo-
cusing also on the problem infθ E [S∗1/Sθ], Du Toit and Peskir [4] observe that one should
sell immediately if α < 0, keep until the end if α > 1 and stop as soon as the ratio S∗/S
hits a specified deterministic function of time in the intermediate case. It is worth noticing
that these two optimal prediction problems of similar type offer therefore different optimal
selling strategies for a large range of parameter set.

Of course, the only consideration of stocks with Black-Scholes dynamics is unrealistic and
limitative. A recent paper of Espinosa and Touzi [5] allows for the consideration of more
general diffusion dynamics and, as a by product, requires to focus on a stationary version
of this problem. As pointed out by the authors, considering the first hitting of zero does
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not only have the advantage of reducing the problem to a stationary one, but in fact cor-
responds to a classical mean-reversion strategy of fund managers. They want to detect the
maximum of a signal on each excursion above its mean or symmetrically detect its min-
imum on each excursion below its mean. Such a signal can be for example generated by
the difference between two (normalized) stocks of the same sector. Considering a diffusion
portfolio X with general dynamics and negative drift starting at X0 > 0, the authors in [5]
study the infinite time horizon problem: infθ E

[
|X∗τ −Xθ|2

]
where τ is the first time where

X hits zero and θ is any stopping time smaller than τ . They solve explicitly this stationary
problem as a free boundary one and verify that the fund manager should sell the portfolio
whenever its running maximum X∗ and its drawdown X∗ − X are both large enough. It
is worth noticing that this optimal selling rule differs a lot from the immediate optimal
selling strategy obtained by [1, 4, 9] for the finite time horizon optimal stopping problem
supθ E [Xθ/X

∗
1 ], whenever X is a Black-Scholes portfolio with negative drift. Indeed, the

nature of optimal selling is very different in the finite horizon case between an absolute
and a relative criterion, so it is natural to wonder if this phenomenon also exists in this
more realistic stationary framework. The underlying question, which is very important for
a fund manager, is whether or not the optimal selling rule is robust with respect to the
criterion. Indeed, if two criteria seem very close and are relevant, then they should bring
close allocation strategies (here selling/buying rules), because there is no a priori reason to
choose one instead of the other.

Therefore the motivation for this article is twofold. First we want to address the same
questions as the ones in [1, 4, 9] but in a context more adapted to fund managers consid-
erations, and then we intend to discuss the robustness of the solution with respect to the
criterion. In order to better understand the consequences of the chosen criterion properties
on the corresponding optimal selling strategy and hereby unify the corresponding literature,
the purpose of this paper is to investigate the optimal selling rules associated to monetary
invariant criteria in the stationary framework developed in [5]. The consideration of the
ratio between the stopped portfolio and its upcoming maximum allows to capture the scale
of the prices themselves and we focus more precisely on the two following problems:

V1 = sup
θ

E

[(
Xθ

X∗τ

)λ]
, for λ > 0 , and V2 = inf

θ
E

[(
X∗τ −Xθ

X∗τ

)2
]
,

where τ is the first time where X hits 0 and θ is any stopping time smaller than τ . The
first problem consists in maximizing the power utility of the possible relative value of the
portfolio. The case λ = 1 corresponds to the criterion considered in [1, 4, 9] in the finite
horizon Black-Scholes framework. Solving the second problem consists simply in minimiz-
ing the classical relative quadratic error between the stopped portfolio and its maximum
possible value. From the fund manager point of view, choosing between these two criteria
seems a priori arbitrary, but we verify hereafter that they lead to optimal selling rules of
very different nature.
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For the first problem V1, we prove that the optimal stopping strategy consists in liquidat-
ing the portfolio immediately. For λ ≤ 1, immediate selling is still optimal even if the
portfolio value starts at a point below its current maximum. This is no longer the case
when λ > 1, where the fund manager should wait until the value of the portfolio gets close
enough to its running maximum.These conclusions extend and are in accordance with the
conclusions of [1, 4, 9] obtained in the finite horizon Black-Scholes framework for λ = 1.
Conversely for V2, when minimizing the relative quadratic distance between the portfolio
and its ultimate maximum, the optimal selling time is the first time where the process X
goes below a specified function ϕ of its running maximum X∗. Similarly to [8] or [5], this
function ϕ (or more precisely its inverse) is characterized as the "biggest" solution of an
ordinary differential equation and can easily be approximated numerically. Even though for
V2, the solution seems to be of the same nature as the one in [5], they in fact differ a lot
in practice since here ϕ(0) = 0 whereas ϕ is bounded from below by a positive constant in
[5]. For the absolute criterion considered in [5], this implies that one should hold the port-
folio no matter how small its value gets, as long as the running maximum of the portfolio
has not reached a given minimal threshold. It is worth noticing that this is not the case here.

As already observed by Du Toit and Peskir [4], our results confirm that optimal prediction
problems of similar nature can lead to very different types of optimal solution. Predicting
the maximum of a portfolio is really intricate and the corresponding optimal selling rule
strongly depends on the criterion choice of the fund manager. However, we shall temper a
bit this conclusion in our framework, since numerical experiments provided hereafter show
that the function ϕ is close to the identity function. Hence, even if immediate stopping is
not optimal, a fund manager will not wait long until the drawdown of the portfolio X∗−X
goes above X∗ − ϕ(X∗). Thus, immediate selling is for both criteria a reasonable strategy.
In addition, the difference between the present result and the one in [5] can also be partly
explained. When looking at an absolute criterion, in a certain sense, one neglects the effects
related to very small portfolio values in comparison to higher ones. This is why it is not
surprising to find a stopping boundary which is bounded from below. On the contrary, the
relative criterion penalizes in the same way excursions with a small maximum as excursions
with a large maximum. Therefore it is not very surprising to have ϕ(0) = 0.

The paper is organized as follows. The next section provides the set up of the problem
and derives preliminary properties. Section 3 is dedicated to the obtention of a general
verification theorem allowing to treat the first and the second optimal stopping problems at
once. Sections 4 and 5 tackle successively the power utility type criterion and the quadratic
distance one. In both cases, the value function solution is presented and discussed at
the beginning of the section, numerical results are provided, and the technical proofs are
postponed to the end of it.
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2 Optimal liquidation of a portfolio

2.1 The optimal stopping problem of interest

LetW be a scalar Brownian motion on the complete probability space (Ω,F ,P), and denote
by F = {Ft, t ≥ 0} the corresponding augmented natural filtration. Let X be a diffusion
process given by the following dynamics:

dXt = −µ(Xt)dt+ σ(Xt)dWt, t ≥ 0 , (2.1)

together with an initial data x := X0 > 0, where µ and σ are Lipschitz continuous functions.
We will assume that the portfolio process X is directed towards the origin in the sense that:

µ(x) ≥ 0 , for x ≥ 0. (2.2)

We denote by τ := inf{t ≥ 0, Xt = 0} the first time where the process X hits the origin, T
the set of F-stopping times θ such that θ ≤ τ a.s and X∗. := sups≤.Xs the running maximum
of the portfolio X. We consider the following optimization problem:

V0 := inf
θ∈T

E f

(
Xθ

X∗τ

)
, (2.3)

where f is a non-increasing continuous function on [0, 1], C1 on (0, 1], and such that, there
exist two constants A > 0 and η > 0 satisfying

|f ′(x)| ≤ Axη−2 , 0 < x ≤ 1 . (2.4)

Since f is non-increasing, solving this optimal stopping problem consists in minimizing the
relative distance, quantified according to the criterion f , between the liquidation price of
the portfolio and its highest possible value before hitting 0. We intend to focus in Sections
4 and 5 on two particular classical cases of criteria f : y 7→ −yλ, λ > 0 and y 7→ (1 − y)2.
Before doing so, we first exhibit preliminary properties and provide a verification argument
for the optimal stopping problem (2.3) in its general form.

In order to use dynamic programming techniques, we introduce as usual the process Z
defined by Zt := z ∨ X∗t for a given z > 0, and define the corresponding value function
associated to the optimization problem (2.3) :

V (x, z) := inf
θ∈T

Ex,z f
(
Xθ

Zτ

)
, (x, z) ∈∆ , (2.5)

where ∆ is defined by

∆ := {(x, z), 0 ≤ x ≤ z and z > 0}, (2.6)

and corresponds to the domain where (X,Z) lies.
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Remark 2.1 Notice that the definition of ∆ differs from the one in [5]. Observe also that
contrary to [5], the problem is not invariant by translation. More precisely, if one considers
the criterion infθ f( b+Xθb+Zτ

), the problem might not be well-defined for b < 0 since we can
have b + Zτ = 0. For b > 0 (or z > −b if b < 0) however, the problem makes sense and
could be studied in a similar fashion, but is not a particular case of what we do here.

Defining the reward function g from immediate stopping

g(x, z) := Ex,z f
(
x

Zτ

)
, (x, z) ∈∆ , (2.7)

observe from the dynamics of (X,Z) that

Ex,z f
(
Xθ

Zτ

)
= Ex,z EXθ,Zθ f

(
Xθ

Zτ

)
= Ex,z g(Xθ, Zθ) , (x, z) ∈∆ , θ ∈ T .

We may thus rewrite this problem in the standard form of an optimal stopping problem

V (x, z) = inf
θ∈T

Ex,z g(Xθ, Zθ) , (x, z) ∈∆ . (2.8)

2.2 Assumptions and first properties

Let introduce the so-called scale function S defined, for x ≥ 0, by

S(x) :=

∫ x

0
e
∫ u
0 α(r)drdu , with α :=

2µ

σ2
. (2.9)

Remark 2.2 Since the portfolio process X is directed towards 0, the function α is non-
negative. Therefore, the scale function S is increasing, convex and dominates the Identity
function.

By construction, S satisfies Sxx = αSx and is related to the law of Zτ via the estimate

Px,z [Zτ ≤ u] = Px [X∗τ ≤ u] 1z≤u =

(
1− S(x)

S(u)

)
1z≤u , (x, z) ∈∆ , u > 0 .

Using the scale function S, the reward function g rewrites as

g(x, z) = f
(x
z

)(
1− S(x)

S(z)

)
+ S(x)

∫ ∞
z

f
(x
u

) S′(u)

S(u)2
du , (x, z) ∈∆ , (2.10)

which is well-defined since f is continuous on [0, 1] so that we have∫ ∞
z

∣∣∣f (x
u

)∣∣∣ S′(u)

S(u)2
du ≤ ‖f‖∞

∫ ∞
z

S′(u)

S(u)2
du =

‖f‖∞
S(z)

, (x, z) ∈∆ .

Via an integration by parts, we deduce

g(x, z) = f
(x
z

)
− xS(x)

∫ ∞
z

f ′
(x
u

) du

u2S(u)
, (x, z) ∈∆ , x > 0 . (2.11)
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Observe that the previous integral is well defined since, combining Remark 2.2 with estimate
(2.4), we compute∣∣∣∣∣ f ′

(
x
u

)
u2S(u)

∣∣∣∣∣ ≤ A
(x
u

)η−2 1

u3
= A

xη−2

u1+η
, 0 < x ≤ u .

If f is C1 on [0, 1], since g(0, z) = f(0), (2.11) also holds true for x = 0 and z > 0.

In this paper, we aim at considering a general framework including the classical types of
mean reverting portfolio processes. In particular, we intend to treat the following diffusion
dynamics:

• Brownian motion with negative drift: α constant, positive and S(x) = eαx−1
α ;

• Cox-Ingersol-Ross process: dXt = −µXtdt+σ
√
Xt + b dWt for some positive constants

µ, σ, b so we get α(x) = αx
x+b and S′(x) = eαx

(
b

x+b

)αb
with α > 0 and b > 0;

• Ornstein-Uhlenbeck process: dXt = −µXtdt+ σdWt for some positive constants µ, σ
so we get α(x) = αx and S′(x) = eαx

2/2 .

For this purpose, we impose on α similar but less restrictive conditions as in [5] and work
under the following standing assumption:

α = 2µ
σ2 : (0,∞)→ R is a C2 positive non-decreasing concave function. (2.12)

Remark 2.3 As in [5], we observe for later use that the restriction (2.12) implies in par-
ticular that the function 2S′ − αS − 2 is a non-negative increasing function.

Remark 2.4 One can reasonably wonder if the solution of the present problem can be
deduced from [5] using the following change of variable: Y := ln(1 +X), since Y would also
be a process directed towards 0 if X is. We claim that this is not the case. Indeed, we can
observe that f(1+Xθ

1+Zτ
) = f ◦ exp

(
ln(1 +Xθ)− ln(1 + Zτ )

)
, and define ` : x 7→ f ◦ exp(−x).

First, as briefly explained in Remark 2.1, the problem considered here where b = 0 cannot
be deduced from the one with b = 1. Moreover, for the functions f that we intend to study,
f : x 7→ −xλ or f : x 7→ 1

2(1−x)2, the convexity of ` required in [5] is not satisfied. Finally,
if X is for example an Ornstein-Uhlenbeck process, one can compute that the function αY
associated to Y is of the form αY : y 7→ 2α(e2y − ey) + 1, which is convex on R+, and
therefore does not satisfy the assumptions of [5].

3 A PDE verification argument

This section is devoted to the obtention of a PDE characterization for the solution of the
optimal stopping problem of interest (2.5). We first derive the corresponding HJB equation
and then provide a verification theorem.
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3.1 The corresponding dynamic programming equation

The linear second order Dynkin operator associated to the diffusion (2.1) is simply given by

L : v 7→ vxx − α(x)vx , with α(x) =
2µ(x)

σ2(x)
, for x ≥ 0 .

By construction, observe that the scale function S satisfies in particular LS = 0. Since the
value function of interest V rewrites as the solution of a classical optimal stopping problem
(2.8), we expect V to be solution of the associated dynamic programming equation. Namely,
V should be a solution of the Hamilton-Jacobi-Bellman equation:

min(Lv; g − v) = 0 ; v(0, z) = f(0) , vz(z, z) = 0 , (x, z) ∈∆ . (3.13)

The first term indicates that V is dominated by the immediate reward function g and that
the dynamics of v in the domain are given by the Dynkin operator of the diffusion X. The
second relation manifests that only immediate stopping is possible whenever the diffusion
X has reached 0. Finally, the last one is the classical Von Neumann condition encountered
whenever the diffusion process hits its maximum.

As in any optimal stopping problem, the domain of definition ∆ of the value function
subdivides into two subsets: the stopping region S where immediate liquidation of the
portfolio is optimal and the continuation region where the optimal strategy consists in
waiting until the portfolio process enters the stopping region. The optimal stopping time
is the first time where the process arrives in the stopping region, and, in order to obtain
a stopping time in T , we expect the region S to be a closed subset of ∆. Of course, the
stopping region is characterized by the relation v = g since g is the reward function from
immediate stopping. Depending on the position of (x, z) ∈∆ with respect to the region S,
we expect the dynamics of (3.13) to rewrite

On the stopping region: v(x, z) = g(x, z) , Lg(x, z) ≥ 0 ;

On the continuation region: v(x, z) < g(x, z) , Lv(x, z) = 0 ;

Everywhere: vz(x, z)1{x=z} = 0 .

Observe that the last Neumann condition is expected on all the domain ∆, and thus surpris-
ingly in the stopping region where the portfolio X does not diffuse. This feature is particular
to our framework, in which the reward function g given in (2.10) satisfies by construction
gz(z, z) = 0 for z > 0.

In the next sections of the paper, we exhibit different shapes of stopping and continuation
regions depending on the choice of the objective function f . We observe that, although the
objective functions may appear rather similar, the optimal selling strategies can be very
different.
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3.2 The verification theorem

As detailed above, we expect the value function V given by (2.5) to be solution of the
Hamilton-Jacobi-Bellman equation (3.13). The solution of this problem is intimately related
to the form of the associated stopping region S. Afterwards, we shall not prove that V is
indeed a (weak) solution of this PDE but instead try to guess a regular solution to the PDE
and verify that it satisfies the assumptions of the following verification theorem.
We first introduce the definition of piecewise C2,1 functions.

Definition 3.1 We say that a function v defined on ∆ is piecewise C2,1 on a subset E ⊂∆

if for any subset K which is compact in ∆, there exist K1, ...,Kn compacts in ∆ such that
K ∩ E ⊂ ∪ni=1Ki and v can be extended as a C2,1 function on Ki for each i = 1, ..., n.

Theorem 3.1 Let v be a bounded from below function C1,0 on ∆ and piecewise C2,1 on
∆ \ {(0, z), z > 0} in the sense of Definition 3.1.
(i) If v satisfies Lv ≥ 0, v ≤ g as well as vz(z, z) ≥ 0 for z > 0, then v ≤ V .
(ii) More precisely, if vz(z, z) = 0 for z > 0 and there exists a closed in ∆ set S ⊂ ∆

containing the axis {(0, z) , z > 0} such that

v = g on S , Lv ≥ 0 on S \ {(0, z), z > 0} , v ≤ g and Lv = 0 on ∆ \ S , (3.14)

then v = V and θ∗ := inf{t ≥ 0, (Xt, Zt) ∈ S} is an optimal stopping time.
(iii) If in addition v < g on ∆ \ S, then θ∗ is the "smallest" optimal stopping time, in the
sense that θ∗ ≤ ν a.s. for any optimal stopping time ν.

Proof. We prove each assertion separately.

(i) Fix (X0, Z0) := (x, z) ∈∆. Let θ ∈ T and define θn = n∧θ∧inf{t ≥ 0; Zt ≥ n or Zt ≤ 1
n}

for n ∈ N. Since (X,Z) takes value in a compact subset of ∆, a direct application of Itô’s
formula gives

v(x, z) = v(Xθn , Zθn)−
∫ θn

0
Lv(Xt, Zt)

σ(Xt)
2

2
dt−

∫ θn

0
vx(Xt, Zt)σ(Xt)dWt −

∫ θn

0
vz(Xt, Zt)dZt .

Combining estimates Lv ≥ 0 and vz(Xt, Zt)dZt = vz(Zt, Zt)dZt ≥ 0 with the fact that
(X,Z) lies in a compact subset of ∆, we deduce

v(x, z) ≤ Ex,zv(Xθn , Zθn) . (3.15)

Since v ≤ g, this leads directly to

v(x, z) ≤ Ex,zg(Xθn , Zθn) = Ex,zEXθn ,Zθnf
(
Xθn

Zτ

)
= Ex,zf

(
Xθn

Zτ

)
.

Clearly as n → ∞, θn → θ almost surely. Since 0 ≤ Xθn/Zτ ≤ 1 and f is continuous,
Lebesgue’s dominated convergence theorem gives: Ex,zf(Xθn/Zτ )→n→∞ Ex,zf(Xθ/Zτ ),
leading to

v(x, z) ≤ V (x, z) , (x, z) ∈∆ .
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(ii) Observe that this framework is more restrictive than the previous one, so that v ≤ V

on ∆. For (x, z) ∈ S, we have v(x, z) = g(x, z) ≥ V (x, z) by definition of g. We now fix
(x, z) ∈∆ \ S and prove that v(x, z) ≥ V (x, z).

Let θ∗ := inf{t ≥ 0; (Xt, Zt) ∈ S}. Observe that θ∗ ∈ T since S is closed in ∆ and contains
the axis {(0, z), z ≥ 0}. The regularity of v implies Lv(Xt, Zt) = 0 for any t ∈ [0, θ∗). As
before, we define θ∗n := n ∧ θ∗ ∧ inf{t ≥ 0; Zt ≥ n or Zt ≤ 1

n}, which is a stopping time. A
very similar computation leads directly to

v(x, z) = Ex,zv(Xθ∗n , Zθ∗n) .

Since v is bounded from below and v ≤ g ≤ ‖f‖∞, v is bounded. Therefore the sequence(
v(Xθ∗n , Zθ∗n)

)
n
is uniformly integrable and we deduce that v(x, z) = Ex,zv(Xθ∗ , Zθ∗). Since

(Xθ∗ , Zθ∗) ∈ S and v = g on S, we get

v(x, z) = Ex,zg(Xθ∗ , Zθ∗) = Ex,zf
(
Xθ∗

Zτ

)
≥ V (x, z) .

Thus v = V on ∆ and θ∗ is an optimal stopping time.

(iii) For a given (x, z) ∈ ∆, we argue by contradiction and suppose the existence of a
stopping time ν ∈ T satisfying P(ν < θ∗) > 0 and V (x, z) = Ex,zf(Xν/Zτ ).
By assumption, we have V (Xν , Zν) < g(Xν , Zν) on {τ < θ∗}, which combined with estimate
V ≤ g implies

V (x, z) = Ex,zf
(
Xν

Zτ

)
= Ex,zg(Xν , Zν) > Ex,zV (Xτ , Zτ ) ≥ V (x, z) ,

where the last inequality follows from the definition of V . This leads to a contradiction,
which guarantees the minimality of θ∗. 2

Remark 3.1 From the definition of g, one easily checks that gz(z, z) = 0 for any z > 0.
Therefore, in the PDE dynamics (3.14), the Neumann boundary condition vz(z, z) = 0 is
only necessary for (z, z) ∈∆ \ S, since it is automatically satisfied otherwise.

Remark 3.2 Whenever g is a function which is C1,0 w.r.t. (x, z) on ∆, C2,1 w.r.t. (x, z)

on ∆ \ {(0, z), z > 0} and Lg ≥ 0 on ∆ \ {(0, z), z > 0}, then v = g and S = ∆ satisfy the
assumptions of Theorem 3.1 (ii). In that case, immediate stopping is always optimal. We
prove in Proposition 3.1 that the reverse is true. Notice also that expression (2.10) implies
that an immediate sufficient condition for g to be in C1,0(∆) ∩ C2,1(∆ \ {(0, z), z > 0}) is
that f is C2 on (0, 1].

Proposition 3.1 Assume that g is C1,0 on ∆, C2,1 on ∆ \ {(0, z), z > 0}, and that there
exists (x0, z0) ∈∆ \ {(0, z), z > 0} such that Lg(x0, z0) < 0. Then, immediate stopping at
(x0, z0) is not optimal (or equivalently V (x0, z0) < g(x0, z0)).
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Proof. Since Lg is continuous at (x0, z0), there exists a neighborhood U0 of (x0, z0) in
∆ such that Lg(x, z) < 0 for any (x, z) ∈ U0. Without loss of generality, we can assume
that U0 is compact in ∆. Let (X0, Z0) = (x0, z0). Since x0 > 0, there exists θ0 ∈ T such
that Ex0,z0θ0 > 0 and let define θ1 := 1 ∧ θ0 ∧ inf{t ≥ 0; (Xt, Zt) 6∈ U0} ∈ T . Since
{θ0 > 0} = {θ1 > 0}, we also have Ex0,z0θ1 > 0. Using Itô’s formula, we compute:

g(x0, z0) = g(Xθ1 , Zθ1)−
∫ θ1

0
Lg(Xu, Zu)

σ(Xu)2

2
du

−
∫ θ1

0
gx(Xu, Zu)σ(Xu)dWu −

∫ θ1

0
gz(Xu, Zu)dZu.

From Remark 3.1, gz(z, z) = 0 for z > 0 so that the last term of the previous expression
disappears. Since U0 is compact and Ex0,z0θ1 > 0, taking conditional expectations, we
deduce that g(x0, z0) > Ex0,z0 g(Xθ1 , Zθ1) ≥ V (x0, z0). 2

In the next sections, we investigate two particular cases of objective functions, for which we
exhibit functions v and stopping regions S, which satisfy the assumptions of Theorem 3.1
and are in general non trivial.

4 The power utility criterion

Let first examine the case where the function f is given by f : x 7→ −xλ

λ , for λ > 0. In other
words, we are computing the following value function

V λ(x, z) := − 1

λ
sup
θ∈T

Ex,z
(
Xθ

Zτ

)λ
, (x, z) ∈∆ , λ > 0 . (4.16)

Consider an investor, whose relative preferences are given by a power utility function and
suppose that he detains at time 0 a given portfolio X directed towards 0. The optimal
stopping time at which he should liquidate his portfolio is the solution of the previous
prediction problem. With a given finite time horizon T , du Toit and Peskir [4] as well as
Shiryaev, Xu and Zhou [9] investigate the case where X is a Geometric Brownian motion.
They conclude that the optimal strategy consists in waiting until time T if the portfolio
has promising returns (i.e. 1 < 2µ/σ2 = xα(x), x > 0, with our notations), and sell
immediately otherwise. In our stationary framework, waiting until the wealth reaches 0 is
obviously a non optimal strategy. For a linear utility function (λ = 1), we prove in Theorem
4.1 below that immediate stopping is also optimal. Depending on the value of λ, the latter
may no longer be the case for the non linear problem (4.16). Nevertheless, we observe that
immediate selling is still optimal for the practical value function of interest V λ(x, x), for
x > 0.

4.1 The particular case where λ ≤ 1

For λ ≤ 1, we prove hereafter that immediate stopping is always optimal. For λ = 1, these
conclusions are therefore in accordance with those of [4, 9] obtained for the case of an ex-
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ponential Brownian motion on a fixed time horizon.

A direct application of estimate (2.11) proves that the reward function gλ associated to
problem (4.16) is given by

gλ(x, z) = − xλ

λzλ
+ xλS(x)

∫ ∞
z

du

S(u)u1+λ
, (x, z) ∈∆ , λ > 0 .

The next theorem indicates that the framework of Remark 3.2 holds for λ ≤ 1, so that gλ

coincides with the value function on ∆.

Theorem 4.1 For λ ≤ 1, immediate stopping is optimal for problem (4.16), so that

V λ(x, z) = gλ(x, z) , (x, z) ∈∆ , 0 < λ ≤ 1 .

Proof. For any λ > 0 and (x, z) ∈∆ with x > 0, we compute

gλx(x, z) = −x
λ−1

zλ
+ {λxλ−1S(x) + xλS′(x)}

∫ ∞
z

du

S(u)u1+λ
.

Differentiating one more time and using the relation LS = 0, we get,

gλxx(x, z) = (1− λ)
xλ−2

zλ
+ {λ(λ− 1)xλ−2S(x) + (2λxλ−1 + xλα(x))S′(x)}

∫ ∞
z

du

S(u)u1+λ
,

for any λ 6= 1 and 0 < x ≤ z. Combining the previous estimates, we deduce that

Lgλ(x, z) = xλ−2[xα(x) + 1− λ]

(
1

zλ
−
∫ ∞
z

S(x)

S(u)

λdu

u1+λ

)
+ 2xλ−1S′(x)

∫ ∞
z

λdu

S(u)u1+λ
,

(4.17)

for any λ 6= 1 and 0 < x ≤ z. In the case, where λ = 1, we get similarly

Lg1(x, z) = α(x)

(
1

z
−
∫ ∞
z

S(x)du

u2S(u)

)
+ 2S′(x)

∫ ∞
z

du

u2S(u)
, (x, z) ∈ ∆ . (4.18)

Furthermore, since S is increasing, we have∫ ∞
z

S(x)

S(u)

λdu

u1+λ
≤
∫ ∞
z

S(z)

S(u)

λdu

u1+λ
≤
∫ ∞
z

λdu

u1+λ
=

1

zλ
, (x, z) ∈∆ , λ > 0 .

Plugging this estimate in (4.17) and (4.18), we see that Lgλ ≥ 0 on ∆ \ {(0, z), z > 0} for
any λ ≤ 1. As detailed in Remark 3.2, since g is C0 on ∆ and C2,1 on ∆ \ {(0, z), z > 0},
we deduce that V λ = gλ on ∆ and consequently immediate stopping is optimal for any
λ ≤ 1. 2
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4.2 Construction of the solution when λ > 1

We now turn to the more interesting and intricate case where λ > 1. Then, the function
Lgλ is still given by expression (4.17) and we observe that:

Lgλ(x, z) ∼x∼0 (1− λ)
xλ−2

zλ
< 0 ,

for any z > 0 and λ > 1. Therefore, Lgλ is not non-negative on ∆ and Proposition 3.1
ensures that the associated continuation region is non empty. Since immediate stopping
shall not be optimal close to the axis {(0, z); z > 0}, we expect to have a stopping region
of the form Sλ := {(x, z) ∈∆; x ≥ ϕλ(z)}∪ {(0, z); z > 0}. Hence, our objective is to find
functions vλ and ϕλ satisfying

Lvλ(x, z) = 0 for 0 < x < ϕλ(z) and (x, z) ∈∆ , (4.19)

vλ(x, z) = gλ(x, z) and Lgλ(x, z) ≥ 0 for x ≥ ϕλ(z) and (x, z) ∈∆ , (4.20)

vλ(0, z) = 0 for z > 0 , (4.21)

vλz (z, z) = 0 for z > 0 . (4.22)

Since we look for regular solutions, we complement the above system by the continuity and
the smoothfit conditions

vλ(ϕλ(z), z) = gλ(ϕλ(z), z) and vλx(ϕλ(z), z) = gλx(ϕλ(z), z) , for z > 0 . (4.23)

The stopping region Sλ will then be defined as

Sλ := {(x, z) ∈∆; x ≥ ϕλ(z)} ∪ {(0, z); z > 0}. (4.24)

Since the optimization problem of practical interest corresponds to the value of V λ on the
diagonal {(x, x); x > 0}, our main concern here is to find out if ϕλ(z) ≤ z for any z ≥ 0,
hence indicating if immediate stopping is always optimal on the diagonal. Surprisingly, we
verify hereafter that ϕλ(0) = 0 and ϕλ(z) < z, for z > 0, so that immediate stopping is the
optimal strategy for the practical problem of interest.

Due to the dynamics of (4.19) and since LS = 0, the function vλ must be of the form

vλ(x, z) = A(z) +B(z)S(x) , (x, z) ∈∆ \ S .

Combined with the continuity and smooth fit conditions (4.23), this leads to

v(x, z) = gλ(ϕλ(z), z) +
gλx(ϕλ(z), z)

S′ ◦ ϕλ(z)
[S(x)− S ◦ ϕλ(z)] , (x, z) ∈∆ \ S.

The free boundary ϕλ is then determined by the Dirichlet condition (4.21) and must satisfy:

gλ(ϕλ(z), z)S′ ◦ ϕλ(z) = gλx(ϕλ(z), z)S ◦ ϕλ(z) , (x, z) ∈∆ \ S.

The next lemma introduces a free boundary function ϕλ satisfying this required condition.
It also provides useful properties of this free boundary function and its technical proof is
postponed to Section 4.4.
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Lemma 4.1 For any λ > 1, the function ϕλ given by

ϕλ : z ∈ (0,∞) 7→ arg min
x∈[0,z]

g(x, z)

S(x)
,

is a well defined increasing C1 function, satisfying:
(i) 0 ≤ ϕλ(z) < z, for any z > 0;

(ii) ϕλ maps (0,∞) onto (0, yλ), where yλ is the unique non null zero of y 7→ yS′(y)−λS(y).

Remark 4.1 As pointed out by a referee, the definition of the optimal frontier ϕλ interprets
as the one associated to a one-dimensional classical stopping problem with fixed running
maximum z > 0. Indeed, we observe ex-post that the exhibited optimal policy does not
allow the running maximum of the portfolio to increase. Hence solving this stopping problem
with a fixed z > 0 is essentially the same.

Remark 4.2 Observe that, for any fixed z > 0 and λ > 1, gλ(x, z)/S(x) converges to 0 as x
goes to 0, since S dominates the Identity function as pointed out in Remark 2.2. Therefore,
the function gλ(., z)/S(.) is well defined on [0, z] for any z > 0.

Before providing the value function solution and verifying that it satisfies the requirements
of Theorem 3.1, we still need to check that the stopping region Sλ associated to ϕλ is indeed
a good candidate, i.e. that the second part of (4.20) holds. This is the purpose of the next
lemma, which proof is also postponed to Section 4.4.

Lemma 4.2 For any λ > 1, the function Lgλ is non-negative on {(x, z) ∈∆, x ≥ ϕλ(z)}.

Given the free boundary ϕλ defined above and the corresponding stopping region Sλ, we are
now in position to provide the optimal strategy and value function solutions of the problem
(4.16).

Theorem 4.2 For any λ > 1, the value function V λ solution of problem (4.16) is given by

V λ(x, z) = gλ(ϕλ(z), z)
S(x)

S ◦ ϕλ(z)
1{x<ϕλ(z)} + gλ(x, z)1{x≥ϕλ(z)} , (x, z) ∈∆ . (4.25)

The smallest optimal stopping time associated to (4.16) is given by

θλ := inf {t ≥ 0 , Xt ≥ ϕλ(Zt)} ∧ τ , λ > 1 .

Proof. Let denote by vλ the candidate value function defined by the right-hand side of
(4.25). We shall prove that vλ coincides with the value function (4.16) by checking that it
satisfies all the requirements of Theorem 3.1.

It is immediate that vλ is bounded from below by 0 because gλ ≥ 0. Since gλ is C1 on ∆

and C2,1 w.r.t. (x, z) on ∆ \ {(0, z), z > 0}, and ϕλ is C1 by Lemma 4.1, vλ is C2,1 w.r.t.
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(x, z) on both ∆\S and S\{(0, z), z > 0}, so that it is piecewise C2,1 on ∆\{(0, z), z > 0}.
By construction, vλ is continuous on ∆ and we recall from the definition of ϕλ that

gλ(ϕλ(z), z)
S′ ◦ ϕλ(z)

S ◦ ϕλ(z)
= gλx(ϕλ(z), z) , z > 0 .

Therefore, vλ is C1 on ∆.

The closed in ∆ stopping region associated to the value function vλ is naturally given by
(4.24). By definition, vλ = gλ on Sλ and we deduce from Lemma 4.2 that Lgλ ≥ 0 on the
set Sλ \ {(0, z), z > 0}. By construction, we have Lvλ = 0 on ∆ \ Sλ. For any z > 0, since
gλ(., z)/S achieves its minimum at a unique point ϕλ(z), we get

gλ(ϕλ(z), z)
S(x)

S ◦ ϕλ(z)
< gλ(x, z) , 0 ≤ x < ϕλ(z) ,

and we deduce that vλ < gλ on ∆ \ Sλ. Finally, since vλz (z, z) = gλz (z, z) = 0 for any z > 0,
all the requirements of (ii)-(iii) in Theorem 3.1 are in force, and the proof is complete. 2

4.3 Properties of the optimal liquidation strategy

We first observe that the two previous cases where λ is above or below 1 seem to be of
different natures. However, we prove hereafter that this is not the case and provide via
simple arguments the continuity of V λ with respect to the parameter λ.

Proposition 4.1 The mapping λ 7→ V λ is continuous on (0,∞).

Proof. We fix λ1 and λ2 in (0,∞) such that λ1 ≤ λ2. First notice that since X. ≤ Zτ on
[0, τ ], we necessarily have

−λ2V
λ2(x, z) = sup

θ∈T
Ex,z

(
Xθ

Zτ

)λ2
≤ sup

θ∈T
Ex,z

(
Xθ

Zτ

)λ1
= −λ1V

λ1(x, z) , (x, z) ∈∆ .

(4.26)

Now, using Jensen’s inequality, we observe that[
Ex,z

(
Xθ

Zτ

)λ1]λ2λ1
≤ Ex,z

(
Xθ

Zτ

)λ2
≤ −λ2V

λ2(x, z) , θ ∈ T , (x, z) ∈∆ .

Bringing this expression to the power λ1/λ2 and taking the supremum over θ, we deduce
from (4.26) that[

− λ1V
λ1(x, z)

]λ2
λ1 ≤ −λ2V

λ2(x, z) ≤ −λ1V
λ1(x, z) , (x, z) ∈∆ .

Therefore λ2V
λ2 → λ1V

λ1 whenever λ2 → λ1 and we deduce the continuity of V λ with
respect to λ. 2
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For λ > 1, Theorem 4.2 indicates that the stopping region Sλ associated to problem (4.16)
is given by (4.24). Since ϕλ(z) < z, we see that the stopping region Sλ includes in particular
the axis {(x, x) , x > 0}. Therefore, if an investor detains a portfolio directed towards zero
and hopes to get close to its upcoming maximum before it reaches zero according to the
criterion (4.16), he should liquidate the portfolio immediately. If ever the running maximum
z of the portfolio exceeds its current value, he should wait until the value of the portfolio
hits zero or increases enough and reaches ϕλ(z). In any case, the optimal strategy does
not allow the running maximum of the portfolio to increase. Theorem 4.1 indicates that
immediate selling is optimal for λ ∈ (0, 1] and these results are in accordance with those of
[9] for an exponential Brownian motion on a finite fixed horizon, since waiting until maturity
is irrelevant in our framework. Nevertheless, changing the criterion of interest may lead to
value functions where immediate stopping is not optimal on the axis {(x, x) , x > 0}. This
is exactly the purpose of Section 5.
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Figure 1: Optimal frontier for an OU (α = 1) and a CIR (α = 1, b = 1) with different
parameter λ

Figure 1 represents the frontier between the stopping and the continuation regions for differ-
ent values of λ larger than 1 and associated to an Orstein-Uhlenbeck with parameter α = 1

and a CIR-Feller process with parameters α = 1 and b = 1. We first observe that the shape
of the free boundary ϕλ is rather similar in both cases, and we observe indeed this feature for
a large range of parameter set. Furthermore, the mapping λ 7→ ϕλ seems to be continuous,
property which is easily verified from the definition of ϕλ. Second, we notice that the free
boundary ϕλ is decreasing with respect to λ. Indeed, arguing as in Part 2. of the proof of
Lemma 4.1, one can easily check that the function x ∈ R+ 7→ xS′(x)/S(x) is decreasing
starting from 1. Hence, by definition of yλ, the valuation domain [0, yλ] of ϕλ shrinks mono-
tonically to {0} as λ decreases to 1, hence leading to the absence of continuation region for
the problem V 1.
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Remark 4.3 Considering for example an Ornstein-Uhlenbeck portfolio X, one verifies eas-
ily from their definitions that the free boundary ϕλ and the value function vλ are continuous
with respect to the parameter α ∈ R, characterizing the dynamics of the portfolio X. Hence,
the continuation and stopping regions are not too sensitive to eventual estimation errors of
this parameter of interest.

4.4 Proofs of Lemma 4.1 and Lemma 4.2

This section provides successively the proofs of Lemma 4.1 and Lemma 4.2.

Proof of Lemma 4.1
Fix λ > 1. Let introduce the functions

m : x 7→ xS′(x)

λS(x)2
− 1

S(x)
and ` : z 7→ −

∫ ∞
z

λzλdu

S(u)u1+λ
,

so that the derivative of the function of interest rewrites

∂

∂x

[
g(x, z)

S(x)

]
=

xλ−1

zλ
{m(x)− `(z)} , (x, z) ∈∆ . (4.27)

0. A useful estimate.
We will use several times the following expansion as x→∞:

α(x)S(x) ∼∞ S′(x). (4.28)

Indeed, recalling that LS = 0 and integrating by parts, we compute:

S(x) = S(1) +

∫ x

1

α(u)S′(u)

α(u)
du = S(1) +

S′(x)

α(x)
− S′(1)

α(1)
−
∫ x

1
(1/α)′(u)S′(u)du ∼∞

S′(x)

α(x)
,

since S(x)→∞ as x→∞ and (2.12) implies that (1/α)′(x)→ 0 as x→∞.

1. Definition of ϕλ.
In order to justify that ϕλ is well defined, we study separately the functions m and `. We
observe first that the function ` is negative, increasing and, according to (4.28), satisfies

`(z) ∼∞ −
∫ ∞
z

λzλα(u)du

u1+λS′(u)
∼∞ −

λ

zS′(z)
→∞ 0 , (4.29)

where the second equivalence comes from the following computation:

−
∫ ∞
z

λzλα(u)du

u1+λS′(u)
=

[
λzλ

u1+λS′(u)

]∞
z

+

∫ ∞
z

λ(1 + λ)zλdu

u2+λS′(u)
, z > 0 .

We now turn to the study of m and compute, for any x > 0,

m′(x) =
{λ+ 1 + xα(x)}

λS(x)3
S′(x)M(x) , with M : x 7→ S(x)− 2x

λ+ 1 + xα(x)
S′(x) .
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Differentiating one more time, we obtain

M ′(x) =
x2S′(x)

(λ+ 1 + xα(x))2

[
λ2 − 1

x2
− α(x)2 + 2α′(x)

]
, x > 0 .

Since λ > 1 while α is non-negative, increasing and concave, the term in between brackets
is decreasing. Furthermore M ′(0) = λ− 1 > 0 and, since xα′(x) ≤ α(x) for x > 0, we get

M ′(x) ≤ S′(x)

(λ+ 1 + xα(x))2

[
λ2 − 1− x2α(x)2 + 2xα(x)

]
→x→∞ −∞ .

Thus M is first increasing and then decreasing. Furthermore, estimate (4.28) implies that

M(x) ∼∞
[
1− 2xα(x)

λ+ 1 + xα(x)

]
S(x) =

λ+ 1− xα(x)

λ+ 1 + xα(x)
S(x) ∼∞ −S(x) .

Since M(0) = 0, we deduce that m is first increasing and then decreasing. Then we have
as x→ 0, m(x) ∼ 1−λ

λx → −∞, and, using (4.28),

m(x) ∼x→∞
xα(x)− λ
λS(x)

> 0 , for sufficiently large x. (4.30)

Since the function ` is negative, we deduce that, for any z > 0, there is a unique point
in (0,∞), denoted ϕλ(z), such that m ◦ ϕλ(z) = `(z), and is the unique minimum of
x 7→ g(x, z)/S(x) on [0,∞). This point is also the unique solution of

gx(x, z)S(x)− g(x, z)S′(x) = 0. (4.31)

for any fixed z. The implicit functions theorem implies that ϕλ is C1 on (0,∞). We prove
hereafter that ϕλ(z) < z, for any z > 0, so that ϕλ corresponds to the definition given in
the statement of the lemma.

2. ϕλ(z) < z , for any z > 0.
For any z > 0, since x 7→ m(x) − `(z) is first negative and then positive, on (0,∞), the
property ϕλ(z) < z will be a direct consequence of the estimate m(z) − `(z) > 0, that we
prove now. First observe that the derivative of h : z 7→ [m(z)− `(z)]z−λ is given by

h′(z) =
1 + zα(z)

zλS(z)3
S′(z)n(z) , z > 0 , with n : z 7→ S(z)− 2z

1 + zα(z)
S′(z).

Hence h′ has the same sign as n and, differentiating one more time, we compute

n′(z) = S′(z)

[
1− 2 + 2zα(z)

1 + zα(z)
+

2z(α(z) + zα′(z))

|1 + zα(z)|2

]
= −1 + z2α(z)2 − 2z2α′(z)

|1 + zα(z)|2
S′(z) ,

for any z > 0. Since α is concave and non-negative, we have zα′(z) ≤ α(z) for z > 0, and,
plugging this estimate in the previous expression, we obtain

n′(z) ≤ −|1− zα(z)|2

|1 + zα(z)|2
S′(z) ≤ 0 , z > 0 .
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Hence, n is non-increasing starting from n(0) = 0, and therefore h is also non-increasing on
(0,∞). Furthermore, we know from (4.29) and (4.30) that h(z) = [m(z)− `(z)]z−λ > 0 for
sufficiently large z, so that we have m(z)− `(z) > 0, for any z > 0.

3. ϕλ is increasing and valued in [0, yλ].
Recall that m ◦ ϕλ = ` and ` is increasing and negative. Since m is also increasing when
it is negative, we deduce that ϕλ is increasing. Since after crossing zero, the function m

remains positive, ϕ(z) must be smaller than the point where m crosses zero, for any z > 0.
By definition of m, this point yλ is implicitly defined by yλS′(yλ) = λS(yλ). Therefore
ϕλ(.) ≤ yλ and, since `(z)→z→∞ 0, we even have ϕλ(z)→z→∞ yλ. 2

Proof of Lemma 4.2

Proof. We fix λ > 1 and recall from estimate (4.17) in the proof of Theorem 4.1 that Lgλ

is given by

Lgλ(x, z) = xλ−2[xα(x) + 1− λ]

(
1

zλ
−
∫ ∞
z

S(x)

S(u)

λdu

u1+λ

)
+ 2xλ−1S′(x)

∫ ∞
z

λdu

S(u)u1+λ
,

(4.32)

for any 0 < x ≤ z. Since S is increasing, we first observe that Lgλ(x, .) ≥ 0 for any x > 0

such that xα(x) + 1− λ ≥ 0. Denoting by xλ the unique point of R+ defined implicitly by

xλα(xλ) = λ− 1 ,

we deduce that Lgλ(x, .) ≥ 0 for any x ≥ xλ.

It remains to treat the case where x < xλ and we compute

∂

∂z
Lgλ(x, z) = λ

xλ−2

z1+λS(z)

{
[λ− 1− xα(x)](S(z)− S(x))− 2xS′(x)

}
, 0 < x ≤ z .

For any fixed x ∈ (0, xλ), the previous expression in between brackets is increasing with
respect to z, negative for z = x and positive for z large enough. Hence, for any x ∈ (0, xλ),
Lg(x, .) is first decreasing, then increasing and Lg(x, z) goes to 0 as z goes to infinity.
Denoting by γλ the inverse of ϕλ, we deduce that

Lg(x, z) ≥ 0 , for any z ≤ γλ(x) , if and only if Lg(x, γλ(x)) ≥ 0 ,

for any fixed x ∈ (0, xλ). Since ϕλ and hence γλ are increasing, it therefore only remains to
verify that Lg(., γ(.)) ≥ 0 on (0, xλ).
We recall from the proof of Lemma 4.1 that γλ is defined implicitly by∫ ∞

γλ(x)

λ[γλ(x)]λdu

S(u)u1+λ
=

1

S(x)
− xS′(x)

λS(x)2
, 0 < x < xλ .
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For a given x ∈ (0, xλ), plugging this estimate into (4.32), we deduce

Lg(x, γλ(x)) = (xα(x) + 1− λ)
xλ−1S′(x)

λ[γλ(x)]λS(x)
+

(
1

S(x)
− xS′(x)

λS2(x)

)
2xλ−1S′(x)

[γλ(x)]λ
,

which after simplifications leads to

Lg(x, γλ(x)) =
(xα(x) + 1 + λ)xλ−1S′(x)

λS(x)2[γλ(x)]λ
h(x) , with h : x 7→ S(x)− 2x

xα(x) + 1 + λ
S′(x) .

In order to get the sign of Lg(., γλ(.)), we look for the sign of h and compute

h′(x) = S′(x)

[
1− 2 + 2xα(x)

1 + λ+ xα(x)
+

2x(α(x) + xα′(x))

|1 + λ+ xα(x)|2

]
=

S′(x)

|1 + λ+ xα(x)|2
[
λ2 − 1− x2α(x)2 + 2x2α′(x)

]
≥ S′(x)

|1 + λ+ xα(x)|2
[
λ2 − (1− xα(x))2

]
, x < xλ .

since xα′(x) ≤ α(x) for x > 0, due to the concavity of α. By definition of xλ, we deduce
that h is non-decreasing on (0, xλ). But h(0) = 0 and therefore Lg(., γ(.)) ≥ 0 on (0, xλ),
which concludes the proof. 2

5 Minimization of the relative quadratic error

Let us now consider the case where f : x 7→ 1
2(1 − x)2. Therefore, we are computing the

following value function

V (x, z) :=
1

2
inf
θ∈T

Ex,z
(

1− Xθ

Zτ

)2

, (x, z) ∈∆. (5.33)

With such a criterion, the investor tries to minimize the expected value of the squared
relative error between the value of the stopped process and the maximal value of the process
up to τ . In other words he wants to minimize the expectation of [(Zτ −Xθ)/Zτ ]2, whereas
in Section 4, λ = 2 would correspond to the minimization of 1 − (Xθ/Zτ )2, which is not
as natural. In contrast with the previous optimal stopping problem (4.16), we prove that
stopping immediately even for x = z is not optimal in general. We exhibit the optimal
liquidation strategy, which is numerically not that different from immediate selling.

5.1 Construction of the solution

From (2.11), we compute the corresponding reward function:

g(x, z) =
1

2

(
1− x

z

)2
+ xS(x)

∫ ∞
z

(
1− x

u

) du

u2S(u)
, (x, z) ∈∆ .
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In view of Proposition 3.1, we would require Lg(x, z) ≥ 0 in order for some (x, z) ∈ ∆ to
be in the stopping region. Let us first compute

gx(x, z) = −1

z

(
1− x

z

)
+ [S(x) + xS′(x)]

∫ ∞
z

du

u2S(u)
− [2xS(x) + x2S′(x)]

∫ ∞
z

du

u3S(u)
,

gxx(x, z) =
1

z2
+ [2 + xα(x)]S′(x)

∫ ∞
z

du

u2S(u)
− [2S(x) + 4xS′(x) + x2α(x)S′(x)]

∫ ∞
z

du

u3S(u)
,

for any (x, z) ∈ ∆. Combining these estimates, we deduce

Lg(x, z) =
1

z2
[1 + α(x) (z − x)] + [2S′(x)− α(x)S(x)]

∫ ∞
z

du

u2S(u)

− [S(x) + 2xS′(x)− xα(x)S(x)]

∫ ∞
z

2du

u3S(u)
, (x, z) ∈∆ . (5.34)

In view of Theorem 3.1 (i), if Lg ≥ 0 on ∆, then immediate stopping is optimal, v = g and
the problem is trivial. However, the next result gives sufficient conditions such that it is
not the case. Consider the following condition:

α(0)2 − 2α′(0) < 0. (5.35)

Remark 5.1 Notice that (5.35) will be satisfied for an Ornstein-Uhlenbeck process as well
as a CIR-Feller process with positive "mean", for which we respectively have α(x) = αx

and α(x) = α x
x+b respectively, α and b being positive constants. More generally, as soon

as α(0) = 0, (5.35) is satisfied. However, for a drifted Brownian motion or a degenerated
CIR-Feller process with "mean" equal to 0, (5.35) does not hold true.

Proposition 5.1 Assume that (5.35) is satisfied. Then, Lg(z, z) < 0 for z small enough
so that immediate stopping is not optimal for the problem of interest V (z, z).

Proof. Using the asymptotic expansions from Proposition 5.4 in Section 5.4, we compute
for z close to 0:

Lg(z, z) = [2S′(z)− α(z)S(z)]

∫ ∞
z

du

u2S(u)
− [S(z) + 2zS′(z)− zα(z)S(z)]

∫ ∞
z

2du

u3S(u)
+

1

z2

=
(
2 + α(0)z +O(z2)

)( 1

2z2
− α(0)

2z
− α(0)2 − 2α′(0)

12
ln z + o(ln z)

)
−
(

3z +
3

2
α(0)z2 +O(z3)

)( 2

3z3
− α(0)

2z2
+O

(
1

z

))
+

1

z2

= −α(0)2 − 2α′(0)

6
ln z + o(ln z) .

Since ln z → −∞ when z → 0, we see that if (5.35) holds, then Lg(z, z) < 0 for z in a
neighborhood of 0, so that we have the result by continuity of Lg.
In particular, we deduce from Proposition 3.1 that immediate selling is not optimal for the
problem V (z, z) with z small enough. 2
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Hence stopping immediately is not optimal in general and the optimal strategy shall be very
different from the one in the power utility case. Since we do not have Lg ≥ 0 on the entire
space ∆ but we can exercise only in that region, we first need to study the set

Γ+ := {(x, z) ∈∆, Lg(x, z) ≥ 0} , (5.36)

and we define similarly:

Γ− := {(x, z) ∈∆, Lg(x, z) ≤ 0} . (5.37)

In fact, observe that (5.34) rewrites as:

Lg(x, z) = α(x)
z − x
z2

+ [2S′(x)− α(x)S(x)]

∫ ∞
z

(
1− 2x

u

)
du

u2S(u)

+

(
1

z2
− S(x)

∫ ∞
z

2du

u3S(u)

)
, (x, z) ∈∆ . (5.38)

By Remark 2.3, we have 2S′ − αS − 2 ≥ 0 and therefore each of the three terms above are
positive if z ≥ 2x, and so

Lg(x, z) > 0 for z ≥ 2x and (x, z) ∈∆ , (5.39)

which implies that {(x, z) ∈∆, z ≥ 2x} ⊂ Int(Γ+).
Moreover we have the following result, which proof is given in Section 5.4 below.

Lemma 5.1 For any x > 0, there exists δx ∈ (x, 2x) such that Lg(x, .) is increasing on
[x, δx) and decreasing on (δx, 2x].

In view of (5.39), we can define the following function on R+ \ {0}:

Γ(x) := inf{z ≥ x, Lg(x, z) ≥ 0}. (5.40)

Lemma 5.1 and (5.39) imply that, if z > Γ(x), then Lg(x, z) > 0, while if z ∈ (x,Γ(x)),
then Lg(x, z) < 0. We also deduce that Γ(x) > x implies Lg(x,Γ(x)) = 0. Notice that Γ is
continuous, and, from (5.39), we also know that Γ(x) < 2x.

The next result provides the main properties of Γ: it is increasing and equal to the Identity
function for sufficiently large x. Again the proof is postponed to Section 5.4.

Proposition 5.2 We have the two following properties:
(i) Γ is increasing on (0,+∞);
(ii) Denoting Γ∞ := sup{x ≥ 0; Γ(x) > x}, we get Γ∞ <∞.

Notice that Γ+ 6= ∆ implies directly Γ∞ > 0.
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Now that we have a better understanding of the set Γ+, we expect to have a stopping region
of the form {(x, z) ∈ ∆ ; z ≥ γ(x)}, and our objective is then to find functions v and γ,
satisfying the following free-boundary problem:

Lv(x, z) = 0 for x ≤ z < γ(x) and (x, z) ∈∆ , (5.41)

v(x, z) = g(x, z) and Lg(x, z) ≥ 0 for z ≥ γ(x) and (x, z) ∈∆ , (5.42)

v(0, z) =
1

2
for z > 0 , (5.43)

vz(z, z) = 0 for z > 0 . (5.44)

In order to allow for the application of Itô’s formula, the verification step requires a value
function which is C1,0 and piecewise C2,1 with respect to (x, z). Therefore, as in Section 4,
we complement the above system by the continuity and the smooth fit conditions

v(x, γ(x)) = g(x, γ(x)) and vx(x, γ(x)) = gx(x, γ(x)) , for x > 0 . (5.45)

The stopping region S will then be defined as:

S := {(x, z) ∈∆; z ≥ γ(x)} ∪ {(0, z); z > 0}. (5.46)

First by (5.41), on the continuation region, v is of the form:

v(x, z) = A(z) +B(z)S(x) , (x, z) ∈∆ \ S .

Then, on the interval where γ is one-to-one, the continuity and smoothfit conditions (5.45)
imply that

v(x, z) = g(γ−1(z), z) +
gx(γ−1(z), z)

S′ ◦ γ−1(z)
[S(x)− S ◦ γ−1(z)] , (x, z) ∈∆ \ S.

Finally, the Neumann condition (5.44), implies that we expect the boundary γ to satisfy on
its domain of definition the following ODE:

γ′(x) =
γ(x)2Lg(x, γ(x))(

2x
γ(x) − 1

)(
1− S(x)

S◦γ(x)

) . (5.47)

As in [5], there is no a priori initial condition for this ODE. In the sequel, we take this ODE
(with no initial condition) as a starting point to construct the boundary γ. Notice that this
ODE has infinitely many solutions, as the Cauchy-Lipschitz condition is locally satisfied
whenever (5.47) is complemented with the condition γ(x0) = z0 for any 0 < x0 < z0 and
z0 6= 2x0. We will follow the ideas of [5], however in our case, (5.47) is not well-defined
for γ(x) = 2x, so that our framework requires to be more cautious. Notice also that we
encounter here a similar feature as in Peskir [8]. The following result selects an appropriate
solution of (5.47), and its proof is given in Section 5.5.
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Proposition 5.3 Let Int(Γ−) be non empty. Then, there exists an increasing continuous
function γ defined on R+ with graph {(x, γ(x)) : x > 0} ⊂∆, such that:
(i) On the set {x > 0 : γ(x) > x}, γ is a C1 solution of the ODE (5.47),
(ii) {(x, γ(x)) : x > 0} ⊂ Γ+, and {(x, γ(x)) : x > 0 and γ(x) > x} ⊂ Int(Γ+),
(iii) γ(x) = x for all x ≥ Γ∞.

Since γ is increasing, we can define:

ϕ := γ−1. (5.48)

Now that we have constructed the free-boundary ϕ, we are able to state the following result.

Theorem 5.1 Let Int(Γ−) be non empty, γ be given by Proposition 5.3 and ϕ be defined
by (5.48). Then the value function V solution of problem (5.33) is given, for (x, z) ∈∆, by:

V (x, z) :=

g(x, z) , if x ≤ ϕ(z)

g(ϕ(z), z) + gx(ϕ(z), z)S(x)−S◦ϕ(z)
S′◦ϕ(z) , if x > ϕ(z)

. (5.49)

Moreover, the smallest optimal stopping time associated to (5.33) is given by θ∗ := inf {t ≥
0 , Xt ≤ ϕ(Zt)}.

Proof. Let v be defined by (5.49) and recall that S is defined by (5.46). The result follows
from verifying that all the assumptions of Theorem 3.1 (ii) and (iii) are satisfied.

1. Regularity of v.
We know from Proposition 5.3 that γ and therefore ϕ are continuous and hence v is con-
tinuous on ∆ by construction. Furthermore, by Proposition 5.3 (i) and (ii) together with
the dynamics of the ODE (5.47), γ is a C1 function with positive derivative on the set
{x > 0; γ(x) > x}. Therefore ϕ is C1 as well on {z > 0; ϕ(z) < z} so that it is immediate
that v is C0 and piecewise C2,1 w.r.t. (x, z). Furthermore, since Γ∞ < ∞ by Proposition
5.2, ∆ \ S is bounded. Since v is continuous and g ≥ 0, v is bounded from below.

2. Dynamics of v.
By definition, we have Lv = 0 on ∆ \ S. By Proposition 5.3 (ii), Lg(x, γ(x)) ≥ 0 for x > 0,
and we deduce from Lemma 5.1 and (5.39) that Lg(x, z) ≥ 0 for any (x, z) ∈ ∆ such that
z ≥ γ(x). Hence, (5.39) ensures that Lg ≥ 0 on S.
It remains to prove that vz(z, z) = 0 for z > 0. We fix z > 0. If ϕ(z) ≥ z, since gz(z, z) = 0,
we have vz(z, z) = 0 as well. Suppose now that ϕ(z) < z. Then, by Proposition 5.3 (i),
γ satisfies (5.47) in a neighborhood of ϕ(z), and by Proposition 5.3 (ii), Lg

(
ϕ(z), z

)
> 0,

which implies γ′ ◦ ϕ(z) > 0, so that:

ϕ′(z)Lg(ϕ(z), z) =
1

z2

(
2ϕ(z)

z
− 1

)(
1− S ◦ ϕ(z)

S(z)

)
.
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We then compute from the definitions of v and g that

vz(z, z) = gz(ϕ(z), z) + gxz
S(z)− S ◦ ϕ(z)

S′ ◦ ϕ(z)
+ ϕ′(z)Lg(ϕ(z), z)

S(z)− S ◦ ϕ(z)

S′ ◦ ϕ(z)

=

[
1

z2

(
1− 2ϕ(z)

z

)(
1− S ◦ ϕ(z)

S(z)

)
+ ϕ′(z)Lg(ϕ(z), z)

]
S(z)− S ◦ ϕ(z)

S′ ◦ ϕ(z)
= 0 .

3. Comparing v and g.
Finally, the fact that v ≤ g on ∆ and v < g on ∆ \ S follows from similar arguments as
in the proof of Proposition 6.2 in [5] but the demonstration is simpler in our context since
Γ∞ < ∞. For the sake of completeness, we detail this proof. For (x, z) ∈ ∆ such that
x > ϕ(z), we compute

v(x, z)− g(x, z) = g(ϕ(z), z) + gx(ϕ(z), z)
S(x)− S ◦ ϕ(z)

S′ ◦ ϕ(z)
− g(x, z) ,

and, differentiating twice w.r.t. x and using (5.45), we verify that

vx(x, z)− gx(x, z) = −S′(x)

∫ x

ϕ(z)

Lg(u, z)

S′(u)
du . (5.50)

Therefore, from Lemma 5.1 and Proposition 5.2 (i), for any fixed z, the function x 7→
(v − g)(x, z) is either decreasing on [ϕ(z), z], or decreasing on [ϕ(z), δ) and then increasing
on (δ, z] for a given δ ∈ (ϕ(z), z). For any z > 0, since v(ϕ(z), z) = g(ϕ(z), z), we only need
to prove that n(z) := v(z, z)− g(z, z) < 0 if ϕ(z) < z.

Since vz(z, z) = gz(z, z) = 0 for z > 0, we compute:

n′(z) = vx(z, z)− gx(z, z) = −S′(z)
∫ z

ϕ(z)

Lg(u, z)

S′(u)
du , z > 0 .

We assume the existence of a fixed z < Γ∞ such that n(z) ≥ 0 and ϕ(z) < z and work to-
wards a contradiction. We first observe that necessarily n′(z) > 0. If not,

∫ z
ϕ(z)

Lg(u,z)
S′(u) du ≥ 0

implies that
∫ x
ϕ(z)

Lg(u,z)
S′(u) du > 0 for any x ∈ (ϕ(z), z), and (5.50) combined with v(ϕ(z), z) =

g(ϕ(z), z) leads to n(z) < 0 which is impossible. Since n is continuous, this implies that
n is increasing on any connected subset of {z′ ≥ z, ϕ(z′) < z′}. Defining a := inf{z′ >
z; ϕ(z′) = z′} ≤ Γ∞ < ∞, we get n(a) = v(a, a) − g(a, a) > 0, which contradicts the
definition of v.

Therefore, n(z) < 0 for any z > 0 such that ϕ(z) < z and we deduce that v ≤ g on ∆ and
v < g on ∆ \ S. 2

5.2 Properties of the optimal liquidation strategy

Theorem 5.1 and Proposition 5.1 indicate that, at least for processes satisfying (5.35), such
as the Ornstein-Uhlenbeck process or the CIR-Feller process, the diagonal {(x, x); x > 0}
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is not included in the stopping region S. In other words, it is not always optimal to stop
immediately, even when starting from points such that x = z. Therefore, the form of the
solution and the nature of the optimal strategy to apply in order to be as close as possible
to the maximum using this criterion is very different from the ones obtained in Section 4 or
in [9].

The Ornstein-Uhlenbeck process as well as the CIR-Feller process are two examples for which
the coefficient α satisfies Conditions (2.12) and Int(Γ−) 6= ∅. Indeed we have α(x) = αx and
α(x) = α x

x+b respectively, where α and b are two positive constants. Therefore, Condition
(5.35) is satisfied, ensuring that Int(Γ−) 6= ∅ by Proposition 5.1. Hence, Theorem 5.1 can be
applied. Figure 2 represents the boundary ϕ for those two processes, with α = 1 for the OU
process and (α, b) = (0.1, 0.1) for the CIR process. We observe that the continuation region
is in fact pretty small since the free boundary is very close to the diagonal axis. Therefore,
even if immediate stopping is not optimal, an investor should not wait long until the process
(X,X∗) enters the stopping region.

Free Boundary of OU 
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Figure 2: Optimal frontier for an OU (α = 1) and a CIR (α = 0.1, b = 0.1)

Remark 5.2 Similarly to Proposition 7.3 of [5], an homogeneity result can be derived for
the OU process, so that the free boundary for any α > 0 can be deduced by a change of
scale from the one for α = 1.

The Brownian motion with negative drift is another example for which α satisfies Condition
(2.12). However, since α(x) = α > 0 is constant, Condition (5.35) does not hold. Although
we did not verify it, numerical computations suggest that Lg ≥ 0 on ∆.

Finally, we can also consider the case of a Brownian motion. In this case, α(x) = 0, so that
α does not satisfy Condition (2.12). However, for any (x, z) ∈ ∆, we can compute from
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(5.34) that Lg(x, z) = 2 z−x
z3
≥ 0 on ∆. Since the proofs of Theorem 3.1 and Remark 3.2 do

not require Condition (2.12), we deduce that immediate stopping is always optimal.

Remark 5.3 Let α be associated to an Ornstein-Uhlenbeck or a CIR process and hence
be parametrized by a possibly bi-dimensional parameter set a. Since the parameter set
a may be badly estimated, let consider a sequence of parameter set (an) converging to a
and denote by (αn) the corresponding sequence of functions. Then, Sn, gn and all their
derivatives converge respectively to S, g and their derivatives in the sense of the uniform
norm on the compact sets. Moreover, Γn converges to Γ in the same sense so that for n
sufficiently large, Int(Γ−n ) 6= ∅. ODE (5.47) also depends continuously on an, so that z∗n(x0)

defined by (5.63) converges to z∗(x0), and γn given by Proposition 5.3 converges pointwise
to γ. Since γn is increasing for any n and γ is continuous, Dini’s theorem implies that the
convergence is uniform on any compact set of R+ \{0}. Let us prove that ϕn converges to ϕ
in the same sense. Let y > 0 be fixed, we define xn := ϕn(y) and x := ϕ(y). We shall prove
that xn → x. Indeed, since ϕn(y) ∈ [y2 , y] for any n, {xn; n ∈ N} is relatively compact
in R+ \ {0}. Now let x′ be the limit of a subsequence of (xn). For notational reasons, let
us write xn → x′, forgetting that it is a subsequence. Since (γn) converges uniformly on
compact sets of R+ \ {0}, γn(xn) → γ(x′). Recalling that γn(xn) = y for any n, we get
γ(x′) = y and therefore x′ = x. In consequence, xn → x, or in other words, (ϕn) converges
pointwise to ϕ on R+ \{0}. Noticing that ϕn(0) = 0 for any n and ϕ(0) = 0 and using again
Dini’s theorem, we see that (ϕn) converges to ϕ uniformly on the compact sets of R+. This
finally implies that (Vn) converges pointwise to V . As a consequence, if one makes a small
mistake estimating the parameters of the model, the induced mistake on the free boundary
as well as the mistake on the value function will be small as well.

5.3 Generalization

As in Section 4, we may also consider, for any λ > 0, the following extension of the previous
problem:

Vλ(x, z) :=
1

λ
inf
θ∈T

Ex,z
(

1− Xθ

Zτ

)λ
, (x, z) ∈∆ . (5.51)

In that case, (2.10) rewrites

gλ(x, z) = 1
λ

(
1− x

z

)λ
+ xS(x)

∫∞
z

(
1− x

u

)λ−1 du
u2S(u)

du , (x, z) ∈∆ , λ > 0 . (5.52)

If λ = 2, Lg2 is given by (5.34). If λ = 1, the stopping problem has already been solved in
Section 4 and Lg1 is given by (4.18). For any λ > 0 such that λ 6∈ {1, 2}, we compute :

Lgλ(x, z) = (λ− 1)

{
1

z2

(
1− x

z

)λ−2
−
∫ ∞
z

S(x)

S(u)

[
2

u3

(
1− x

u

)λ−2
− (λ− 2)x

u4

(
1− x

u

)λ−3
]
du

}
+ [2S′(x)− α(x)S(x)]

∫ ∞
z

(
1− x

u

)λ−2
(u− λx)

du

u3S(u)
+ α(x)

(z − x)λ−1

zλ
,(5.53)
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for 0 ≤ x < z. In this case, the sign of Lgλ is hardly identifiable analytically, and we shall
restrict our analysis to simple remarks and guesses on the solution of the problem (5.51).

Noticing that
∫∞
z

(
1− x

u

)λ−2 2
u3
− (λ − 2)

(
1− x

u

)λ−3 x
u4
du = 1

z2

(
1− x

z

)λ−2 for 0 < x < z,
we deduce from (4.18), (5.39) and (5.53) that

Lgλ(x, z) ≥ 0 , for z ≥ λx>0 and 1 ≤ λ ≤ 2 . (5.54)

Therefore, for 1 ≤ λ ≤ 2, we expect to obtain as for λ = 2 a free boundary γλ in between
the axis {(x, x) ;x > 0} and {(x, λx) ;x > 0}. We verify easily as in Proposition (4.1) that
λ 7→ Vλ is continuous and, as expected, we observe a disappearance of the free boundary γλ
for λ = 1.

On the other hand, in the case where α(0) = 0, for λ < 1, we observe that Lg(x, z) < 0

for x small enough and z large enough. Indeed, recalling from (4.28) that S′(z) ∼ α(z)S(z)

when z →∞, an integration by parts leads to
∫∞
z

du
u2S(u)

∼z→∞ 1
z2S′(z) . Assuming moreover

that α(0) = 0 and plugging this estimate in (5.53), we get

Lg(0, z) ∼z→∞
λ− 1

z2
< 0 , for any λ < 1 .

In view of Proposition 3.1, this implies that the stopping region cannot have the same form
as the one in the quadratic case λ = 2. It even suggests that the nature of the stopping
region could be similar to the one of Section 4.2.

5.4 Proofs of Lemma 5.1 and Proposition 5.2

This section is dedicated to the proofs of Lemma 5.1 and Proposition 5.2, but we first state
the asymptotic expansions used in Proposition 5.1.

Proposition 5.4 As z → 0, we have the following expansions:

S′(z) = 1 + α(0)z + (α′(0) + α(0)2)
z2

2
+ o(z2) ;

S(z) = z + α(0)
z2

2
+ (α′(0) + α(0)2)

z3

6
+ o(z3) ;

α(z)S(z) = zα(0) +
z2

2

(
α(0)2 + 2α′(0)

)
+
z3

6

(
α(0)3 + 4α(0)α′(0) + 3α′′(0)

)
+ o(z3) ;∫ ∞

z

du

u2S(u)
=

1

2z2
− α(0)

2z
− α(0)2 − 2α′(0)

12
ln(z) + o

(
ln(z)

)
;∫ ∞

z

2du

u3S(u)
=

2

3z3
− α(0)

2z2
+
α(0)2 − 2α′(0)

6z
+ o

(
1

z

)
.

Proof. As z → 0, we directly compute the expansion:

S′(z) = S′(0) + zS′′(0) +
z2

2
S(3)(0) + o(z2) = 1 + α(0)z + (α′(0) + α(0)2)

z2

2
+ o(z2) .
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The exact same reasoning also leads to

S(z) = z +
α(0)

2
z2 +

α′(0) + α(0)2

6
z3 + o(z3) ;

α(z)S(z) = zα(0) +
z2

2

(
α(0)2 + 2α′(0)

)
+
z3

6

(
α(0)3 + 4α(0)α′(0) + 3α′′(0)

)
+ o(z3) .

Using one of the previous estimates, we get∫ ∞
z

du

u2S(u)
=

∫ ∞
z

du

u3
(

1 + α(0)
2 u+ α′(0)+α(0)2

6 u2 + o(u2)
)

=

∫ ∞
z

(
1− α(0)

2
u− α′(0) + α(0)2

6
u2 +

(
α(0)u

2

)2

+ o(u2)

)
du

u3

=

∫ ∞
z

(
1

u3
− α(0)

2u2
+
α(0)2 − 2α′(0)

12u
+ o

(
1

u

))
du

=
1

2z2
− α(0)

2z
− α(0)2 − 2α′(0)

12
ln(z) + o

(
ln(z)

)
,

which is justified since all the non-zero terms go to infinity when z → 0. Similarly, we
compute ∫ ∞

z

2du

u3S(u)
=

∫ ∞
z

(
2

u4
− α(0)

u3
+
α(0)2 − 2α′(0)

6u2
+ o

(
1

u2

))
du

=
2

3z3
− α(0)

2z2
+
α(0)2 − 2α′(0)

6z
+ o

(
1

z

)
.

2

Proof of Lemma 5.1 Differentiating (5.34) w.r.t. z, we compute

∂

∂z
Lg(x, z) = −2S′(x)− α(x)S(x)

z2S(z)
+

[2− 2xα(x)]S(x) + 4xS′(x)

z3S(z)
− 2− 2xα(x)

z3
− α(x)

z2

= [(2x− z)α(x)− 2]
S(z)− S(x)

z3S(z)
+ (2x− z) 2S′(x)

z3S(z)
, (x, z) ∈∆ .

Let us introduce xα as the unique solution of:

xαα(xα) = 2 . (5.55)

If x ≤ xα, then z 7→ (2x − z)α(x) − 2 is negative on [x, 2x), whereas if x > xα, then there
exists zx ∈ (x, 2x) such that z 7→ (2x− z)α(x)− 2 will be positive on (x, zx), zero at zx and
negative on (zx, 2x).
Let x be fixed and let us introduce

F : z 7→ S(z)− S(x) +
2S′(x)(2x− z)

(2x− z)α(x)− 2
,

29



which is well defined and continuous on [x, 2x] if x < xα, on [x, 2x) if x = xα and on
[x, 2x] \ {zx} if x > xα. Furthermore F is increasing, since we compute on the domain of
definition of F :

F ′(z) = S′(z) +
4S′(x)(

(2x− z)α(x)− 2
)2 > 0 .

We consider first the case where x ≤ xα. Then F and ∂
∂zLg(x, .) have opposite signs on

[x, 2x). Since F is increasing, F (x) < 0 while F (2x) = S(2x) − S(x) > 0, Lg(x, .) is
increasing on [x, δx) and decreasing on (δx, 2x], for a certain δx ∈ (x, 2x).
We now turn to the case where x > xα. Then F and ∂

∂zLg(x, .) have the same sign on
[x, zx) and opposite signs on (zx, 2x]. Since F is increasing, F (x) > 0, F (z+

x ) = −∞ and
F (2x) > 0, we see that again Lg(x, .) is increasing on [x, δx) and decreasing on (δx, 2x], for
a certain δx ∈ (zx, 2x) ⊂ (x, 2x). 2

Proof of Proposition 5.2 We prove the two assertions separately.
(i) Γ is increasing on (0,+∞)

We fix x > 0 such that Γ(x) > x. Then Lg(.,Γ(.)) = 0 in a neighborhood of x, and using
the implicit functions theorem, Γ is C1 in a neighborhood of x and we have:

Γ′(x)
∂

∂z
Lg(x,Γ(x)) +

∂

∂x
Lg(x,Γ(x)) = 0 . (5.56)

We will prove that Γ′(x) > 0. Denoting m := 2S′−αS which is increasing and positive, we
get combining Lg(x,Γ(x)) = 0 and (5.38):

m(x)

∫ ∞
Γ(x)

u− 2x

u3S(u)
du = S(x)

∫ ∞
Γ(x)

2du

u3S(u)
− 1 + α(x)(Γ(x)− x)

Γ(x)2
≤ −α(x)(Γ(x)− x)

Γ(x)2
,

since S is increasing. Differentiating (5.38) with respect to x, we also compute

∂

∂x
Lg(x, z) =

α′(x)(z − x)− α(x)

z2
+m′(x)

∫ ∞
z

u− 2x

u3S(u)
du−

[
m(x) + S′(x)

] ∫ ∞
z

2du

u3S(u)
,

for z ≥ x. Denoting A := (αm′ − α′m
)
(Γ− Id) + αm, the two previous estimates lead to

∂

∂x
Lg(x,Γ(x)) ≤ − A(x)

m(x)Γ(x)2
−
[
m(x) + S′(x)

] ∫ ∞
Γ(x)

2du

u3S(u)
. (5.57)

Introducing B := αm′ − α′m and observing that x ≤ Γ(x) ≤ 2x, we obtain

A(x) ≥ α(x)m(x)1{B(x)≥0} +
(
xB(x) + α(x)m(x)

)
1{B(x)<0} . (5.58)

Introducing finally C : x 7→ xB(x) + α(x)m(x), we compute C(0) = 2α(0) ≥ 0 and

C ′(x) = 2α(x)m′(x) + x(α(x)m′′(x)− α′′(x)m(x)) ≥ 0 ,

because m′′ ≥ 0 and α′′ ≤ 0. Therefore C is non-negative, and, according to (5.58), A
is also non-negative. As a consequence, combining m > 0 and (5.57), we deduce that
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∂
∂xLg(x,Γ(x)) < 0. Using Lemma 5.1, we have ∂

∂zLg(x,Γ(x)) > 0, and (5.56) implies that
Γ′(x) > 0.

Therefore Γ is increasing on the set {x > 0, Γ(x) > x}. But it is also increasing on the
interior of the set {x > 0, Γ(x) = x}. Since Γ is continuous, it is increasing on (0,+∞).

(ii) We have Γ∞ := sup{x ≥ 0; Γ(x) > x} <∞.
The arguments used here are very close to the ones in the proof of Proposition 4.3 in [5].
However, our conclusions cannot be deduced from theirs since the involved computations
are different and we need to detail this proof.

From the definition of the scale function (2.9), we compute:

S(x) = S(1) +
S′(x)

α(x)
− S′(1)

α(1)
−
∫ x

1

(
1

α

)′
(u)S′(u)du , x > 0 .

We then distinguish two cases depending on the explosion of the last term in the previous
expression.

Case 1:
∫∞

1 (1/α)′(u)S′(u)du > −∞.
Then S(x) = S′(x)

α(x) +O(1) for x large enough. Recalling that LS = 0, we compute∫ ∞
x

du

u2S(u)
=

∫ ∞
x

du

u2
(
S′(u)
α(u) +O(1)

) =

∫ ∞
x

α(u)

u2S′(u)

du

1 +O
(
α(u)
S′(u)

)
=

∫ ∞
x

α(u)du

u2S′(u)
+O

(∫ ∞
x

α2(u)

u2[S′(u)]2

)
,

for x large enough. Integrating by parts, we observe that∫ ∞
x

α(u)du

u2S′(u)
=

1

x2S′(x)
− 2

∫ ∞
x

du

u3S′(u)
, x > 1 .

We now prove that xα2(x)
S′(x) → 0 when x→∞.

Indeed, since α(1) > 0 by (2.12), and since α is non-decreasing, we get S′(x) ≥ e(x−1)α(1),
for any x ≥ 1. On the other hand, since α is concave, we also have 0 ≤ α(x) ≤ xα′(0), so
that:

0 ≤ xα2(x)

S′(x)
≤

x3
[
α′(0)

]2
e(x−1)α(1)

→ 0 when x→∞ .

As a consequence, we get∫ ∞
x

du

u2S(u)
=

1

x2S′(x)
− 2

∫ ∞
x

du

u3S′(u)
+ ◦

(∫ ∞
x

du

u3S′(u)

)
.

Integrating by parts again, we finally compute∫ ∞
x

du

u2S(u)
=

1

x2S′(x)
− 2

α(x)x3S′(x)
+ ◦

(
1

α(x)x3S′(x)

)
,
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and similarly we get∫ ∞
x

du

u3S(u)
=

1

x3S′(x)
− 3

α(x)x4S′(x)
+ ◦

(
1

α(x)x4S′(x)

)
,

Plugging these estimates in the expression of Lg given by (5.34) leads to:

Lg(x, x) =
1

x2
+[2S′(x)− α(x)S(x)]

∫ ∞
x

du

u2S(u)
− [S(x) + 2xS′(x)− xα(x)S(x)]

∫ ∞
x

2du

u3S(u)

=
1

x2
+
(
S′(x) +O(α(x))

)( 1

x2S′(x)
− 2

α(x)x3S′(x)
+ ◦

(
1

α(x)x3S′(x)

))
− 2

(
xS′(x) +

S′(x)

α(x)
+O(xα(x))

)(
1

x3S′(x)
− 3

α(x)x4S′(x)
+ ◦

(
1

α(x)x4S′(x)

))
.

Using the fact that xα2(x)
S′(x) → 0 as x→∞, we get:

Lg(x, x) =
2

α(x)x3
+ ◦

(
1

α(x)x3

)
.

Hence Lg(x, x) > 0 and therefore Γ(x) = x for x large enough, so that Γ∞ <∞.

Case 2:
∫∞

1 (1/α)′(u)S′(u)du = −∞.
For x large enough, we have

S(x) =
S′(x)

α(x)

[
1−

(
1

α

)′
(x) + ◦

((
1

α

)′
(x)

)]
,

so that∫ ∞
x

du

u2S(u)
=

∫ ∞
x

α(u)

u2S′(u)

[
1 +

(
1

α

)′
(u) + ◦

((
1

α

)′
(u)

)]
du

=
1

x2S′(x)
−
∫ ∞
x

2du

u3S′(u)
−
∫ ∞
x

α′(u)du

u2α(u)S′(u)
+ ◦

(∫ ∞
x

α(u) + uα′(u)

u3α(u)S′(u)
du

)
.

Noticing that 0 ≤ xα′(x) ≤ α(x) for x > 0, since α is concave, we have:

◦
(∫ ∞

x

α(u) + uα′(u)

u3α(u)S′(u)
du

)
= ◦

(∫ ∞
x

du

u3S′(u)

)
.

Integrating by parts, we finally get∫ ∞
x

du

u2S(u)
=

1

x2S′(x)
− 2

x3α(x)S′(x)
− α′(x)

x2α2(x)S′(x)
+ ◦

(
1

x3α(x)S′(x)

)
,

where the third term in the previous expansion might be negligible or not (depending on
α). Similarly, we compute:∫ ∞

x

du

u3S(u)
=

1

x3S′(x)
− 3

x4α(x)S′(x)
− α′(x)

x3α2(x)S′(x)
+ ◦

(
1

x4α(x)S′(x)

)
,
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so that:

Lg(x, x)=
1

x2
+ [2S′(x)− α(x)S(x)]

∫ ∞
x

du

u2S(u)
− [S(x) + 2xS′(x)− xα(x)S(x)]

∫ ∞
x

2du

u3S(u)

=
1

x2
−2

(
xS′(x)− x α

′(x)

α2(x)
S′(x) +

S′(x)

α(x)

)(
1

x3S′(x)
− 3

x4α(x)S′(x)
− α′(x)

x3α2(x)S′(x)

)
+

(
S′(x)− α′(x)

α2(x)
S′(x)

)(
1

x2S′(x)
− 2

x3α(x)S′(x)
− α′(x)

x2α2(x)S′(x)

)
+◦
(

1

x3α(x)

)
=

2

x3α(x)
+

2α′(x)

x2α2(x)
+ ◦

(
1

x3α(x)

)
,

where the second term might be or not negligible. In any case, we see that for sufficiently
large x, Lg(x, x) > 0, so that Γ(x) = x. Therefore, Γ∞ <∞ also holds in this case. 2

5.5 Proof of Proposition 5.3

This section is dedicated to the proof of Proposition 5.3. As already explained, this proof
uses the same ideas as the one developed in [5]. However, because of the specificity of
(5.47), the properties of the flow are different and the analysis needs to be adapted to
our framework. We will try to follow their notations and point out in the proofs the parts
that are identical to their paper, but we choose to rewrite them for the sake of completeness.

First, for the convenience of the reader, we recall ODE (5.47) that γ needs to satisfy:

γ′(x) =
γ(x)2Lg(x, γ(x))(

2x
γ(x) − 1

)(
1− S(x)

S◦γ(x)

) , x > 0 . (5.59)

Let us first define

D− := {x > 0 : Lg(x, x) < 0}, (5.60)

and, for all x0 ∈ D−, we introduce

d(x0) := sup{x ≤ x0 : Lg(x, x) ≥ 0} and u(x0) := inf{x ≥ x0; Lg(x, x) ≥ 0}, (5.61)

with the convention that d(x0) = 0 if {x ≤ x0 : Lg(x, x) ≥ 0} = ∅. Observe that
Proposition 5.2 ensures that u(x0) ≤ Γ∞ < ∞. Since Lg is continuous and x0 ∈ D− we
must have d(x0) < x0 < u(x0) <∞.
For any x0 ∈ D− and z0 > x0, we denote by γz0x0 the maximal solution of the Cauchy
problem (5.59) complemented by the additional condition γ(x0) = z0, and we denote by
Iz0x0 :=

(
`z0x0 , r

z0
x0

)
the corresponding (open) interval of definition of γz0x0 . Since the right-hand

side of ODE (5.59) is locally Lipschitz on either one of the sets {(x, γ), 0 < 2x < γ} or
{(x, γ), x < γ < 2x} but is not defined on the set {(x, γ), 2x = γ}, the maximal solution
will be defined as long as (x, γ(x)) remains in one of those two sets. Since Γ(x0) < 2x0, we
restrict our attention to conditions γ(x0) = z0 satisfying x0 < z0 < 2x0.
The next lemma provides useful additional properties of the maximal solutions described
above and their respective domains of definitions.
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Lemma 5.2 Assume that α satisfies Conditions (2.12) and let x0 ∈ D− be fixed.
(i) For all z0 ∈ (x0, 2x0), `z0x0 ≤ d(x0), we have limx→`z0x0

γz0x0(x) = `z0x0 and, if `z0x0 > 0, we
get Lg(`z0x0 , `

z0
x0) ≥ 0;

(ii) for all z0 ∈ (x0,Γ(x0)], Lg(x, γz0x0(x)) < 0 for any x ∈ (x0, r
z
x0);

(iii) there exists a0 ∈ (x0, 2x0) such that for any z0 ∈ [a0, 2x0), Lg(x, γz0x0(x)) > 0 for any
x ∈ (x0, r

z0
x0).

Proof. We fix x0 ∈ D− and prove each property separately.
(i) Let us fix z0 ∈ (x0, 2x0). The right-hand side of (5.59) is locally Lipschitz as long as
0 < x < γz0x0(x) < 2x, so that this last estimate holds for any x ∈ Iz0x0 . We intend to prove
that γzx0 hits the diagonal {(x, z); x = z} at the left hand side `z0x0 of Iz0x0 .

For this purpose, let us first prove that, for any ζ ∈ (0, x0), the graph of γz0x0 restricted
to [ζ, x0] cannot come too close to {(x, z); 2x = z}. Since Γ(x) < 2x for x > 0 and Γ

and Lg are continuous, there exist ε > 0 and δ > 0 ∈ (0, ζ) such that Lg ≥ ε on the
compact set {(x, z); x ∈ [ζ, x0] and z ∈ [2x− δ, 2x]}. Observe that, for x ∈ [ζ, x0] such that
γz0x0(x) ∈

[
max

(
2x− δ, 4x

2+ζ2ε
), 2x

)
, we get from (5.59) that

(γz0x0)′(x) ≥
γz0x0(x)2Lg(x, γz0x0(x))

2x
γ
z0
x0

(x)
− 1

≥
2γz0x0(x)2ε

ζ2ε
≥ 2 ,

where, for the last inequality, we used γ(x) ≥ x ≥ ζ. Hence, the function x 7→ 2x− γz0x0(x)

is non-increasing on the set
{
x ∈ [ζ, x0] ∩ Iz0x0 ; γz0x0(x) ∈

[
max

(
2x− δ, 4x

2+ζ2ε
), 2x

)}
. There-

fore, by arbitrariness of ζ > 0, the graph of γz0x0 restricted to (`z0x0 , x0] stays away from
{(x, z); 2x = z} and γz0x0 necessarily hits the diagonal {(x, z); x = z} at the left hand side
`z0x0 of the maximal interval Iz0x0 .
On the other hand, we observe from (5.59) that γz0x0 is non-increasing at the points x satis-
fying (x, γz0x0(x)) ∈ Γ− and therefore `z0x0 /∈ D− by minimality of Iz0x0 . Since

(
d(x0), u(x0)

)
⊂

D−, we get `z0x0 ≤ d(x0) and Lg(`z0x0 , `
z0
x0) ≥ 0, or equivalently Γ(`z0x0) = `z0x0 .

It still remains to prove properly that limx→`z0x0
γz0x0(x) = `z0x0 . Assume first that `z0x0 > 0.

Notice from (5.59) that γz0x0 is non-decreasing if (x, γz0x0(x)) ∈ Γ+, and x ≤ γz0x0(x) ≤ Γ(x)

otherwise. Since Γ is also non-decreasing, γ̃z0x0 := max(γz0x0 ,Γ) is a non-decreasing func-
tion defined on (`z0x0 , x0], which therefore admits a limit at `z0x0 . Since `z0x0 > 0, we have
limx→`z0x0

γ̃z0x0(x) < 2`z0x0 as observed above, so that, combining the maximality of Iz0x0 with
Γ(`z0x0) = `z0x0 , we obtain limx→`z0x0

γ̃z0x0(x) = `z0x0 . Since x ≤ γz0x0(x) ≤ γ̃z0x0(x) for x ∈ (`z0x0 , x0],
we have limx→`z0x0

γz0x0(x) = `z0x0 . Finally, if `z0x0 = 0, since x < γz0x0(x) < 2x, we also have the
result.

(ii) Let us fix z0 ∈
(
x0,Γ(x0)

)
. As already observed, the dynamics of (5.59) imply that

γz0x0 is non-increasing in the neighborhood of any point x such that (x, γz0x0(x)) ∈ Int(Γ−).
On the other hand, Proposition 5.2 tells us that the function Γ is increasing on [x0,+∞).
Hence x 7→ (x, γz0x0(x)) remains in Int(Γ−) on

[
x0, r

z0
x0

)
.
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We consider now the case where z0 = Γ(x0). Since Γ(x0) > x0, the proof of Proposition
5.2 (i) tells us that Γ′ is positive on a neighborhood of x0. Since z0 = Γ(x0), we de-
duce from (5.59) that (γz0x0)′(x0) = 0, and the exact same reasoning as above implies that
x 7→

(
x, γz0x0(x)

)
∈ Int(Γ−) on

(
x0, r

z0
x0

)
.

(iii) Recall that Γ∞ < ∞. Therefore, as in (i), there exist ε > 0 and δ ∈ (0, 1) such that
Lg ≥ ε on {(x, z); x ∈ [x0,Γ

∞] and z ∈ [(2− δ)x, 2x]}. Let b := min(x2
0ε, δ). From (5.59),

we see that if x ∈ [x0,Γ
∞] and γzx0(x) ∈ [(2− b)x, 2x), then (γzx0)′(x) ≥ 2−b

b x
2
0ε ≥ 2− b. We

denote a0 := (2 − b)x0 and fix z ∈ [a0, 2x0). We deduce from the previous reasoning that
we must have

γzx0(x) ≥ z +

∫ x

x0

(γzx0)′(u)du ≥ z + (2− b)(x− x0) > (2− b)x > Γ(x) ,

for x ∈
[
x0,min(rzx0 ,Γ

∞)
)
. If ever rzx0 ≤ Γ∞, we just obtained the announced result and,

if ever rzx0 > Γ∞, we complete the proof noticing that the maximality of Izx0 implies that
γzx0(x) > x = Γ(x) for x ≥ Γ∞. 2

We now construct the stopping boundary γ by selecting one of the previous maximal solu-
tions. For a given x0 ∈ D−, let

Z(x0) :=
{
z ∈ (x0, 2x0); Lg

(
x, γzx0(x)

)
< 0 for some x ∈

[
x0, r

z
x0

)}
, (5.62)

z∗(x0) := sup Z(x0). (5.63)

Moreover, whenever z∗(x0) < 2x0, we denote

γ∗x0 := γz
∗(x0)
x0 , `∗x0 := `z

∗(x0)
x0 , r∗x0 := rz

∗(x0)
x0 , and I∗x0 :=

(
`∗x0 , r

∗
x0

)
. (5.64)

The next lemma provides useful properties on the function γ∗ and its domain of definition.
In particular, it discusses its dependance with respect to the starting point x0.

Lemma 5.3 Assume that α satisfies Conditions (2.12) and let x0 be arbitrary in D−. Then,
the following holds.
(i) z∗(x0) ∈ (Γ(x0), 2x0) and γ∗x0 has a positive derivative on the interval I∗x0.

(ii)
(
d(x0), u(x0)

)
⊂ I∗x0 and limx→r∗x0 γ

∗
x0(x) = r∗x0 ≤ Γ∞ with equality if u(x0) = Γ∞ .

(iii) For x0, x1 ∈ D−, we have either I∗x0 ∩ I
∗
x1 = ∅, or I∗x0 = I∗x1 and γ∗x0 = γ∗x1 .

Proof. We fix x0 ∈ D− and prove each assertion separately. The proofs of points (i) and
(iii) are very close to the proof of Lemma 5.2 in [5], but we rewrite and adapt them here.

(i) Lemma 5.2 (iii) ensures the existence of a0 < 2x0 such that Lg
(
x, γzx0(x)

)
> 0 for

any x ≥ x0 and z ≥ a0. By definition of z∗(x0), we deduce that z∗(x0) ≤ a0 < 2x0.
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Since x0 ∈ D−, we obtain from Lemma 5.2 (ii) that Γ(x0) ∈ Z(x0) and deduce that
Γ(x0) ≤ z∗(x0).
In order to prove that z∗(x0) ∈ (Γ(x0), 2x0), we now assume that z∗(x0) = Γ(x0) and
work towards a contradiction. Since Lg is continuous, D− is an open set and there exists
ε > 0 such that (x0, x0 + 2ε) ⊂ D− ∩ (x0, r

∗
x0) and d(x) = d(x0) for any x ∈ (x0, x0 + ε).

Let us denote xε := x0 + ε ∈ D− and zε := Γ(xε) > Γ(x0). By Lemma 5.2 (i), we have
`z
ε

xε ≤ d(x0) < x0, and it follows from Lemma 5.2 (ii) and the dynamics of (5.59) that γzεxε is
decreasing on

(
x0, r

zε
xε

)
. Therefore, we compute

γzεxε(x0) > γzεxε(xε) = Γ(xε) > Γ(x0) = z∗. (5.65)

On the other hand, since γγ
zε
xε (x0)
x0 (xε) = zε = Γ(xε), Lemma 5.2 (ii) ensures that γzεxε(x0) ∈

Z(x0), leading to z∗ ≥ γzεxε(x0) ∈ Z(x0), which contradicts (5.65).

The same line of argument implies also that (x, γ∗(x)) ∈ Int(Γ+) for any x ∈ I∗x0 . We
deduce from the dynamics of (5.59) that γ∗ has a positive derivative on I∗x0 , and in particular
limx→r∗x0 γ

∗(x) exists.

(ii) For any z ∈ Z(x0), since γzx0 is non-increasing in Γ−, we deduce that limx→rzx0 γ
z
x0(x) =

rzx0 ≤ Γ∞. Let us write r0 := sup{rzx0 ; z ∈ Z(x0)} ≤ Γ∞. Let us first prove that r0 ≥ u(x0).
Assume on the contrary that r0 < u(x0), so that Γ(r0) > r0. Let fix z ∈ (r0,Γ(r0)).
By Lemma 5.2 (i), `zr0 ≤ d(x0), so that x0 ∈ Izr0 and, since Lemma 5.2 (ii) implies that
Lg(x, γzr0(x)) < 0 for x > r0, we deduce that γzr0(x0) ∈ Z(x0). This contradicts the defini-

tion of r0 since z ∈ (r0,Γ(r0)) implies that r
γzr0 (x0)
x0 = rzr0 > r0. In conclusion, r0 ≥ u(x0).

Besides, Lemma 5.2 (i) implies that `∗x0 ≤ d(x0), and we intend to prove that r0 = r∗x0 in
order to derive (d(x0), u(x0)) ⊂ I∗x0 .

First, we derive the existence of a sequence (zn) ∈ Z(x0) such that zn → z∗(x0) and rznx0 →
r0. Combining the one-to-one property of the flow with the property that limx→rzx0 γ

z
x0(x) =

rzx0 for z ∈ Z(x0), we deduce that z 7→ rzx0 is non-decreasing on Z(x0). Hence, if z∗(x0) 6∈
Z(x0), any sequence (zn) valued in Z(x0) such that zn → z∗(x0) satisfies also sup{rznx0 ; n ∈
N} = sup{rzx0 ; z ∈ Z(x0)} = r0 and thus the required property. If ever z∗(x0) ∈ Z(x0), we
simply pick the sequence zn := z∗(x0), for any n ∈ N.

We now prove that r0 = r∗x0 . Let z ∈ (r0, 2r0) be arbitrary. Up to a subsequence, we
have by construction Iznx0 ∩ I

z
r0 6= ∅ for any n ∈ N. We know that limx→rznx0

γznx0 (x) = rznx0
and γzr0(rznx0 ) > rznx0 since rzr0 > r0 ≥ rznx0 , for any n ∈ N. Hence, the one-to-one property
of the flow ensures that γzr0(x) > γznx0 (x) for any x ∈ Iznx0 ∩ I

z
r0 and n ∈ N. By Lemma

5.2 (i), limx→`zr0
γzr0(x) = `zr0 , so that x0 ∈ Iznx0 ∩ I

z
r0 . Since (zn) ∈ Z(x0) converges to

z∗(x0) = sup Z(x0), we deduce that γzr0(x0) ≥ γ∗x0(x0) = z∗(x0) ≥ zn = γznx0 (x0) , for any
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n ∈ N. Hence, the one-to-one property of the flow implies that

2x > γzr0(x) ≥ γ∗x0(x) ≥ γznx0 (x) , x ∈ [x0, r
zn
x0 ∧ r

∗
x0) , n ∈ N . (5.66)

Therefore r∗x0 ≥ rznx0 for n ∈ N, and, passing to the limit, we get r∗x0 ≥ r0. Besides, (5.66)
implies that lim supx→r0 γ

∗
x0(x) ≤ γzr0(r0) = z, and the arbitrariness of z ∈ (r0, 2r0) leads

to lim supx→r0 γ
∗
x0(x) ≤ r0. Since γ∗x0(x) ≥ x for x ∈ I∗x0 , we get limx→r0 γ

∗
x0(x) = r0 and

r∗x0 ≤ r0. Hence, r∗x0 = r0 ≤ Γ∞, and, if u(x0) = Γ∞, r0 ≥ u(x0) implies that r∗x0 = Γ∞.

(iii) Let x1 in D−. Suppose that x0 < x1 and that there exists x2 ∈ I∗x0 ∩ I
∗
x1 . If ever

γ∗x0(x2) = γ∗x1(x2), the one-to-one property of the flow combined with the maximality of I∗

imply that I∗x0 = I∗x1 and γ∗x0 = γ∗x1 and conclude the proof. It therefore only remains to
prove that γ∗x0(x2) = γ∗x1(x2).
We assume on the contrary that γ∗x0(x2) < γ∗x1(x2), the case where γ∗x0(x2) > γ∗x1(x2)

being treated similarly. The one-to-one property of the flow implies that γ∗x0 < γ∗x1 on
all the interval I∗x0 ∩ I

∗
x1 . Furthermore, Lemma 5.3 (i) and Lemma 5.2 (i) ensure that

limr∗x1
γ∗x1 = r∗x1 and lim`∗x1

γ∗x1 = `∗x1 . Hence, we deduce from the maximality of I∗x1 that
I∗x0 ⊂ I∗x1 . Combining the definition of z∗(x1) with the continuity of the flow with respect
to initial data, we obtain the existence of z ∈ Z(x1) such that z < z∗(x1) and γ∗x0(x2) <

γzx1(x2) < γ∗x1(x2). Once again, the one-to-one property of the flow implies that I∗x0 ⊂ Izx1
and γ∗x0 < γzx1 < γ∗x1 on I∗x0 . Since z ∈ Z(x1), we deduce that γzx1(x0) ∈ Z(x0) while
γzx1(x0) > z∗(x0) = γ∗x0(x0), which contradicts the definition of z∗(x0). 2

Finally, we are in position to provide the proof of Proposition 5.3:

Proof of Proposition 5.3 This construction follows similar ideas as in the proof of
Proposition 5.1 in [5], but turns out to be simpler since Γ∞ <∞.
Let

D :=
⋃

x0∈D−
I∗(x0) ⊃ D−. (5.67)

Lemma 5.3 (iii) ensures that , for any x0 and x1 in D−, we either have I∗x0 = I∗x1 or
I∗x0 ∩ I

∗
x1 = ∅. Hence, there exists a subset D−0 of D− such that D =

⋃
x0∈D−0

I∗(x0) and,
for any x0, x1 ∈ D−0 , x0 6= x1 implies that I∗x0 ∩ I

∗
x1 = ∅.

We now define the function γ on R+ \ {0} by:

γ(x) :=

γ∗x0(x) if x ∈ I∗x0 , for x0 ∈ D−0

x otherwise.
(5.68)

According to Lemma 5.3, this definition does not depend on the choice of D−0 .

Lemmata 5.2 and 5.3 imply that γ is continuous at the endpoints `∗x0 and r∗x0 , for any
x0 ∈ D−0 . Hence, setting γ(0) := 0, we obtain a continuous function γ on R+. For any
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x0 ∈ D−0 , γ
∗
x0 is increasing on I∗x0 and the identity function is increasing as well, so that

γ is increasing on R+. We now justify each assertion of the proposition separately. (i) is
immediate from the definition of γ.
To prove (ii), we first notice that {x ≥ 0 : γ(x) = x} = R+ \ D ⊂ R+ \ D−, so that
Lg(x, x) ≥ 0 on the set {x > 0 : γ(x) = x}. On the set {x > 0 : γ(x) > x}, since γ has a
positive derivative by Lemma 5.3 (ii) and satisfies (5.59), we have Lg(x, γ(x)) > 0. Finally,
(iii) can be deduced from Lemma 5.3 (ii), since r∗x0 ≤ Γ∞ for any x0 ∈ D−0 . 2
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