
HAL Id: hal-00573429
https://hal.science/hal-00573429v1

Preprint submitted on 3 Mar 2011 (v1), last revised 12 Jul 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal stopping of a mean reverting diffusion:
minimizing the relative distance to the maximum

Romuald Elie, Gilles-Edouard Espinosa

To cite this version:
Romuald Elie, Gilles-Edouard Espinosa. Optimal stopping of a mean reverting diffusion: minimizing
the relative distance to the maximum. 2011. �hal-00573429v1�

https://hal.science/hal-00573429v1
https://hal.archives-ouvertes.fr


Optimal stopping of a mean reverting diffusion:

minimizing the relative distance to the maximum

Romuald ELIE Gilles-Edouard ESPINOSA

CEREMADE, CNRS, UMR 7534, Department of Mathematics

Université Paris-Dauphine and CREST ETH Zurich

elie@ceremade.dauphine.fr gilles-edouard.espinosa@math.ethz.ch

February 2011

Abstract

Considering a diffusion X mean reverting to 0 and starting at X0 > 0, we study the

control problem
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where f is a given function and τ is the next random time where the diffusion X

crosses zero. Our motivation is the obtention of optimal selling rules related to the

minimization of the relative distance between a stopped mean reverting portfolio and

its upcoming maximum. We provide a verification result for this stochastic control

problem and derive the solution for different criteria f . For a power utility type criterion

f : y 7→ −yλ with λ > 0, instantaneous stopping is always optimal. On the contrary,

for a relative quadratic error criterion, f : y 7→ (1− y)2, selling is optimal as soon as

the process X crosses a specified function ϕ of its running maximum X∗. As in [5] and

[8], the inverse of ϕ identifies as the maximal solution of a highly non linear ordinary

differential equation. These results reinforce the idea that optimal prediction problems

of similar type lead easily to solutions of different nature. Nevertheless, we observe

numerically that the continuation region for the relative quadratic error criterion is

very small, so that the optimal selling strategy is close to immediate stopping.

Key words: optimal stopping, optimal prediction, running maximum, free boundary PDE,

verification, mean reverting diffusion
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1 Introduction

At a first glance, trying to stop a one-dimensional process as close as possible to its ultimate

maximum may be viewed as a hopeless ambition. Graversen, Peskir and Shiryaev were the

first authors who tackled successfully this challenging problem. Considering a one dimen-

sional Brownian motion B on the time interval [0, 1], they solve in [6] the optimal stopping

problem infθ E
[

|Bθ −B∗
1 |2
]

, where B∗
1 denotes the maximum of the process B at time 1 and

θ is any stopping time smaller than 1. Stopping is optimal as soon as the drawdown of the

Brownian motion, i.e. the gap between its current maximum and its value, goes below the

function t 7→ c∗
√
1− t, for a specified constant c∗. Urusov [10] observes that this strategy

leads to a good approximation of the last time τ∗ where the Brownian motion reaches its

maximum, since it also solves the problem infθ E [|θ − τ∗|]. For a drifted Brownian motion,

this property is no longer satisfied, and Du Toit and Peskir [2, 3] characterize both solutions

of these problems. Once again, stopping is optimal as soon as the drawdown of the drifted

Brownian motion enters a time-to-horizon dependent region.

Considering instead a geometric Brownian motion (St)0≤t≤1, several authors (Shiryaev, Xu

and Zhou [9], Du Toit and Peskir [4] or Dai, Jin, Zhong and Zhou [1]) tried to minimize

the relative distance between the stopped process Sτ and its ultimate maximum. In par-

ticular they solve the problem supθ E [Sθ/S
∗
1 ]. Their purpose is of course the obtention of

an optimal selling rule of the stock S as close as possible to its ultimate maximum. As

pointed out in [4], the formulation in terms of ratio between the stopped process and its

maximum has the effect of stripping away the monetary value of the stock, focusing only

on the underlying randomness. Using either probabilistic or deterministic methods, the

common interpretation of the solution derived in these papers is that one should "sell bad

stocks and keep good ones". Indeed, introducing the "goodness index" α of the stock as

the ratio between its excess return rate and its square volatility rate, the optimal strategy

appears to be of "bang-bang" type: one should immediately sell the stock if α ≤ 1/2 and

keep it until maturity otherwise. Focusing also on the problem infθ E [S∗
1/Sθ], Du Toit and

Peskir [4] observe that one should sell immediately if α < 0, keep until the end if α > 1

and stop as soon as the ratio S∗/S hits a specified deterministic function of time in the

intermediate case. It is worth noticing that these two optimal prediction problems of sim-

ilar type offer therefore different optimal selling strategies for a large range of parameter set.

Of course, the only consideration of stocks with Black Scholes type dynamics is unrealistic

and limitative. A recent paper of Espinosa and Touzi [5] allows for the consideration of

more general diffusion dynamics and, as a by product, requires to focus on a stationary

version of this problem. Studying an even more realistic infinite time horizon problem and

a mean reverting diffusion portfolio X with general dynamics starting at X0 > 0, they treat

the problem: infθ E
[

|X∗
τ −Xθ|2

]

where τ is the first time where X hits zero and θ is any
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stopping time smaller than τ . They solve explicitly this problem as a free boundary problem

and obtain that one should sell the portfolio whenever the running maximum X∗ and the

drawdown X∗ −X are both large enough.

In a similar framework, the purpose of this paper is to minimize the relative distance between

a stopped mean reverting positive scalar diffusion and its upcoming maximum when it

reaches zero. The consideration of the ratio of the stopped process with respect to its

upcoming maximum allows to capture the scale of the prices themselves and we solve the

two following problems

V1 = sup
θ

E

[

(

Xθ

X∗
τ

)λ
]

, for λ > 0 , and V2 = inf
θ
E

[

(

X∗
τ −Xθ

X∗
τ

)2
]

,

where τ is the first time where X hits 0 and θ is any stopping time smaller than τ . For

the first problem V1, we prove that the optimal stopping strategy consists in liquidating

the portfolio immediately. This conclusion is in accordance with the results of [1, 4, 9]

since keeping the stock until maturity is obviously irrelevant in our framework. Hence, the

(bang-)bang type strategy also occurs for general mean reverting diffusion dynamics and

for any relative power utility type criterion (λ > 0). Conversely for V2, when minimizing

the relative quadratic distance between the process and its ultimate maximum, the optimal

selling time is the first time where the process X goes below a specified function ϕ of its

running maximum X∗. Similarly to [8] and [5], this function ϕ (or more precisely its inverse)

is characterized as the "biggest" solution of an ordinary differential equation and can be

easily approximated numerically.

As already observed by Du Toit and Peskir [4], our results confirm that optimal stopping

prediction problems of similar nature can lead to different types of optimal solution. Pre-

dicting the maximum of a process is really intricate and the corresponding optimal strategy

strongly depends on the criterion choice. However, we shall temper a bit this conclusion

since, in our case, numerical experiments provided in the paper show that the function ϕ

is close to the identity function. Hence, even if immediate stopping is not optimal, a port-

folio manager will not wait long until the drawdown of his portfolio X∗ − X goes below

X∗ − ϕ(X∗).

The paper is organized as follows. The next section provides the set up of the problem

and derives preliminary properties. Section 3 is dedicated to the obtention of a general

verification theorem allowing to treat the first and the second optimal stopping problems at

once. Sections 4 and 5 tackle successively the power utility type criterion and the quadratic

distance one. In both cases, the value function solution is presented and discussed at

the beginning of the section, numerical results are presented, and the technical proofs are

postponed to the end of it.
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2 Problem formulation

2.1 The optimization problem of interest

Let W be a scalar Brownian motion on the complete probability space (Ω,F ,P), and denote

by F = {Ft, t ≥ 0} the corresponding augmented canonical filtration. Let X be a diffusion

process given by the following dynamics:

dXt = −µ(Xt)dt+ σ(Xt)dWt, t ≥ 0 , (2.1)

together with an initial data x := X0 > 0, where µ and σ are Lipschitz continuous functions.

We will assume that the process X mean-reverts towards the origin in the sense that:

µ(x) ≥ 0 , for x ≥ 0. (2.2)

We denote by τ := inf{t ≥ 0, Xt = 0} the first time where the process X hits the origin, T
the set of F-stopping times θ such that θ ≤ τ a.s and X∗

. := sups≤.Xs the running maximum

of X. We consider the following optimization problem:

V0 := inf
θ∈T

E f

(

Xθ

X∗
τ

)

, (2.3)

where f is a continuous function on [0, 1], C1 on (0, 1], and such that, there exist two

constants A > 0 and η > 0 satisfying

|f ′(x)| ≤ Axη−2 , 0 < x ≤ 1 . (2.4)

In order to use dynamic programming techniques, we introduce as usual the process Z

defined by Zt := z ∨ X∗
t for a given z > 0, and define the corresponding value function

associated to the optimization problem (2.3) :

V (x, z) := inf
θ∈T

Ex,z f

(

Xθ

Zτ

)

, (x, z) ∈ ∆ , (2.5)

where ∆ is defined by

∆ := {(x, z), 0 ≤ x ≤ z and z > 0}, (2.6)

and corresponds to the domain where (X,Z) lies.

Remark 2.1 Of course, we aim at considering cases where the function f is not increasing,

since otherwise a straightforward optimal strategy consists in waiting until time τ .

Remark 2.2 Notice that the definition of ∆ differs from the one in [5]. Notice also that

contrary to [5], the problem is not invariant by translation. More precisely, if one considers

the criterion infθ f(
b+Xθ

b+Zτ
), the problem might not be well-defined for b < 0 since we can

have b+ Zτ = 0. For b > 0 (or z > b if b < 0) however, the problem makes sense and could

be studied in a similar fashion, but is not a particular case of what we do here.
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Defining the reward function g from immediate stopping

g(x, z) := Ex,z f

(

x

Zτ

)

, (x, z) ∈ ∆ , (2.7)

we may re-write this problem in the standard form of an optimal stopping problem

V (x, z) = inf
θ∈T

Ex,z g(Xθ, Zθ) , (x, z) ∈ ∆ . (2.8)

2.2 Assumptions and first properties

Let introduce the so-called scale function S defined, for x ≥ 0, by

S(x) :=

∫ x

0
exp

∫
u

0
α(r)dr du , with α :=

2µ

σ2
. (2.9)

Remark 2.3 Since the process X mean reverts towards 0, the function α is non negative.

Therefore, the scale function S is increasing, convex and dominates the Identity function.

By construction, S satisfies Sxx = αSx and is related to the law of Zτ via the estimate

Px,z [Zτ ≤ u] = Px [X
∗
τ ≤ u]1z≤u =

(

1− S(x)

S(u)

)

1z≤u , (x, z) ∈ ∆ , u > 0 .

Using the scale function S, the reward function g rewrites as

g(x, z) = f
(x

z

)

(

1− S(x)

S(z)

)

+ S(x)

∫ ∞

z
f
(x

u

) S′(u)

S(u)2
du , (x, z) ∈ ∆ , (2.10)

which is well-defined since f is continuous on [0, 1] so that we have

∫ ∞

z

∣

∣

∣
f
(x

u

)∣

∣

∣

S′(u)

S(u)2
du ≤ ‖f‖∞

∫ ∞

z

S′(u)

S(u)2
du =

‖f‖∞
S(z)

, (x, z) ∈ ∆ .

Via an integration by part, we deduce

g(x, z) = f
(x

z

)

− xS(x)

∫ ∞

z
f ′
(x

u

) du

u2S(u)
, (x, z) ∈ ∆ , x > 0 . (2.11)

Observe that the previous integral is well defined since, combining Remark 2.3 with estimate

(2.4), we compute

∣

∣

∣

∣

∣

f ′
(

x
u

)

u2S(u)

∣

∣

∣

∣

∣

≤ A
(x

u

)η−2 1

u3
= A

xη−2

u1+η
, 0 < x ≤ u .

If f is C1 on [0, 1], since g(0, z) = f(0), (2.11) also holds true for x = 0 and z > 0.

In this paper, we aim at considering a general framework including the classical types of

mean reverting processes. In particular, we intend to treat the following diffusion dynamics:

• Brownian motion with negative drift: α constant, positive and S(x) = eαx−1
α ;
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• Cox Ingersol Ross process: α(x) = αx
x+b and S′(x) = eαx

(

x+b
b

)αb
with α > 0 and b > 0;

• Ornstein-Uhlenbeck process: α(x) = αx and S′(x) = eαx
2/2 .

For this purpose, we impose on α similar but less restrictive conditions as in [5] and work

under the following standing Assumption:

α = 2µ
σ2 : (0,∞) → R is a C2 positive non-decreasing concave function with α(0) = 0.(2.12)

Remark 2.4 As in [5], we observe for later use that the restriction (2.12) implies in par-

ticular that the function 2S′ − αS − 2 is a non negative increasing function.

Remark 2.5 One can wonder if the present problem can be solved from [5] using the

following change of variable: Y := ln(1 + X), since Y would also be a process mean-

reverting towards 0 if X is. We claim that this is not the case. Indeed, we can observe that

f(1+Xθ

1+Zτ
) = f ◦exp

(

ln(1+Xθ)− ln(1+Zτ )
)

, and define ℓ : x 7→ f ◦exp(−x). First, as briefly

explained in Remark 2.2, the problem considered here where b = 0 cannot be deduced from

the one with b = 1. Moreover, for the functions f that we intend to study, f : x 7→ −xλ

or f : x 7→ 1
2(1 − x)2, the convexity of ℓ required in [5] is not satisfied. Finally, if X is for

example an Ornstein-Uhlenbeck process, one can compute that the function αY associated

to Y is of the form αY : y 7→ 2α(e2y − ey) + 1, which is convex on R+, and therefore does

not satisfy the assumptions of [5].

3 A PDE verification argument

This section is devoted to the obtention of a PDE characterization for the solution of the

control problem of interest (2.5). We first derive the corresponding HJB equation and then

provide a verification theorem.

3.1 The corresponding dynamic programming equation

The linear second order Dynkin operator associated to the diffusion (2.1) is simply given by

L : v 7→ vxx − α(x)vx , with α(x) =
2µ(x)

σ2(x)
, for x ≥ 0 .

By construction, observe that the scale function S satisfies in particular LS = 0. Since the

value function of interest V rewrites as the solution of a classical optimal stopping control

problem (2.8), we expect V to be solution of the associated dynamic programming equation.

Namely, V should be a solution of the Hamilton Jacobi Bellman equation:

min(Lv; g − v) = 0 ; v(0, z) = f(0) , vz(z, z) = 0 , (x, z) ∈ ∆ . (3.13)

The first term indicates that V is dominated by the immediate reward function g and that

the dynamics of v in the domain are given by the Dynkin operator of the diffusion X. The
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second relation manifests that only immediate stopping is possible whenever the diffusion

X has reached 0. Finally, the last one is the classical Von Neumann condition encountered

whenever the diffusion process hits its maximum.

As in any optimal stopping problem, the domain of definition ∆ of the value function

subdivides into two subsets: the stopping region S where immediate stopping is optimal and

the continuation region where the optimal strategy consists in waiting until the stochastic

process enters the stopping region. The optimal stopping time is the first time where the

process arrives in the stopping region, and, in order to obtain a stopping time, we expect

the region S to be a closed subset of ∆. Of course, the stopping region is characterized by

the relation v = g since g is the reward function from immediate stopping. Depending on

the position of (x, z) ∈ ∆ with respect to the region S, we expect the dynamics of (3.13)

to rewrite

On the stopping region: v(x, z) = g(x, z) , Lg(x, z) ≥ 0 ;

On the continuation region: v(x, z) ≥ g(x, z) , Lv(x, z) = 0 ;

Everywhere: vz(x, z)1{x=z} = 0 .

In the next sections of the paper, we exhibit different shapes of stopping and continuation

regions depending on the objective function f . We observe that, although the objective

functions may appear rather similar, the optimal strategies can be very different.

3.2 The verification theorem

As detailed above, we expect the value function V given by (2.5) to be solution of the

Hamilton Jacobi Bellman equation (3.13). The solution of this problem is intimately related

to the form of the associated stopping region S. Afterwards, we shall not prove that V is

indeed a (weak) solution of this PDE but instead try to guess a regular solution to the PDE

and verify that it satisfies the assumptions of the following verification theorem.

Theorem 3.1 Let v be a bounded from below function continuous on ∆ and piecewise C2,1

on ∆ \ {(0, z), z > 0}.
(i) If v satisfies Lv ≥ 0, v ≤ g as well as vz(z, z) ≥ 0 for z > 0, then v ≤ V .

(ii) More precisely, if vz(z, z) = 0 for z > 0 and there exists a closed set S ⊂ ∆ containing

the axis {(0, z) , z > 0} such that

v = g on S , Lv ≥ 0 on S \ {(0, z), z > 0} , v ≤ g and Lv = 0 on ∆ \ S , (3.14)

then v = V and θ∗ := inf{t ≥ 0, (Xt, Zt) ∈ S} is an optimal stopping time.

(iii) If in addition v < g on ∆ \ S, then θ∗ is the "smallest" optimal stopping time, in the

sense that θ∗ ≤ ν a.s. for any optimal stopping time ν.
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Proof. We prove each assertion separately.

(i) Fix (X0, Z0) := (x, z) ∈ ∆. Let θ ∈ T and define θn = n ∧ θ ∧ inf{t ≥ 0; |Zt| ≥
n or |Zt| ≤ 1

n} for n ∈ N. Since (X,Z) takes value in a compact subset of ∆, a direct

application of Itô’s formula gives

v(x, z) = v(Xθn , Zθn)−
∫ θn

0
Lv(Xt, Zt)σ(Xt)

2dt−
∫ θn

0
vx(Xt, Zt)σ(Xt)dWt −

∫ θn

0
vz(Xt, Zt)dZt .

Combining estimates Lv ≥ 0 and vz(Xt, Zt)dZt = vz(Zt, Zt)dZt ≥ 0 with the fact that

(X,Z) lies in a compact subset of ∆, we deduce

v(x, z) ≤ Ex,zv(Xθn , Zθn) . (3.15)

Since v ≤ g, this leads directly to

v(x, z) ≤ Ex,zg(Xθn , Zθn) = Ex,zEXθn
,Zθn

f

(

Xθn

Zτ

)

= Ex,zf

(

Xθn

Zτ

)

.

Clearly as n → ∞, θn → θ almost surely. Since 0 ≤ Xθn/Zτ ≤ 1 and f is continuous,

Lebesgue’s dominated convergence theorem gives: Ex,zf(Xθn/Zτ )→n→∞ Ex,zf(Xθ/Zτ ),

leading to

v(x, z) ≤ V (x, z) , (x, z) ∈ ∆ .

(ii) Observe that this framework is more restrictive than the previous one, so that v ≤ V

on ∆. For (x, z) ∈ S, we have v(x, z) = g(x, z) ≥ V (x, z) by definition of g. We now fix

(x, z) ∈ ∆ \ S and prove that v(x, z) ≥ V (x, z).

Let θ∗ := inf{t ≥ 0; (Xt, Zt) ∈ S}. Observe that θ∗ ∈ T since S contains the axis

{(0, z), z ≥ 0}. The regularity of v implies Lv(Xt, Zt) = 0 for any t ∈ [0, θ∗). As before,

we define θ∗n := n ∧ θ∗ ∧ inf{t ≥ 0; |Zt| ≥ n or |Zt| ≤ 1
n}, which is a stopping time since S

is closed. A very similar computation leads directly to

v(x, z) = Ex,zv(Xθ∗n , Zθ∗n) .

Since v is bounded from below and v ≤ g ≤ ‖f‖∞, v is bounded. Therefore the sequence
(

v(Xθ∗n , Zθ∗n)
)

n
is uniformly integrable and we deduce that v(x, z) = Ex,zv(Xθ∗ , Zθ∗). Since

(Xθ∗ , Zθ∗) ∈ S and v = g on S, we get

v(x, z) = Ex,zg(Xθ∗ , Zθ∗) = Ex,zf

(

Xθ∗

Zτ

)

≥ V (x, z) .

Thus v = V on ∆ and θ∗ is an optimal stopping time.

(iii) For a given (x, z) ∈ ∆, we argue by contradiction and suppose the existence of a

stopping time ν ∈ T satisfying P(ν < θ∗) > 0 and V (x, z) = Ex,zf(Xν/Zτ ).
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By assumption, we have V (Xν , Zν) < g(Xν , Zν) on {τ < θ∗}, which combined with estimate

V ≤ g implies

V (x, z) = Ex,zf

(

Xν

Zτ

)

= Ex,zg(Xν , Zν) > Ex,zV (Xτ , Zτ ) ≥ V (x, z) ,

where the last inequality follows from the definition of V . This leads to a contradiction,

which guarantees the minimality of θ∗. ✷

Remark 3.1 From the definition of g, one easily checks that gz(z, z) = 0 for any z > 0.

Therefore, in the PDE dynamics (3.14), the Neumann boundary condition vz(z, z) = 0 is

only necessary for (z, z) ∈ ∆ \ S, since it is automatically satisfied otherwise.

Remark 3.2 Whenever g is a continuous function on ∆, C2,1 w.r.t. (x, z) on ∆\{(0, z), z >

0} and Lg ≥ 0 on ∆ \ {(0, z), z > 0}, then v = g and S = ∆ satisfy the assumptions

of Theorem 3.1 (ii). In that case, immediate stopping is always optimal. We prove in

Proposition 3.1 that the reverse is true. Notice also that expression (2.10) implies that an

immediate sufficient condition for g to be in C0(∆) ∩ C2,1(∆ \ {(0, z), z > 0}) is that f is

C2 on (0, 1].

Proposition 3.1 Assume that g is C0 on ∆, C2,1 w.r.t. (x, z) on ∆ \ {(0, z), z > 0}, and

that there exists (x0, z0) ∈ ∆ \ {(0, z), z > 0} such that Lg(x0, z0) < 0. Then, immediate

stopping at (x0, z0) is not optimal (or equivalently V (x0, z0) < g(x0, z0)).

Proof. Since Lg is continuous at (x0, z0), there exists a neighborhood U0 of (x0, z0) in

∆ such that Lg(x, z) < 0 for any (x, z) ∈ U0. Without loss of generality, we can assume

that U0 is compact in ∆. Let (X0, Z0) = (x0, z0). Since x0 > 0, there exists θ0 ∈ T such

that Ex0,z0θ0 > 0 and let define θ1 := 1 ∧ θ0 ∧ inf{t ≥ 0; (Xt, Zt) 6∈ U0} ∈ T . Since

{θ0 > 0} = {θ1 > 0}, we also have Ex0,z0θ1 > 0. Using Itô’s formula, we compute:

g(x0, z0) = g(Xθ1 , Zθ1)−
∫ θ1

0
Lg(Xu, Zu)σ(Xu)

2du

−
∫ θ1

0
gx(Xu, Zu)σ(Xu)dWu −

∫ θ1

0
gz(Xu, Zu)dZu.

From Remark 3.1, gz(z, z) = 0 for z > 0 so that the last term of the previous expression

disappears. Since U0 is compact and Ex0,z0θ1 > 0, taking conditional expectations, we

deduce that g(x0, z0) > Ex0,z0 g(Xθ1 , Zθ1) ≥ V (x0, z0). ✷

In the next sections, we investigate two particular cases of objective functions, for which we

exhibit functions v and stopping regions S, which satisfy the assumptions of Theorem 3.1

and are in general non trivial.
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4 The power utility case

Let first examine the case where the function f is given by f : x 7→ −xλ

λ , for λ > 0. In other

words, we are computing the following value function

V λ(x, z) := − 1

λ
sup
θ∈T

Ex,z

(

Xθ

Zτ

)λ

, (x, z) ∈ ∆ , λ > 0 . (4.16)

Consider an investor, whose relative preferences are given by a power utility function and

suppose that he detains at time 0 a given portfolio X mean reverting towards 0. The

optimal stopping time at which he should liquidate his portfolio is the solution of the

previous control problem. With a given finite time horizon T , du Toit and Peskir [4] as well

as Shiryaev, Xu and Zhou [9] investigate the case where X is a Geometric Brownian motion.

They conclude that the optimal strategy consists in waiting until time T if the portfolio has

promising returns (i.e. 1 < 2µ/σ2 = xα(x), x > 0, with our notations), and sell immediately

otherwise. In our mean reverting framework, waiting until the wealth reaches 0 is obviously

a non optimal strategy. For a linear utility function (λ = 1), we prove in Theorem 4.1 below

that immediate stopping is also optimal. Depending on the value of λ, the latter may no

longer be the case for the non linear problem (4.16). Nevertheless, we observe that optimal

stopping is still optimal for the practical value function of interest V λ(x, x), for x > 0.

4.1 The particular case where λ ≤ 1

For λ ≤ 1, we prove hereafter that immediate stopping is always optimal. For λ = 1, these

conclusions are therefore in accordance with those of [4, 9] obtained for the case of an ex-

ponential Brownian motion on a fixed time horizon.

A direct application of estimate (2.11) proves that the reward function gλ associated to

problem (4.16) is given by

gλ(x, z) = − xλ

λzλ
+ xλS(x)

∫ ∞

z

du

S(u)u1+λ
, (x, z) ∈ ∆ , λ > 0 .

The next theorem indicates that the framework of Remark 3.2 holds for λ ≤ 1, so that gλ

coincides with the value function on ∆.

Theorem 4.1 For λ ≤ 1, immediate stopping is optimal for problem (4.16), so that

V λ(x, z) = gλ(x, z) , (x, z) ∈ ∆ , 0 < λ ≤ 1 .

Proof. For any λ > 0 and (x, z) ∈ ∆ with x > 0, we compute

gλx(x, z) = −xλ−1

zλ
+ {λxλ−1S(x) + xλS′(x)}

∫ ∞

z

du

S(u)u1+λ
.
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Differentiating one more time and using the relation LS = 0, we get,

gλxx(x, z) = (1− λ)
xλ−2

zλ
+ {λ(λ− 1)xλ−2S(x) + (2λxλ−1 + xλα(x))S′(x)}

∫ ∞

z

du

S(u)u1+λ
,

for any λ 6= 1 and 0 < x ≤ z. Combining the previous estimates, we deduce that

Lgλ(x, z) = xλ−2[xα(x) + 1− λ]

(

1

zλ
−
∫ ∞

z

S(x)

S(u)

λdu

u1+λ

)

+ 2xλ−1S′(x)

∫ ∞

z

λdu

S(u)u1+λ
,

(4.17)

for any λ 6= 1 and 0 < x ≤ z. In the case, where λ = 1, we get similarly

Lg1(x, z) = α(x)

(

1

z
−
∫ ∞

z

S(x)du

u2S(u)

)

+ 2S′(x)

∫ ∞

z

du

u2S(u)
, (x, z) ∈ ∆ . (4.18)

Furthermore, since S is increasing, we have
∫ ∞

z

S(x)

S(u)

λdu

u1+λ
≤
∫ ∞

z

S(z)

S(u)

λdu

u1+λ
≤
∫ ∞

z

λdu

u1+λ
=

1

zλ
, (x, z) ∈ ∆ , λ > 0 .

Plugging this estimate in (4.17) and (4.18), we see that Lgλ ≥ 0 on ∆ \ {(0, z), z > 0} for

any λ ≤ 1. As detailed in Remark 3.2, since g is C0 on ∆ and C2,1 on ∆ \ {(0, z), z > 0},
we deduce that V λ = gλ on ∆ and consequently immediate stopping is optimal for any

λ ≤ 1. ✷

4.2 Construction of the solution when λ > 1

We now turn to the more interesting and intricate case where λ > 1. Then, the function

Lgλ is still given by expression (4.17) and we observe that:

Lgλ(x, z) ∼x∼0 (1− λ)
xλ−2

zλ
< 0 ,

for any z > 0 and λ > 1. Therefore, Lgλ is not non negative on ∆ and Proposition 3.1

ensures that the associated continuation region is non empty. Since immediate stopping

shall not be optimal close to the axis {(0, z); z > 0}, we expect to have a stopping region

of the form Sλ := {(x, z) ∈ ∆; x ≥ ϕλ(z)}. Hence, our objective is to find functions vλ

and ϕλ satisfying

Lvλ(x, z) = 0 for 0 < x < ϕλ(z) and (x, z) ∈ ∆ , (4.19)

vλ(x, z) = gλ(x, z) and Lgλ(x, z) ≥ 0 for x ≥ ϕλ(z) and (x, z) ∈ ∆ , (4.20)

vλ(0, z) = 0 for z > 0 , (4.21)

vλz (z, z) = 0 for z > 0 . (4.22)

Since we look for regular solutions, we complement the above system by the continuity and

the smoothfit conditions

vλ(ϕλ(z), z) = gλ(ϕλ(z), z) and vλx(ϕ
λ(z), z) = gλx(ϕ

λ(z), z) , for z > 0 . (4.23)
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The stopping region Sλ will then be defined as

Sλ := {(x, z) ∈ ∆; x ≥ ϕλ(z)} ∪ {(0, z); z > 0}. (4.24)

Since the optimization problem of practical interest corresponds to the value of V λ on the

diagonal {(x, x); x > 0}, our main concern here is to find out if ϕλ(0) equals 0 or not,

hence indicating if immediate stopping is always optimal on the diagonal. Surprisingly, we

verify hereafter that ϕλ(0) = 0 so that immediate stopping is the optimal strategy for the

practical problem of interest.

Due to the dynamics of (5.41) and since LS = 0, the function vλ must be of the form

vλ(x, z) = A(z) +B(z)S(x) , (x, z) ∈ ∆ \ S .

Combined with the continuity and smooth-fit conditions (4.23), this leads to

v(x, z) = gλ(ϕλ(z), z) +
gλx(ϕ

λ(z), z)

S′ ◦ ϕλ(z)
[S(x)− S ◦ ϕλ(z)] , (x, z) ∈ ∆ \ S.

The free boundary ϕλ is then determined by the Dirichlet condition (4.21) and must satisfy:

gλ(ϕλ(z), z)S′ ◦ ϕλ(z) = gλx(ϕ
λ(z), z)S ◦ ϕλ(z) , (x, z) ∈ ∆ \ S.

The next lemma introduces a free boundary function ϕλ satisfying this required condition.

It also provides useful properties of this free boundary function and its technical proof is

postponed to Section 4.4.

Lemma 4.1 For any λ > 1, the function ϕλ given by

ϕλ : z ∈ (0,∞) 7→ arg min
x∈[0,z]

g(x, z)

S(x)
,

is a well defined increasing C1 function, satisfying:

(i) 0 ≤ ϕλ(z) < z, for any z > 0;

(ii) ϕλ maps (0,∞) onto (0, yλ), where yλ is the unique non null zero of y 7→ yS′(y)−λS(y).

Remark 4.1 Observe that, for any fixed z > 0 and λ > 1, gλ(x, z)/S(x) converges to 0 as x

goes to 0, since S dominates the Identity function as pointed out in Remark 2.3. Therefore,

the function gλ(., z)/S(.) is well defined on [0, z] for any z > 0.

Before providing the value function solution and verifying that it satisfies the requirements

of Theorem 3.1, we still need to check that the stopping region Sλ associated to ϕλ is indeed

a good candidate, i.e. that the second part of (4.20) holds. This is the purpose of the next

lemma, which proof is also postponed to Section 4.4.

Lemma 4.2 For any λ > 1, the function Lgλ is non negative on {(x, z) ∈ ∆, x ≥ ϕλ(z)}.
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Given the free boundary ϕλ defined above and the corresponding stopping region Sλ, we are

now in position to provide the optimal strategy and value function solutions of the problem

(4.16).

Theorem 4.2 For any λ > 1, the value function V λ solution of problem (4.16) is given by

V λ(x, z) = gλ(ϕλ(z), z)
S(x)

S ◦ ϕλ(z)
1{x<ϕλ(z)} + gλ(x, z)1{x≥ϕλ(z)} , (x, z) ∈ ∆ . (4.25)

The smallest optimal stopping time associated to this stochastic control problem is given by

θλ := inf {t ≥ 0 , Xt ≥ ϕλ(Zt)} , λ > 1 .

Proof. Let denote by vλ the candidate value function defined by the right-hand side of

(4.25). We shall prove that vλ coincides with the value function (4.16) by checking that it

satisfies all the requirements of Theorem 3.1.

It is immediate that vλ is bounded from below by 0 because gλ ≥ 0. Since gλ is C1 on ∆

and C2,1 w.r.t. (x, z) on ∆ \ {(0, z), z > 0}, and ϕλ is C1 by Lemma 4.1, vλ is C2,1 w.r.t.

(x, z) on both ∆\S and S\{(0, z), z > 0}, so that it is piecewise C2,1 on ∆\{(0, z), z > 0}.
By construction, vλ is continuous on ∆ and we recall from the definition of ϕλ that

gλ(ϕλ(z), z)
S′ ◦ ϕλ(z)

S ◦ ϕλ(z)
= gλx(ϕ

λ(z), z) , z > 0 .

Therefore, vλ is C1 on ∆.

The closed stopping region associated to the value function vλ is naturally given by (4.24).

By definition, vλ = gλ on Sλ and we deduce from Lemma 4.2 that Lgλ ≥ 0 on the set

Sλ \ {(0, z), z > 0}. By construction, we have Lvλ = 0 on ∆ \ Sλ. For any z > 0, since

gλ(., z)/S achieves its minimum at a unique point ϕλ(z), we get

gλ(ϕλ(z), z)
S(x)

S ◦ ϕλ(z)
< gλ(x, z) , 0 ≤ x < ϕλ(z) ,

and we deduce that vλ < gλ on ∆ \ Sλ. Finally, since vλz (z, z) = gλz (z, z) = 0 for any z > 0,

all the requirements of (ii)-(iii) in Theorem 3.1 are in force, and the proof is complete. ✷

4.3 Properties of the solution

We first observe that the two previous cases where λ is above or below 1 seem to be of

different natures. However, we prove hereafter that this is not the case and provide via

simple arguments the continuity of V λ with respect to the parameter λ.

Proposition 4.1 The mapping λ 7→ V λ is continuous on (0,∞).
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Proof. We fix λ1 and λ2 in (0,∞) such that λ1 ≤ λ2. First notice that since X. ≤ Zτ on

[0, τ ], we necessarily have

−λ2V
λ2(x, z) = sup

θ∈T
Ex,z

(

Xθ

Zτ

)λ2

≤ sup
θ∈T

Ex,z

(

Xθ

Zτ

)λ1

= −λ1V
λ1(x, z) , (x, z) ∈ ∆ .

(4.26)

Now, using Jensen’s inequality, we observe that

[

Ex,z

(

Xθ

Zτ

)λ1

]

λ2

λ1

≤ Ex,z

(

Xθ

Zτ

)λ2

≤ −λ2V
λ2(x, z) , θ ∈ T , (x, z) ∈ ∆ .

Bringing this expression to the power λ1/λ2 and taking the supremum over θ, we deduce

from (4.26) that

[

− λ1V
λ1(x, z)

]

λ2

λ1 ≤ −λ2V
λ2(x, z) ≤ −λ1V

λ1(x, z) , (x, z) ∈ ∆ .

Therefore λ2V
λ2 → λ1V

λ1 whenever λ2 → λ1 and we deduce the continuity of V λ with

respect to λ. ✷

For λ > 1, Theorem 4.2 indicates that the stopping region Sλ associated to problem (4.16)

is given by (4.24). Since ϕλ(0) = 0, we see that the stopping region Sλ includes in particular

the axis {(x, x) , x > 0}. Therefore, if an investor detains a portfolio mean reverting to zero

and hopes to get close to its upcoming maximum before it reaches zero according to the

criterion (4.16), he should liquidate the portfolio immediately. Theorem 4.1 indicates that

this is also the case for λ ∈ (0, 1] and these results are in accordance with those of [9] for

an exponential Brownian motion on a finite fixed horizon, since waiting until maturity is

irrelevant in our framework. Nevertheless, changing the criterion of interest may lead to

value functions where immediate stopping is not optimal on the axis {(x, x) , x > 0}. This

is exactly the purpose of Section 5.

Figure 1 represents the frontier between the stopping and the continuation regions for differ-

ent values of λ larger than 1 and associated to an Orstein-Uhlenbeck with parameter α = 1

and a CIR-Feller process with parameters α = 1 and b = 1. We first observe that the shape

of the free boundary ϕλ is rather similar in both cases, and we observe indeed this feature for

a large range of parameter set. Furthermore, the mapping λ 7→ ϕλ seems to be continuous,

property which is easily verified from the definition of ϕλ. Second, we notice that the free

boundary ϕλ is decreasing with respect to λ. Indeed, arguing as in Part 2. of the proof of

Lemma 4.1, one can easily check that the function x ∈ R
+ 7→ xS′(x)/S(x) is decreasing

starting from 1. Hence, by definition of yλ, the valuation domain [0, yλ] of ϕλ shrinks mono-

tonically to {0} as λ decreases to 1, hence leading to the absence of continuation region for

the problem V 1.
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Figure 1: Optimal frontier for an OU (α = 1) and a CIR (α = 1, b = 1) with different

parameter λ

Remark 4.2 Considering for example an Ornstein-Uhlenbeck portfolio X, one verifies eas-

ily from their definitions that the free boundary ϕλ and the value function vλ are continuous

with respect to the parameter α ∈ R, characterizing the dynamics of the mean reverting

portfolio X. Hence, the continuation and stopping regions are not too sensitive to eventual

estimation errors of this parameter of interest.

4.4 Proofs of Lemma 4.1 and Lemma 4.2

This section provides successively the proofs of Lemma 4.1 and Lemma 4.2.

Proof of Lemma 4.1

Fix λ > 1. Let introduce the functions

m : x 7→ xS′(x)

λS(x)2
− 1

S(x)
and ℓ : z 7→ −

∫ ∞

z

λzλdu

S(u)u1+λ
,

so that the derivative of the function of interest rewrites

∂

∂x

[

g(x, z)

S(x)

]

=
xλ−1

zλ
{m(x)− ℓ(z)} , (x, z) ∈ ∆ . (4.27)

0. A useful estimate.

We will use several times the following expansion as x → ∞:

α(x)S(x) ∼∞ S′(x). (4.28)

Indeed, recalling that LS = 0 and integrating by parts, we compute:

S(x) = S(1) +

∫ x

1

α(u)S′(u)

α(u)
du = S(1) +

S′(x)

α(x)
− S′(1)

α(1)
−
∫ x

1
(1/α)′(u)S′(u)du ∼∞

S′(x)

α(x)
,
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since S(x) → ∞ as x → ∞ and (2.12) implies that (1/α)′(x) → 0 as x → ∞.

1. Definition of ϕλ.

In order to justify that ϕλ is well defined, we study separately the functions m and ℓ. We

observe first that the function ℓ is negative, increasing and, according to (4.28), satisfies

ℓ(z) ∼∞ −
∫ ∞

z

λzλα(u)du

u1+λS′(u)
∼∞ − λ

zS′(z)
→∞ 0 , (4.29)

where the second equivalence comes from the following computation:

−
∫ ∞

z

λzλα(u)du

u1+λS′(u)
=

[

λzλ

u1+λS′(u)

]∞

z

+

∫ ∞

z

λ(1 + λ)zλdu

u2+λS′(u)
, z > 0 .

We now turn to the study of m and compute, for any x > 0,

m′(x) =
{λ+ 1 + xα(x)}

λS(x)3
S′(x)M(x) , with M : x 7→ S(x)− 2x

λ+ 1 + xα(x)
S′(x) .

Differentiating one more time, we obtain

M ′(x) =
x2S′(x)

(λ+ 1 + xα(x))2

[

λ2 − 1

x2
− α(x)2 + 2α′(x)

]

, x > 0 .

Since λ > 1 while α is non-negative, increasing and concave, the term in between brackets

is decreasing. Furthermore M ′(0) = λ− 1 > 0 and, since xα′(x) ≤ α(x) for x > 0, we get

M ′(x) ≤ S′(x)

(λ+ 1 + xα(x))2
[

λ2 − 1− x2α(x)2 + 2xα(x)
]

→x→∞ −∞ .

Thus M is first increasing and then decreasing. Furthermore, estimate (4.28) implies that

M(x) ∼∞

[

1− 2xα(x)

λ+ 1 + xα(x)

]

S(x) =
λ+ 1− xα(x)

λ+ 1 + xα(x)
S(x) ∼∞ −S(x) .

Since M(0) = 0, we deduce that m is first increasing and then decreasing. Then we have

as x → 0, m(x) ∼ 1−λ
λx → −∞, and, using (4.28),

m(x) ∼x→∞
xα(x)− λ

λS(x)
> 0 , for sufficiently large x. (4.30)

Since the function ℓ is negative, we deduce that, for any z > 0, there is a unique point

in (0,∞), denoted ϕλ(z), such that m ◦ ϕλ(z) = ℓ(z), and is the unique minimum of

x 7→ g(x, z)/S(x) on [0,∞). This point is also the unique solution of

gx(x, z)S(x)− g(x, z)S′(x) = 0. (4.31)

for any fixed z. The implicit functions theorem implies that ϕλ is C1 on (0,∞). We prove

hereafter that ϕλ(z) < z, for any z > 0, so that ϕλ corresponds to the definition given in

the statement of the lemma.
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2. ϕλ(z) < z , for any z > 0.

For any z > 0, since x 7→ m(x) − ℓ(z) is first negative and then positive, on (0,∞), the

property ϕλ(z) < z will be a direct consequence of the estimate m(z) − ℓ(z) > 0, that we

prove now. First observe that the derivative of h : z 7→ [m(z)− ℓ(z)]z−λ is given by

h′(z) =
1 + zα(z)

zλS(z)3
S′(z)n(z) , z > 0 , with n : z 7→ S(z)− 2z

1 + zα(z)
S′(z).

Hence h′ has the same sign as n and, differentiating one more time, we compute

n′(z) = S′(z)

[

1− 2 + 2zα(z)

1 + zα(z)
+

2z(α(z) + zα′(z))

|1 + zα(z)|2
]

= −1 + z2α(z)2 − 2z2α′(z)

|1 + zα(z)|2 S′(z) ,

for any z > 0. Since α is concave and non-negative, we have zα′(z) ≤ α(z) for z > 0, and,

plugging this estimate in the previous expression, we obtain

n′(z) ≤ −|1− zα(z)|2
|1 + zα(z)|2S

′(z) ≤ 0 , z > 0 .

Hence, n is non-increasing starting from n(0) = 0, and therefore h is also non-increasing on

(0,∞). Furthermore, we know from (4.29) and (4.30) that h(z) = [m(z)− ℓ(z)]z−λ > 0 for

sufficiently large z, so that we have m(z)− ℓ(z) > 0, for any z > 0.

3. ϕλ is increasing and valued in [0, yλ].

Recall that m ◦ ϕλ = ℓ and ℓ is increasing and negative. Since m is also increasing when

it is negative, we deduce that ϕλ is increasing. Since after crossing zero, the function m

remains positive, ϕ(z) must be smaller than the point where m crosses zero, for any z > 0.

By definition of m, this point yλ is implicitly defined by yλS′(yλ) = λS(yλ). Therefore

ϕλ(.) ≤ yλ and, since ℓ(z) →z→∞ 0, we even have ϕλ(z) →z→∞ yλ. ✷

Proof of Lemma 4.2

Proof. We fix λ > 1 and recall from estimate (4.17) in the proof of Theorem 4.1 that Lgλ
is given by

Lgλ(x, z) = xλ−2[xα(x) + 1− λ]

(

1

zλ
−
∫ ∞

z

S(x)

S(u)

λdu

u1+λ

)

+ 2xλ−1S′(x)

∫ ∞

z

λdu

S(u)u1+λ
,

(4.32)

for any 0 < x ≤ z. Since S is increasing, we first observe that Lgλ(x, .) ≥ 0 for any x > 0

such that xα(x) + 1− λ ≥ 0. Denoting by xλ the unique point of R+ defined implicitly by

xλα(xλ) = λ− 1 ,

we deduce that Lgλ(x, .) ≥ 0 for any x ≥ xλ.

17



It remains to treat the case where x < xλ and we compute

∂

∂z
Lgλ(x, z) = λ

xλ−2

z1+λS(z)

{

[λ− 1− xα(x)](S(z)− S(x))− 2xS′(x)
}

, 0 < x ≤ z .

For any fixed x ∈ (0, xλ), the previous expression in between brackets is increasing with

respect to z, negative for z = x and positive for z large enough. Hence, for any x ∈ (0, xλ),

Lg(x, .) is first decreasing, then increasing and Lg(x, z) goes to 0 as z goes to infinity.

Denoting by γλ the inverse of ϕλ, we deduce that

Lg(x, z) ≥ 0 , for any z ≤ γλ(x) , if and only if Lg(x, γλ(x)) ≥ 0 ,

for any fixed x ∈ (0, xλ). Since ϕλ and hence γλ are increasing, it therefore only remains to

verify that Lg(., γ(.)) ≥ 0 on (0, xλ).

We recall from the proof of Lemma 4.1 that γλ is defined implicitly by

∫ ∞

γλ(x)

λ[γλ(x)]λdu

S(u)u1+λ
=

1

S(x)
− xS′(x)

λS(x)2
, 0 < x < xλ .

For a given x ∈ (0, xλ), plugging this estimate into (4.32), we deduce

Lg(x, γλ(x)) = (xα(x) + 1− λ)
xλ−1S′(x)

λ[γλ(x)]λS(x)
+

(

1

S(x)
− xS′(x)

λS2(x)

)

2xλ−1S′(x)

[γλ(x)]λ
,

which after simplifications leads to

Lg(x, γλ(x)) =
(xα(x) + 1 + λ)xλ−1S′(x)

λS(x)2[γλ(x)]λ
h(x) , with h : x 7→ S(x)− 2x

xα(x) + 1 + λ
S′(x) .

In order to get the sign of Lg(., γλ(.)), we look for the sign of h and compute

h′(x) = S′(x)

[

1− 2 + 2xα(x)

1 + λ+ xα(x)
+

2x(α(x) + xα′(x))

|1 + λ+ xα(x)|2
]

=
S′(x)

|1 + λ+ xα(x)|2
[

λ2 − 1− x2α(x)2 + 2x2α′(x)
]

≥ S′(x)

|1 + λ+ xα(x)|2
[

λ2 − (1− xα(x))2
]

, x < xλ .

since xα′(x) ≤ α(x) for x > 0, due to the concavity of α. By definition of xλ, we deduce

that h is non-decreasing on (0, xλ). But h(0) = 0 and therefore Lg(., γ(.)) ≥ 0 on (0, xλ),

which concludes the proof. ✷

5 Minimization of the relative quadratic error

Let us now consider the case where f : x 7→ 1
2(1 − x)2. Therefore, we are computing the

following value function

V (x, z) :=
1

2
inf
θ∈T

Ex,z

(

1− Xθ

Zτ

)2

, (x, z) ∈ ∆. (5.33)
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With such a criterion, the investor tries to minimize the expected value of the squared

relative error between the value of the stopped process and the maximal value of the process

up to τ . In other words he wants to minimize the expectation of [(Zτ −Xθ)/Zτ ]
2, whereas

in the previous section, λ = 2 would correspond to the minimization of 1− (Xθ/Zτ )
2, which

is not as natural. In contrast with the previous optimal stopping problem (4.16), we prove

that stopping immediately even for x = z is not optimal in general. This suggests that the

nature of the stopping region closely depends on the criterion of interest.

5.1 Construction of the solution

From (2.11), we compute the corresponding reward function:

g(x, z) =
1

2

(

1− x

z

)2
+ xS(x)

∫ ∞

z

(

1− x

u

) du

u2S(u)
, (x, z) ∈ ∆ .

In view of Proposition 3.1, we would require Lg(x, z) ≥ 0 in order for some (x, z) ∈ ∆ to

be in the stopping region. Let us first compute

gx(x, z) = −1

z

(

1− x

z

)

+ [S(x) + xS′(x)]

∫ ∞

z

du

u2S(u)
− [2xS(x) + x2S′(x)]

∫ ∞

z

du

u3S(u)
,

gxx(x, z) =
1

z2
+ [2 + xα(x)]S′(x)

∫ ∞

z

du

u2S(u)
− [2S(x) + 4xS′(x) + x2α(x)S′(x)]

∫ ∞

z

du

u3S(u)
,

for any (x, z) ∈ ∆. Combining these estimates, we deduce

Lg(x, z) =
1

z2
[1 + α(x) (z − x)] + [2S′(x)− α(x)S(x)]

∫ ∞

z

du

u2S(u)

− [S(x) + 2xS′(x)− xα(x)S(x)]

∫ ∞

z

2du

u3S(u)
, (x, z) ∈ ∆ . (5.34)

In view of Theorem 3.1 (i), if Lg ≥ 0 on ∆, then immediate stopping is optimal, v = g and

the problem is trivial. However, the next result gives sufficient conditions such that it is

not the case. Consider the following condition:

α(0)2 − 2α′(0) < 0. (5.35)

Remark 5.1 Notice that (5.35) will be satisfied for an Ornstein-Uhlenbeck process as well

as a CIR-Feller process with positive "mean", for which we respectively have α(x) = αx

and α(x) = α x
x+b respectively, α and b being positive constants. More generally, as soon

as α(0) = 0, (5.35) is satisfied. However, for a drifted Brownian motion or a degenerated

CIR-Feller process with "mean" equal to 0, (5.35) does not hold true.

Proposition 5.1 Assume that (5.35) is satisfied. Then there exists an open subset of ∆

on which Lg < 0.
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Proof. Using the asymptotic expansions from Proposition 5.4 in Section 5.4, we compute

for z close to 0:

Lg(z, z) = [2S′(z)− α(z)S(z)]

∫ ∞

z

du

u2S(u)
− [S(z) + 2zS′(z)− zα(z)S(z)]

∫ ∞

z

2du

u3S(u)
+

1

z2

=
(

2 + α(0)z +O(z2)
)

(

1

2z2
− α(0)

2z
− α(0)2 − 2α′(0)

12
ln z + o(ln z)

)

−
(

3z +
3

2
α(0)z2 +O(z3)

)

(

2

3z3
− α(0)

2z2
+O

(

1

z

))

+
1

z2

= −α(0)2 − 2α′(0)

6
ln z + o(ln z) .

Since ln z → −∞ when z → 0, we see that if (5.35) holds, then Lg(z, z) < 0 for z in a

neighborhood of 0, so that we have the result by continuity of Lg. ✷

In view of Proposition 3.1, an immediate consequence of Proposition 5.1 is that stopping

immediately is not optimal in general, even for initial conditions such that x = z, which is

the practical case of interest. Hence, the optimal strategy shall be very different from the

one in the power utility case. Since we do not have Lg ≥ 0 on the entire space ∆ but we

can exercise only in that region, we first need to study the set

Γ+ := {(x, z) ∈ ∆, Lg(x, z) ≥ 0} , (5.36)

and we define similarly:

Γ− := {(x, z) ∈ ∆, Lg(x, z) ≤ 0} . (5.37)

In fact, observe that (5.34) rewrites as:

Lg(x, z) = α(x)
z − x

z2
+ [2S′(x)− α(x)S(x)]

∫ ∞

z

(

1− 2x

u

)

du

u2S(u)

+

(

1

z2
− S(x)

∫ ∞

z

2du

u3S(u)

)

, (x, z) ∈ ∆ . (5.38)

By Remark 2.4, we have 2S′ − αS − 2 ≥ 0 and therefore each of the three terms above are

positive if z ≥ 2x, and so

Lg(x, z) > 0 for z ≥ 2x and (x, z) ∈ ∆ , (5.39)

which implies that {(x, z) ∈ ∆, z ≥ 2x} ⊂ Int(Γ+).

Moreover we have the following result, which proof is given in Section 5.4 below.

Lemma 5.1 For any x > 0, there exists δx ∈ (x, 2x) such that Lg(x, .) is increasing on

[x, δx) and decreasing on (δx, 2x].
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In view of (5.39), we can define the following function on R+ \ {0}:

Γ(x) := inf{z ≥ x, Lg(x, z) ≥ 0}. (5.40)

Lemma 5.1 and (5.39) imply that, if z > Γ(x), then Lg(x, z) > 0, while if z ∈ (x,Γ(x)),

then Lg(x, z) < 0. We also deduce that Γ(x) > x implies Lg(x,Γ(x)) = 0. Notice that Γ is

continuous, and, from (5.39), we also know that Γ(x) < 2x.

The next result provides the main properties of Γ: it is increasing and equal to the Identity

function for sufficiently large x. Again the proof is postponed to Section 5.4.

Proposition 5.2 We have the two following properties:

(i) Γ is increasing on (0,+∞);

(ii) Denoting Γ∞ := sup{x ≥ 0; Γ(x) > x}, we get Γ∞ < ∞.

Notice that Γ+ 6= ∆ implies directly Γ∞ > 0.

Now that we have a better understanding of the set Γ+, we expect to have a stopping region

of the form {(x, z) ∈ ∆ ; z ≥ γ(x)} and, our objective is then to find functions v and γ,

satisfying the following free-boundary problem:

Lv(x, z) = 0 for 0 < z < γ(x) and (x, z) ∈ ∆ , (5.41)

v(x, z) = g(x, z) and Lg(x, z) ≥ 0 for z ≥ γ(x) and (x, z) ∈ ∆ , (5.42)

v(0, z) =
1

2
for z > 0 , (5.43)

vz(z, z) = 0 for z > 0 . (5.44)

In order to allow for the application of Itô’s formula, the verification step requires a value

function which is C1,0 and piecewise C2,1 with respect to (x, z). Therefore, as in the previous

section, we complement the above system by the continuity and the smooth-fit conditions

v(x, γ(x)) = g(x, γ(x)) and vx(x, γ(x)) = gx(x, γ(x)) , for x > 0 . (5.45)

The stopping region S will then be defined as:

S := {(x, z) ∈ ∆; z ≥ γ(x)} ∪ {(0, z); z > 0}. (5.46)

First by (5.41), on the continuation region, v is of the form:

v(x, z) = A(z) +B(z)S(x) , (x, z) ∈ ∆ \ S .

Then, on the interval where γ is one-to-one, the continuity and smoothfit conditions (5.45)

imply that

v(x, z) = g(γ−1(z), z) +
gx(γ

−1(z), z)

S′ ◦ γ−1(z)
[S(x)− S ◦ γ−1(z)] , (x, z) ∈ ∆ \ S.
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Finally, the Neumann condition (5.44), implies that we expect the boundary γ to satisfy on

its domain of definition the following ODE:

γ′(x) =
γ(x)2Lg(x, γ(x))

(

2x
γ(x) − 1

)(

1− S(x)
S◦γ(x)

) . (5.47)

As in [5], there is no a priori initial condition for this ODE. In the sequel, we take this ODE

(with no initial condition) as a starting point to construct the boundary γ. Notice that this

ODE has infinitely many solutions, as the Cauchy-Lipschitz condition is locally satisfied

whenever (5.47) is complemented with the condition γ(x0) = z0 for any 0 < x0 < z0 and

z0 6= 2x0. We will follow the ideas of [5], however in our case, (5.47) is not well-defined

for γ(x) = 2x, so that our framework requires to be more cautious. Notice also that we

encounter here a similar feature as in Peskir [8]. The following result selects an appropriate

solution of (5.47), and its proof is given in Section 5.5.

Proposition 5.3 Let Int(Γ−) be non empty. Then, there exists an increasing continuous

function γ defined on R+ with graph {(x, γ(x)) : x > 0} ⊂ ∆, such that:

(i) On the set {x > 0 : γ(x) > x}, γ is a C1 solution of the ODE (5.47),

(ii) {(x, γ(x)) : x > 0} ⊂ Γ+, and {(x, γ(x)) : x > 0 and γ(x) > x} ⊂ Int(Γ+),

(iii) γ(x) = x for all x ≥ Γ∞.

Since γ is increasing, we can define:

ϕ := γ−1. (5.48)

Now that we have constructed the free-boundary ϕ, we are able to state the following result.

Theorem 5.1 Let Int(Γ−) be non empty, γ be given by Proposition 5.3 and ϕ be defined

by (5.48). Then the value function V solution of problem (5.33) is given, for (x, z) ∈ ∆, by:

V (x, z) :=







g(x, z) , if x ≤ ϕ(z)

g(ϕ(z), z) + gx(ϕ(z), z)
S(x)−S◦ϕ(z)

S′◦ϕ(z) , if x > ϕ(z)
. (5.49)

Moreover, the smallest optimal stopping time associated to this stochastic control problem is

given by θ∗ := inf {t ≥ 0 , Xt ≤ ϕ(Zt)}.

Proof. Let v be defined by (5.49) and recall that S is defined by (5.46). The result follows

from verifying that all the assumptions of Theorem 3.1 (ii) and (iii) are satisfied.

1. Regularity of v.

We know from Proposition 5.3 that γ and therefore ϕ are continuous and hence v is con-

tinuous on ∆ by construction. Furthermore, by Proposition 5.3 (i) and (ii) together with

the dynamics of the ODE (5.47), γ is a C1 function with positive derivative on the set
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{x > 0; γ(x) > x}. Therefore ϕ is C1 as well on {z > 0; ϕ(z) < z} so that it is immediate

that v is C0 and piecewise C2,1 w.r.t. (x, z). Furthermore, since Γ∞ < ∞ by Proposition

5.2, ∆ \ S is bounded. Since v is continuous and g ≥ 0, v is bounded from below.

2. Dynamics of v.

By definition, we have Lv = 0 on ∆ \ S. By Proposition 5.3 (ii), Lg(x, γ(x)) ≥ 0 for x > 0,

and we deduce from Lemma 5.1 and (5.39) that Lg(x, z) ≥ 0 for any (x, z) ∈ ∆ such that

z ≥ γ(x). Hence, (5.39) ensures that Lg ≥ 0 on S.

It remains to prove that vz(z, z) = 0 for z > 0. We fix z > 0. If ϕ(z) ≥ z, since gz(z, z) = 0,

we have vz(z, z) = 0 as well. Suppose now that ϕ(z) < z. Then, by Proposition 5.3 (i),

γ satisfies (5.47) in a neighborhood of ϕ(z), and by Proposition 5.3 (ii), Lg
(

ϕ(z), z
)

> 0,

which implies γ′ ◦ ϕ(z) > 0, so that:

ϕ′(z)Lg(ϕ(z), z) =
1

z2

(

2ϕ(z)

z
− 1

)(

1− S ◦ ϕ(z)
S(z)

)

.

We then compute from the definitions of v and g that

vz(z, z) = gz(ϕ(z), z) + gxz
S(z)− S ◦ ϕ(z)

S′ ◦ ϕ(z) + ϕ′(z)Lg(ϕ(z), z)S(z)− S ◦ ϕ(z)
S′ ◦ ϕ(z)

=

[

1

z2

(

1− 2ϕ(z)

z

)(

1− S ◦ ϕ(z)
S(z)

)

+ ϕ′(z)Lg(ϕ(z), z)
]

S(z)− S ◦ ϕ(z)
S′ ◦ ϕ(z) = 0 .

3. Comparing v and g.

Finally, the fact that v ≤ g on ∆ and v < g on ∆ \ S follows from similar arguments as

in the proof of Proposition 6.2 in [5] but the demonstration is simpler in our context since

Γ∞ < ∞. For the sake of completeness, we detail this proof. For (x, z) ∈ ∆ such that

x > ϕ(z), we compute

v(x, z)− g(x, z) = g(ϕ(z), z) + gx(ϕ(z), z)
S(x)− S ◦ ϕ(z)

S′ ◦ ϕ(z) − g(x, z) ,

and, differentiating twice w.r.t. x and using (5.45), we verify that

vx(x, z)− gx(x, z) = −S′(x)

∫ x

ϕ(z)

Lg(u, z)
S′(u)

du . (5.50)

Therefore, from Lemma 5.1 and Proposition 5.2 (i), for any fixed z, the function x 7→
(v − g)(x, z) is either decreasing on [ϕ(z), z], or decreasing on [ϕ(z), δ) and then increasing

on (δ, z] for a given δ ∈ (ϕ(z), z). For any z > 0, since v(ϕ(z), z) = g(ϕ(z), z), we only need

to prove that n(z) := v(z, z)− g(z, z) < 0 if ϕ(z) < z.

Since vz(z, z) = gz(z, z) = 0 for z > 0, we compute:

n′(z) = vx(z, z)− gx(z, z) = −S′(z)

∫ z

ϕ(z)

Lg(u, z)
S′(u)

du , z > 0 .
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We assume the existence of a fixed z < Γ∞ such that n(z) ≥ 0 and ϕ(z) < z and work to-

wards a contradiction. We first observe that necessarily n′(z) > 0. If not,
∫ z
ϕ(z)

Lg(u,z)
S′(u) du ≥ 0

implies that
∫ x
ϕ(z)

Lg(u,z)
S′(u) du > 0 for any x ∈ (ϕ(z), z), and (5.50) combined with v(ϕ(z), z) =

g(ϕ(z), z) leads to n(z) < 0 which is impossible. Since n is continuous, this implies that

n is increasing on any connected subset of {z′ ≥ z, ϕ(z′) < z′}. Defining a := inf{z′ >
z; ϕ(z′) = z′} ≤ Γ∞ < ∞, we get n(a) = v(a, a) − g(a, a) > 0, which contradicts the

definition of v.

Therefore, n(z) < 0 for any z > 0 such that ϕ(z) < z and we deduce that v ≤ g on ∆ and

v < g on ∆ \ S. ✷

5.2 Properties of the value function

Theorem 5.1 and Proposition 5.1 indicate that, at least for processes satisfying (5.35), such

as the Ornstein-Uhlenbeck process or the CIR-Feller process, the diagonal {(x, x); x > 0}
is not included in the stopping region S. In other words, it is not always optimal to stop

immediately, even when starting from points such that x = z. Therefore, the form of the

solution and the nature of the optimal strategy to apply in order to be as close as possible

to the maximum using this criterion is very different from the ones obtained in Section 4 or

in [9].

The Ornstein-Uhlenbeck process as well as the CIR-Feller process are two examples for which

the coefficient α satisfies Conditions (2.12) and Int(Γ−) 6= ∅. Indeed we have α(x) = αx and

α(x) = α x
x+b respectively, where α and b are two positive constants. Therefore, Condition

(5.35) is satisfied, ensuring that Int(Γ−) 6= ∅ by Proposition 5.1. Hence, Theorem 5.1 can be

applied. Figure 2 represents the boundary ϕ for those two processes, with α = 1 for the OU

process and (α, b) = (0.1, 0.1) for the CIR process. We observe that the continuation region

is in fact pretty small since the free boundary is very close to the diagonal axis. Therefore,

even if immediate stopping is not optimal, an investor should not wait long until the process

(X,X∗) enters the stopping region.

Remark 5.2 Similarly to Proposition 7.3 of [5], an homogeneity result can be derived for

the OU process, so that the free boundary for any α > 0 can be deduced by a change of

scale from the one for α = 1.

The Brownian motion with negative drift is another example for which α satisfies Condition

(2.12). However, since α(x) = α > 0 is constant, Condition (5.35) does not hold. Although

we did not verify it, numerical computations suggest that Lg ≥ 0 on ∆.

Finally, we can also consider the case of a Brownian motion. In this case, α(x) = 0, so that

α does not satisfy Condition (2.12). However, for any (x, z) ∈ ∆, we can compute from
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Figure 2: Optimal frontier for an OU (α = 1) and a CIR (α = 0.1, b = 0.1)

(5.34) that Lg(x, z) = 2 z−x
z3

≥ 0 on ∆. Since the proofs of Theorem 3.1 and Remark 3.2 do

not require Condition (2.12), we deduce that immediate stopping is always optimal.

Remark 5.3 Let α be associated to an Ornstein-Uhlenbeck or a CIR process and hence

be parametrized by a possibly bi-dimensional parameter set a. Since the parameter set

a may be badly estimated, let consider a sequence of parameter set (an) converging to a

and denote by (αn) the corresponding sequence of functions. Then, Sn, gn and all their

derivatives converge respectively to S, g and their derivatives in the sense of the uniform

norm on the compact sets. Moreover, Γn converges to Γ in the same sense so that for n

sufficiently large, Int(Γ−
n ) 6= ∅. ODE (5.47) also depends continuously on an, so that z∗n(x0)

defined by (5.63) converges to z∗(x0), and γn given by Proposition 5.3 converges pointwise

to γ. Since γn is increasing for any n and γ is continuous, Dini’s theorem implies that the

convergence is uniform on any compact set of R+ \{0}. Let us prove that ϕn converges to ϕ

in the same sense. Let y > 0 be fixed, we define xn := ϕn(y) and x := ϕ(y). We shall prove

that xn → x. Indeed, since ϕn(y) ∈ [y2 , y] for any n, {xn; n ∈ N} is relatively compact

in R+ \ {0}. Now let x′ be the limit of a subsequence of (xn). For notational reasons, let

us write xn → x′, forgetting that it is a subsequence. Since (γn) converges uniformly on

compact sets of R+ \ {0}, γn(xn) → γ(x′). Recalling that γn(xn) = y for any n, we get

γ(x′) = y and therefore x′ = x. In consequence, xn → x, or in other words, (ϕn) converges

pointwise to ϕ on R+ \{0}. Noticing that ϕn(0) = 0 for any n and ϕ(0) = 0 and using again

Dini’s theorem, we see that (ϕn) converges to ϕ uniformly on the compact sets of R+. This

finally implies that (Vn) converges pointwise to V . As a consequence, if one makes a small

mistake estimating the parameters of the model, the induced mistake on the free boundary

as well as the mistake on the value function will be small as well.
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5.3 Generalization

As in the previous section, we may also consider, for any λ > 0, the following extension of

the previous problem:

Vλ(x, z) :=
1

λ
inf
θ∈T

Ex,z

(

1− Xθ

Zτ

)λ

, (x, z) ∈ ∆ . (5.51)

In that case, (2.10) rewrites

gλ(x, z) = 1
λ

(

1− x
z

)λ
+ xS(x)

∫∞
z

(

1− x
u

)λ−1 du
u2S(u)

du , (x, z) ∈ ∆ , λ > 0 . (5.52)

If λ = 2, Lg2 is given by (5.34). If λ = 1, the control problem has already been solved in

Section 4 and Lg1 is given by (4.18). For any λ > 0 such that λ 6∈ {1, 2}, we compute :

Lgλ(x, z)= (λ− 1)

{

1

z2

(

1− x

z

)λ−2
−
∫ ∞

z

S(x)

S(u)

[

2

u3

(

1− x

u

)λ−2
− (λ− 2)x

u4

(

1− x

u

)λ−3
]

du

}

+ [2S′(x)− α(x)S(x)]

∫ ∞

z

(

1− x

u

)λ−2
(u− λx)

du

u3S(u)
+ α(x)

(z − x)λ−1

zλ
,(5.53)

for 0 ≤ x < z. In this case, the sign of Lgλ is hardly identifiable analytically, and we shall

restrict our analysis to simple remarks and guesses on the solution of the problem (5.51).

Noticing that
∫∞
z

(

1− x
u

)λ−2 2
u3 − (λ − 2)

(

1− x
u

)λ−3 x
u4du = 1

z2

(

1− x
z

)λ−2
for 0 < x < z,

we deduce from (4.18), (5.39) and (5.53) that

Lgλ(x, z) ≥ 0 , for z ≥ λx>0 and 1 ≤ λ ≤ 2 . (5.54)

Therefore, for 1 ≤ λ ≤ 2, we expect to obtain as for λ = 2 a free boundary γλ in between

the axis {(x, x) ;x > 0} and {(x, λx) ;x > 0}. We verify easily as in Proposition (4.1) that

λ 7→ Vλ is continuous and, as expected, we observe a disappearance of the free boundary γλ

for λ = 1.

On the other hand, for λ < 1, we observe that Lg(x, z) < 0 for x small enough and z large

enough. Indeed, recalling from (4.28) that S′(z) ∼ α(z)S(z) when z → ∞, an integration

by parts leads to
∫∞
z

du
u2S(u)

∼z→∞
1

z2S′(z)
. Assuming moreover that α(0) = 0 and plugging

this estimate in (5.53), we get

Lg(0, z) ∼z→∞
λ− 1

z2
< 0 , for any λ < 1 .

In view of Proposition 3.1, this implies that the stopping region cannot have the same form

as the one in the quadratic case λ = 2. It even suggests that the nature of the stopping

region could be similar to the one of Section 4.2.
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5.4 Proofs of Lemma 5.1 and Proposition 5.2

This section is dedicated to the proofs of Lemma 5.1 and Proposition 5.2, but we first state

the asymptotic expansions used in Proposition 5.1.

Proposition 5.4 As z → 0, we have the following expansions:

S′(z) = 1 + α(0)z + (α′(0) + α(0)2)
z2

2
+ o(z2) ;

S(z) = z + α(0)
z2

2
+ (α′(0) + α(0)2)

z3

6
+ o(z3) ;

α(z)S(z) = zα(0) +
z2

2

(

α(0)2 + 2α′(0)
)

+
z3

6

(

α(0)3 + 4α(0)α′(0) + 3α′′(0)
)

+ o(z3) ;
∫ ∞

z

du

u2S(u)
=

1

2z2
− α(0)

2z
− α(0)2 − 2α′(0)

12
ln(z) + o

(

ln(z)
)

;

∫ ∞

z

2du

u3S(u)
=

2

3z3
− α(0)

2z2
+

α(0)2 − 2α′(0)

6z
+ o

(

1

z

)

.

Proof. As z → 0, we directly compute the expansion:

S′(z) = S′(0) + zS′′(0) +
z2

2
S(3)(0) + o(z2) = 1 + α(0)z + (α′(0) + α(0)2)

z2

2
+ o(z2) .

The exact same reasoning also leads to

S(z) = z +
α(0)

2
z2 +

α′(0) + α(0)2

6
z3 + o(z3) ;

α(z)S(z) = zα(0) +
z2

2

(

α(0)2 + 2α′(0)
)

+
z3

6

(

α(0)3 + 4α(0)α′(0) + 3α′′(0)
)

+ o(z3) .

Using one of the previous estimates, we get
∫ ∞

z

du

u2S(u)
=

∫ ∞

z

du

u3
(

1 + α(0)
2 u+ α′(0)+α(0)2

6 u2 + o(u2)
)

=

∫ ∞

z

(

1− α(0)

2
u− α′(0) + α(0)2

6
u2 +

(

α(0)u

2

)2

+ o(u2)

)

du

u3

=

∫ ∞

z

(

1

u3
− α(0)

2u2
+

α(0)2 − 2α′(0)

12u
+ o

(

1

u

))

du

=
1

2z2
− α(0)

2z
− α(0)2 − 2α′(0)

12
ln(z) + o

(

ln(z)
)

,

which is justified since all the non-zero terms go to infinity when z → 0. Similarly, we

compute

∫ ∞

z

2du

u3S(u)
=

∫ ∞

z

(

2

u4
− α(0)

u3
+

α(0)2 − 2α′(0)

6u2
+ o

(

1

u2

))

du

=
2

3z3
− α(0)

2z2
+

α(0)2 − 2α′(0)

6z
+ o

(

1

z

)

.
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✷

Proof of Lemma 5.1 Differentiating (5.34) w.r.t. z, we compute

∂

∂z
Lg(x, z) = −2S′(x)− α(x)S(x)

z2S(z)
+

[2− 2xα(x)]S(x) + 4xS′(x)

z3S(z)
− 2− 2xα(x)

z3
− α(x)

z2

= [(2x− z)α(x)− 2]
S(z)− S(x)

z3S(z)
+ (2x− z)

2S′(x)

z3S(z)
, (x, z) ∈ ∆ .

Let us introduce xα as the unique solution of:

xαα(xα) = 2 . (5.55)

If x ≤ xα, then z 7→ (2x − z)α(x) − 2 is negative on [x, 2x), whereas if x > xα, then there

exists zx ∈ (x, 2x) such that z 7→ (2x− z)α(x)− 2 will be positive on (x, zx), zero at zx and

negative on (zx, 2x).

Let x be fixed and let us introduce

F : z 7→ S(z)− S(x) +
2S′(x)(2x− z)

(2x− z)α(x)− 2
,

which is well defined and continuous on [x, 2x] if x < xα, on [x, 2x) if x = xα and on

[x, 2x] \ {zx} if x > xα. Furthermore F is increasing, since we compute on the domain of

definition of F :

F ′(z) = S′(z) +
4S′(x)

(

(2x− z)α(x)− 2
)2 > 0 .

We consider first the case where x ≤ xα. Then F and ∂
∂zLg(x, .) have opposite signs on

[x, 2x). Since F is increasing, F (x) < 0 while F (2x) = S(2x) − S(x) > 0, Lg(x, .) is

increasing on [x, δx) and decreasing on (δx, 2x], for a certain δx ∈ (x, 2x).

We now turn to the case where x > xα. Then F and ∂
∂zLg(x, .) have the same sign on

[x, zx) and opposite signs on (zx, 2x]. Since F is increasing, F (x) > 0, F (z+x ) = −∞ and

F (2x) > 0, we see that again Lg(x, .) is increasing on [x, δx) and decreasing on (δx, 2x], for

a certain δx ∈ (zx, 2x) ⊂ (x, 2x). ✷

Proof of Proposition 5.2 We prove the two assertions separately.

(i) Γ is increasing on (0,+∞)

We fix x > 0 such that Γ(x) > x. Then Lg(.,Γ(.)) = 0 in a neighborhood of x, and using

the implicit functions theorem, Γ is C1 in a neighborhood of x and we have:

Γ′(x)
∂

∂z
Lg(x,Γ(x)) + ∂

∂x
Lg(x,Γ(x)) = 0 . (5.56)

We will prove that Γ′(x) > 0. Denoting m := 2S′ −αS which is increasing and positive, we

get combining Lg(x,Γ(x)) = 0 and (5.38):

m(x)

∫ ∞

Γ(x)

u− 2x

u3S(u)
du = S(x)

∫ ∞

Γ(x)

2du

u3S(u)
− 1 + α(x)(Γ(x)− x)

Γ(x)2
≤ −α(x)(Γ(x)− x)

Γ(x)2
,
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since S is increasing. Differentiating (5.38) with respect to x, we also compute

∂

∂x
Lg(x, z) = α′(x)(z − x)− α(x)

z2
+m′(x)

∫ ∞

z

u− 2x

u3S(u)
du−

[

m(x) + S′(x)
]

∫ ∞

z

2du

u3S(u)
,

for z ≥ x. Denoting A := (αm′ − α′m
)

(Γ− Id) + αm, the two previous estimates lead to

∂

∂x
Lg(x,Γ(x)) ≤ − A(x)

m(x)Γ(x)2
−
[

m(x) + S′(x)
]

∫ ∞

Γ(x)

2du

u3S(u)
. (5.57)

Introducing B := αm′ − α′m and observing that x ≤ Γ(x) ≤ 2x, we obtain

A(x) ≥ α(x)m(x)1{B(x)≥0} +
(

xB(x) + α(x)m(x)
)

1{B(x)<0} . (5.58)

Introducing finally C : x 7→ xB(x) + α(x)m(x), we compute C(0) = 2α(0) ≥ 0 and

C ′(x) = 2α(x)m′(x) + x(α(x)m′′(x)− α′′(x)m(x)) ≥ 0 ,

because m′′ ≥ 0 and α′′ ≤ 0. Therefore C is non-negative, and, according to (5.58), A

is also non-negative. As a consequence, combining m > 0 and (5.57), we deduce that
∂
∂xLg(x,Γ(x)) < 0. Using Lemma 5.1, we have ∂

∂zLg(x,Γ(x)) > 0, and (5.56) implies that

Γ′(x) > 0.

Therefore Γ is increasing on the set {x > 0, Γ(x) > x}. But it is also increasing on the

interior of the set {x > 0, Γ(x) = x}. Since Γ is continuous, it is increasing on (0,+∞).

(ii) We have Γ∞ := sup{x ≥ 0; Γ(x) > x} < ∞.

The arguments used here are very close to the ones in the proof of Proposition 4.3 in [5].

However, our conclusions cannot be deduced form theirs since the involved computations

are different and we need to detail this proof.

From the definition of the scale function (2.9), we compute:

S(x) = S(1) +
S′(x)

α(x)
− S′(1)

α(1)
−
∫ x

1

(

1

α

)′

(u)S′(u)du , x > 0 .

We then distinguish two cases depending on the explosion of the last term in the previous

expression.

Case 1:
∫∞
1 (1/α)′(u)S′(u)du > −∞.

Then S(x) = S′(x)
α(x) +O(1) for x large enough. Recalling that LS = 0, we compute

∫ ∞

x

du

u2S(u)
=

∫ ∞

x

du

u2
(

S′(u)
α(u) +O(1)

) =

∫ ∞

x

α(u)

u2S′(u)

du

1 +O
(

α(u)
S′(u)

)

=

∫ ∞

x

α(u)du

u2S′(u)
+O

(∫ ∞

x

α2(u)

u2[S′(u)]2

)

,
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for x large enough. Integrating by parts, we observe that
∫ ∞

x

α(u)du

u2S′(u)
=

1

x2S′(x)
− 2

∫ ∞

x

du

u3S′(u)
, x > 1 .

We now prove that xα2(x)
S′(x) → 0 when x → ∞.

Indeed, since α(1) > 0 by (2.12), and since α is non-decreasing, we get S′(x) ≥ e(x−1)α(1),

for any x ≥ 1. On the other hand, since α is concave, we also have 0 ≤ α(x) ≤ xα′(0), so

that:

0 ≤ xα2(x)

S′(x)
≤ x3

[

α′(0)
]2

e(x−1)α(1)
→ 0 when x → ∞ .

As a consequence, we get
∫ ∞

x

du

u2S(u)
=

1

x2S′(x)
− 2

∫ ∞

x

du

u3S′(u)
+ ◦

(∫ ∞

x

du

u3S′(u)

)

.

Integrating by parts again, we finally compute
∫ ∞

x

du

u2S(u)
=

1

x2S′(x)
− 2

α(x)x3S′(x)
+ ◦

(

1

α(x)x3S′(x)

)

,

and similarly we get
∫ ∞

x

du

u3S(u)
=

1

x3S′(x)
− 3

α(x)x4S′(x)
+ ◦

(

1

α(x)x4S′(x)

)

,

Plugging these estimates in the expression of Lg given by (5.34) leads to:

Lg(x, x) = 1

x2
+[2S′(x)− α(x)S(x)]

∫ ∞

x

du

u2S(u)
− [S(x) + 2xS′(x)− xα(x)S(x)]

∫ ∞

x

2du

u3S(u)

=
1

x2
+
(

S′(x) +O(α(x))
)

(

1

x2S′(x)
− 2

α(x)x3S′(x)
+ ◦

(

1

α(x)x3S′(x)

))

− 2

(

xS′(x) +
S′(x)

α(x)
+O(xα(x))

)(

1

x3S′(x)
− 3

α(x)x4S′(x)
+ ◦

(

1

α(x)x4S′(x)

))

.

where the third term in the previous expansion might be negligible or not (depending on

α). Similarly, we compute:

Using the fact that xα2(x)
S′(x) → 0 as x → ∞, we get:

Lg(x, x) = 2

α(x)x3
+ ◦

(

1

α(x)x3

)

.

Hence Lg(x, x) > 0 and therefore Γ(x) = x for x large enough, so that Γ∞ < ∞.

Case 2:
∫∞
1 (1/α)′(u)S′(u)du = −∞.

For x large enough, we have

S(x) =
S′(x)

α(x)

[

1−
(

1

α

)′

(x) + ◦
((

1

α

)′

(x)

)]

,
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so that

∫ ∞

x

du

u2S(u)
=

∫ ∞

x

α(u)

u2S′(u)

[

1 +

(

1

α

)′

(u) + ◦
((

1

α

)′

(u)

)]

du

=
1

x2S′(x)
−
∫ ∞

x

2du

u3S′(u)
−
∫ ∞

x

α′(u)du

u2α(u)S′(u)
+ ◦

(∫ ∞

x

α(u) + uα′(u)

u3α(u)S′(u)
du

)

.

Noticing that 0 ≤ xα′(x) ≤ α(x) for x > 0, since α is concave, we have:

◦
(∫ ∞

x

α(u) + uα′(u)

u3α(u)S′(u)
du

)

= ◦
(∫ ∞

x

du

u3S′(u)

)

.

Integrating by parts, we finally get

∫ ∞

x

du

u2S(u)
=

1

x2S′(x)
− 2

x3α(x)S′(x)
− α′(x)

x2α2(x)S′(x)
+ ◦

(

1

x3α(x)S′(x)

)

,

where the third term in the previous expansion might be negligible or not (depending on

α). Similarly, we compute:

∫ ∞

x

du

u3S(u)
=

1

x3S′(x)
− 3

x4α(x)S′(x)
− α′(x)

x3α2(x)S′(x)
+ ◦

(

1

x4α(x)S′(x)

)

,

so that:

Lg(x, x)= 1

x2
+ [2S′(x)− α(x)S(x)]

∫ ∞

x

du

u2S(u)
− [S(x) + 2xS′(x)− xα(x)S(x)]

∫ ∞

x

2du

u3S(u)

=
1

x2
−2

(

xS′(x)− x
α′(x)

α2(x)
S′(x) +

S′(x)

α(x)

)(

1

x3S′(x)
− 3

x4α(x)S′(x)
− α′(x)

x3α2(x)S′(x)

)

+

(

S′(x)− α′(x)

α2(x)
S′(x)

)(

1

x2S′(x)
− 2

x3α(x)S′(x)
− α′(x)

x2α2(x)S′(x)

)

+◦
(

1

x3α(x)

)

=
2

x3α(x)
+

2α′(x)

x2α2(x)
+ ◦

(

1

x3α(x)

)

,

where the second term might be or not negligible. In any case, we see that for sufficiently

large x, Lg(x, x) > 0, so that Γ(x) = x. Therefore, Γ∞ < ∞ also holds in this case. ✷

5.5 Proof of Proposition 5.3

This section is dedicated to the proof of Proposition 5.3. As already explained, this proof

uses the same ideas as the one developed in [5]. However, because of the specificity of

(5.47), the properties of the flow are different and the analysis needs to be adapted to

our framework. We will try to follow their notations and point out in the proofs the parts

that are identical to their paper, but we choose to rewrite them for the sake of completeness.

First, for the convenience of the reader, we recall ODE (5.47) that γ needs to satisfy:

γ′(x) =
γ(x)2Lg(x, γ(x))

(

2x
γ(x) − 1

)(

1− S(x)
S◦γ(x)

) , x > 0 . (5.59)
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Let us first define

D
− := {x > 0 : Lg(x, x) < 0}, (5.60)

and, for all x0 ∈ D
−, we introduce

d(x0) := sup{x ≤ x0 : Lg(x, x) ≥ 0} and u(x0) := inf{x ≥ x0; Lg(x, x) ≥ 0}, (5.61)

with the convention that d(x0) = 0 if {x ≤ x0 : Lg(x, x) ≥ 0} = ∅. Observe that

Proposition 5.2 ensures that u(x0) ≤ Γ∞ < ∞. Since Lg is continuous and x0 ∈ D
− we

must have d(x0) < x0 < u(x0) < ∞.

For any x0 ∈ D
− and z0 > x0, we denote by γz0x0

the maximal solution of the Cauchy

problem (5.59) complemented by the additional condition γ(x0) = z0, and we denote by

Iz0x0
:=
(

ℓz0x0
, rz0x0

)

the corresponding (open) interval of definition of γz0x0
. Since the right-hand

side of ODE (5.59) is locally Lipschitz on either one of the sets {(x, γ), 0 < 2x < γ} or

{(x, γ), x < γ < 2x} but is not defined on the set {(x, γ), 2x = γ}, the maximal solution

will be defined as long as (x, γ(x)) remains in one of those two sets. Since Γ(x0) < 2x0, we

restrict our attention to conditions γ(x0) = z0 satisfying x0 < z0 < 2x0.

The next lemma provides useful additional properties of the maximal solutions described

above and their respective domains of definitions.

Lemma 5.2 Assume that α satisfies Conditions (2.12) and let x0 ∈ D
− be fixed.

(i) For all z0 ∈ (x0, 2x0), ℓz0x0
≤ d(x0), we have limx→ℓ

z0
x0

γz0x0
(x) = ℓz0x0

and, if ℓz0x0
> 0, we

get Lg(ℓz0x0
, ℓz0x0

) ≥ 0;

(ii) for all z0 ∈ (x0,Γ(x0)], Lg(x, γz0x0
(x)) < 0 for any x ∈ (x0, r

z
x0
);

(iii) there exists a0 ∈ (x0, 2x0) such that for any z0 ∈ [a0, 2x0), Lg(x, γz0x0
(x)) > 0 for any

x ∈ (x0, r
z0
x0
).

Proof. We fix x0 ∈ D
− and prove each property separately.

(i) Let us fix z0 ∈ (x0, 2x0). The right-hand side of (5.59) is locally Lipschitz as long as

0 < x < γz0x0
(x) < 2x, so that this last estimate holds for any x ∈ Iz0x0

. We intend to prove

that γzx0
hits the diagonal {(x, z); x = z} at the left hand side ℓz0x0

of Iz0x0
.

For this purpose, let us first prove that, for any ζ ∈ (0, x0), the graph of γz0x0
restricted

to [ζ, x0] cannot come too close to {(x, z); 2x = z}. Since Γ(x) < 2x for x > 0 and Γ

and Lg are continuous, there exist ε > 0 and δ > 0 ∈ (0, ζ) such that Lg ≥ ε on the

compact set {(x, z); x ∈ [ζ, x0] and z ∈ [2x− δ, 2x]}. Observe that, for x ∈ [ζ, x0] such that

γz0x0
(x) ∈

[

max
(

2x− δ, 4x
2+ζ2ε

), 2x
)

, we get from (5.59) that

(γz0x0
)′(x) ≥ γz0x0

(x)2Lg(x, γz0x0
(x))

2x
γ
z0
x0

(x)
− 1

≥ 2γz0x0
(x)2ε

ζ2ε
≥ 2 ,

where, for the last inequality, we used γ(x) ≥ x ≥ ζ. Hence, the function x 7→ 2x− γz0x0
(x)

is non-increasing on the set
{

x ∈ [ζ, x0] ∩ Iz0x0
; γz0x0

(x) ∈
[

max
(

2x− δ, 4x
2+ζ2ε

), 2x
)}

. There-

fore, by arbitrariness of ζ > 0, the graph of γz0x0
restricted to (ℓz0x0

, x0] stays away from
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{(x, z); 2x = z} and γz0x0
necessarily hits the diagonal {(x, z); x = z} at the left hand side

ℓz0x0
of the maximal interval Iz0x0

.

On the other hand, we observe from (5.59) that γz0x0
is non-increasing at the points x satis-

fying (x, γz0x0
(x)) ∈ Γ− and therefore ℓz0x0

/∈ D
− by minimality of Iz0x0

. Since
(

d(x0), u(x0)
)

⊂
D

−, we get ℓz0x0
≤ d(x0) and Lg(ℓz0x0

, ℓz0x0
) ≥ 0, or equivalently Γ(ℓz0x0

) = ℓz0x0
.

It still remains to prove properly that limx→ℓ
z0
x0

γz0x0
(x) = ℓz0x0

. Assume first that ℓz0x0
> 0.

Notice from (5.59) that γz0x0
is non-decreasing if (x, γz0x0

(x)) ∈ Γ+, and x ≤ γz0x0
(x) ≤ Γ(x)

otherwise. Since Γ is also non-decreasing, γ̃z0x0
:= max(γz0x0

,Γ) is a non-decreasing func-

tion defined on (ℓz0x0
, x0], which therefore admits a limit at ℓz0x0

. Since ℓz0x0
> 0, we have

limx→ℓ
z0
x0

γ̃z0x0
(x) < 2ℓz0x0

as observed above, so that, combining the maximality of Iz0x0
with

Γ(ℓz0x0
) = ℓz0x0

, we obtain limx→ℓ
z0
x0

γ̃z0x0
(x) = ℓz0x0

. Since x ≤ γz0x0
(x) ≤ γ̃z0x0

(x) for x ∈ (ℓz0x0
, x0],

we have limx→ℓ
z0
x0

γz0x0
(x) = ℓz0x0

. Finally, if ℓz0x0
= 0, since x < γz0x0

(x) < 2x, we also have the

result.

(ii) Let us fix z0 ∈
(

x0,Γ(x0)
)

. As already observed, the dynamics of (5.59) imply that

γz0x0
is non-increasing in the neighborhood of any point x such that (x, γz0x0

(x)) ∈ Int(Γ−).

On the other hand, Proposition 5.2 tells us that the function Γ is increasing on [x0,+∞).

Hence x 7→ (x, γz0x0
(x)) remains in Int(Γ−) on

[

x0, r
z0
x0

)

.

We consider now the case where z0 = Γ(x0). Since Γ(x0) > x0, the proof of Proposition

5.2 (i) tells us that Γ′ is positive on a neighborhood of x0. Since z0 = Γ(x0), we de-

duce from (5.59) that (γz0x0
)′(x0) = 0, and the exact same reasoning as above implies that

x 7→
(

x, γz0x0
(x)
)

∈ Int(Γ−) on
(

x0, r
z0
x0

)

.

(iii) Recall that Γ∞ < ∞. Therefore, as in (i), there exist ε > 0 and δ ∈ (0, 1) such that

Lg ≥ ε on {(x, z); x ∈ [x0,Γ
∞] and z ∈ [(2− δ)x, 2x]}. Let b := min(x20ε, δ). From (5.59),

we see that if x ∈ [x0,Γ
∞] and γzx0

(x) ∈ [(2− b)x, 2x), then (γzx0
)′(x) ≥ 2−b

b x20ε ≥ 2− b. We

denote a0 := (2 − b)x0 and fix z ∈ [a0, 2x0). We deduce from the previous reasoning that

we must have

γzx0
(x) ≥ z +

∫ x

x0

(γzx0
)′(u)du ≥ z + (2− b)(x− x0) > (2− b)x > Γ(x) ,

for x ∈
[

x0,min(rzx0
,Γ∞)

)

. If ever rzx0
≤ Γ∞, we just obtained the announced result and,

if ever rzx0
> Γ∞, we complete the proof noticing that the maximality of Izx0

implies that

γzx0
(x) > x = Γ(x) for x ≥ Γ∞. ✷

We now construct the stopping boundary γ by selecting one of the previous maximal solu-

tions. For a given x0 ∈ D
−, let

Z(x0) :=
{

z ∈ (x0, 2x0); Lg
(

x, γzx0
(x)
)

< 0 for some x ∈
[

x0, r
z
x0

)}

, (5.62)

z∗(x0) := supZ(x0). (5.63)
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Moreover, whenever z∗(x0) < 2x0, we denote

γ∗x0
:= γz

∗(x0)
x0

, ℓ∗x0
:= ℓz

∗(x0)
x0

, r∗x0
:= rz

∗(x0)
x0

, and I∗x0
:=
(

ℓ∗x0
, r∗x0

)

. (5.64)

The next lemma provides useful properties on the function γ∗ and its domain of definition.

In particular, it discusses its dependance with respect to the starting point x0.

Lemma 5.3 Assume that α satisfies Conditions (2.12) and let x0 be arbitrary in D
−. Then,

the following holds.

(i) z∗(x0) ∈ (Γ(x0), 2x0) and γ∗x0
has a positive derivative on the interval I∗x0

.

(ii)
(

d(x0), u(x0)
)

⊂ I∗x0
and limx→r∗x0

γ∗x0
(x) = r∗x0

≤ Γ∞ with equality if u(x0) = Γ∞ .

(iii) For x0, x1 ∈ D
−, we have either I∗x0

∩ I∗x1
= ∅, or I∗x0

= I∗x1
and γ∗x0

= γ∗x1
.

Proof. We fix x0 ∈ D
− and prove each assertion separately. The proofs of points (i) and

(iii) are very close to the proof of Lemma 5.2 in [5], but we rewrite and adapt them here.

(i) Lemma 5.2 (iii) ensures the existence of a0 < 2x0 such that Lg
(

x, γzx0
(x)
)

> 0 for

any x ≥ x0 and z ≥ a0. By definition of z∗(x0), we deduce that z∗(x0) ≤ a0 < 2x0.

Since x0 ∈ D
−, we obtain from Lemma 5.2 (ii) that Γ(x0) ∈ Z(x0) and deduce that

Γ(x0) ≤ z∗(x0).

In order to prove that z∗(x0) ∈ (Γ(x0), 2x0), we now assume that z∗(x0) = Γ(x0) and

work towards a contradiction. Since Lg is continuous, D− is an open set and there exists

ε > 0 such that (x0, x0 + 2ε) ⊂ D
− ∩ (x0, r

∗
x0
) and d(x) = d(x0) for any x ∈ (x0, x0 + ε).

Let us denote xε := x0 + ε ∈ D
− and zε := Γ(xε) > Γ(x0). By Lemma 5.2 (i), we have

ℓz
ε

xε
≤ d(x0) < x0, and it follows from Lemma 5.2 (ii) and the dynamics of (5.59) that γzεxε

is

decreasing on
(

x0, r
zε
xε

)

. Therefore, we compute

γzεxε
(x0) > γzεxε

(xε) = Γ(xε) > Γ(x0) = z∗. (5.65)

On the other hand, since γ
γzε
xε

(x0)
x0

(xε) = zε = Γ(xε), Lemma 5.2 (ii) ensures that γz
ε

xε
(x0) ∈

Z(x0), leading to z∗ ≥ γz
ε

xε
(x0) ∈ Z(x0), which contradicts (5.65).

The same line of argument implies also that (x, γ∗(x)) ∈ Int(Γ+) for any x ∈ I∗x0
. We

deduce from the dynamics of (5.59) that γ∗ has a positive derivative on I∗x0
, and in particular

limx→r∗x0
γ∗(x) exists.

(ii) For any z ∈ Z(x0), since γzx0
is non-increasing in Γ−, we deduce that limx→rzx0

γzx0
(x) =

rzx0
≤ Γ∞. Let us write r0 := sup{rzx0

; z ∈ Z(x0)} ≤ Γ∞. Let us first prove that r0 ≥ u(x0).

Assume on the contrary that r0 < u(x0), so that Γ(r0) > r0. Let fix z ∈ (r0,Γ(r0)).

By Lemma 5.2 (i), ℓzr0 ≤ d(x0), so that x0 ∈ Izr0 and, since Lemma 5.2 (ii) implies that

Lg(x, γzr0(x)) < 0 for x > r0, we deduce that γzr0(x0) ∈ Z(x0). This contradicts the defini-

tion of r0 since z ∈ (r0,Γ(r0)) implies that r
γz
r0

(x0)
x0

= rzr0 > r0. In conclusion, r0 ≥ u(x0).
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Besides, Lemma 5.2 (i) implies that ℓ∗x0
≤ d(x0), and we intend to prove that r0 = r∗x0

in

order to derive (d(x0), u(x0)) ⊂ I∗x0
.

First, we derive the existence of a sequence (zn) ∈ Z(x0) such that zn → z∗(x0) and rznx0
→

r0. Combining the one-to-one property of the flow with the property that limx→rzx0
γzx0

(x) =

rzx0
for z ∈ Z(x0), we deduce that z 7→ rzx0

is non-decreasing on Z(x0). Hence, if z∗(x0) 6∈
Z(x0), any sequence (zn) valued in Z(x0) such that zn → z∗(x0) satisfies also sup{rznx0

; n ∈
N} = sup{rzx0

; z ∈ Z(x0)} = r0 and thus the required property. If ever z∗(x0) ∈ Z(x0), we

simply pick the sequence zn := z∗(x0), for any n ∈ N.

We now prove that r0 = r∗x0
. Let z ∈ (r0, 2r0) be arbitrary. Up to a subsequence, we

have by construction Iznx0
∩ Izr0 6= ∅ for any n ∈ N. We know that limx→rznx0

γznx0
(x) = rznx0

and γzr0(r
zn
x0
) > rznx0

since rzr0 > r0 ≥ rznx0
, for any n ∈ N. Hence, the one-to-one property

of the flow ensures that γzr0(x) > γznx0
(x) for any x ∈ Iznx0

∩ Izr0 and n ∈ N. By Lemma

5.2 (i), limx→ℓzr0
γzr0(x) = ℓzr0 , so that x0 ∈ Iznx0

∩ Izr0 . Since (zn) ∈ Z(x0) converges to

z∗(x0) = supZ(x0), we deduce that γzr0(x0) ≥ γ∗x0
(x0) = z∗(x0) ≥ zn = γznx0

(x0) , for any

n ∈ N. Hence, the one-to-one property of the flow implies that

2x > γzr0(x) ≥ γ∗x0
(x) ≥ γznx0

(x) , x ∈ [x0, r
zn
x0

∧ r∗x0
) , n ∈ N . (5.66)

Therefore r∗x0
≥ rznx0

for n ∈ N, and, passing to the limit, we get r∗x0
≥ r0. Besides, (5.66)

implies that lim supx→r0 γ
∗
x0
(x) ≤ γzr0(r0) = z, and the arbitrariness of z ∈ (r0, 2r0) leads

to lim supx→r0 γ
∗
x0
(x) ≤ r0. Since γ∗x0

(x) ≥ x for x ∈ I∗x0
, we get limx→r0 γ

∗
x0
(x) = r0 and

r∗x0
≤ r0. Hence, r∗x0

= r0 ≤ Γ∞, and, if u(x0) = Γ∞, r0 ≥ u(x0) implies that r∗x0
= Γ∞.

(iii) Let x1 in D
−. Suppose that x0 < x1 and that there exists x2 ∈ I∗x0

∩ I∗x1
. If ever

γ∗x0
(x2) = γ∗x1

(x2), the one-to-one property of the flow combined with the maximality of I∗

imply that I∗x0
= I∗x1

and γ∗x0
= γ∗x1

and conclude the proof. It therefore only remains to

prove that γ∗x0
(x2) = γ∗x1

(x2).

We assume on the contrary that γ∗x0
(x2) < γ∗x1

(x2), the case where γ∗x0
(x2) > γ∗x1

(x2)

being treated similarly. The one-to-one property of the flow implies that γ∗x0
< γ∗x1

on

all the interval I∗x0
∩ I∗x1

. Furthermore, Lemma 5.3 (i) and Lemma 5.2 (i) ensure that

limr∗x1
γ∗x1

= r∗x1
and limℓ∗x1

γ∗x1
= ℓ∗x1

. Hence, we deduce from the maximality of I∗x1
that

I∗x0
⊂ I∗x1

. Combining the definition of z∗(x1) with the continuity of the flow with respect

to initial data, we obtain the existence of z ∈ Z(x1) such that z < z∗(x1) and γ∗x0
(x2) <

γzx1
(x2) < γ∗x1

(x2). Once again, the one-to-one property of the flow implies that I∗x0
⊂ Izx1

and γ∗x0
< γzx1

< γ∗x1
on I∗x0

. Since z ∈ Z(x1), we deduce that γzx1
(x0) ∈ Z(x0) while

γzx1
(x0) > z∗(x0) = γ∗x0

(x0), which contradicts the definition of z∗(x0). ✷

Finally, we are in position to provide the proof of Proposition 5.3:
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Proof of Proposition 5.3 This construction follows similar ideas as in the proof of

Proposition 5.1 in [5], but turns out to be simpler since Γ∞ < ∞.

Let

D :=
⋃

x0∈D−

I∗(x0) ⊃ D
−. (5.67)

Lemma 5.3 (iii) ensures that , for any x0 and x1 in D
−, we either have I∗x0

= I∗x1
or

I∗x0
∩ I∗x1

= ∅. Hence, there exists a subset D
−
0 of D− such that D =

⋃

x0∈D
−

0

I∗(x0) and,

for any x0, x1 ∈ D
−
0 , x0 6= x1 implies that I∗x0

∩ I∗x1
= ∅.

We now define the function γ on R+ \ {0} by:

γ(x) :=







γ∗x0
(x) if x ∈ I∗x0

, for x0 ∈ D
−
0

x otherwise.
(5.68)

According to Lemma 5.3, this definition does not depend on the choice of D−
0 .

Lemmata 5.2 and 5.3 imply that γ is continuous at the endpoints ℓ∗x0
and r∗x0

, for any

x0 ∈ D
−
0 . Hence, setting γ(0) := 0, we obtain a continuous function γ on R+. For any

x0 ∈ D
−
0 , γ∗x0

is increasing on I∗x0
and the identity function is increasing as well, so that

γ is increasing on R+. We now justify each assertion of the proposition separately. (i) is

immediate from the definition of γ.

To prove (ii), we first notice that {x ≥ 0 : γ(x) = x} = R+ \ D ⊂ R+ \ D
−, so that

Lg(x, x) ≥ 0 on the set {x > 0 : γ(x) = x}. On the set {x > 0 : γ(x) > x}, since γ has a

positive derivative by Lemma 5.3 (ii) and satisfies (5.59), we have Lg(x, γ(x)) > 0. Finally,

(iii) can be deduced from Lemma 5.3 (ii), since r∗x0
≤ Γ∞ for any x0 ∈ D

−
0 . ✷
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