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Abstract

Background 

Nosocomial infections place a substantial burden on health care systems and represent  one of the 

major issues in current public health, requiring notable efforts for its prevention.  Understanding the 

dynamics of  infection  transmission in  a hospital  setting  is  essential  for  tailoring  interventions  and 

predicting the spread among individuals. Mathematical models need to be informed with accurate data 

on contacts among individuals.

Methods and Findings

We  used  wearable  active  Radio-Frequency  Identification  Devices  (RFID)  to  detect  face-to-face 

contacts among individuals with a spatial resolution of about 1.5 meters, and a time resolution of 20 

seconds. The study was conducted in a general pediatrics hospital ward, during a one-week period, 

and included 119 participants, with 51 health care workers, 37 patients, and 31 caregivers. A total of 

nearly 16,000  contacts were recorded during the study period,  with a median of approximately 20 

contacts per participants per day.  Overall,  25% of the contacts involved a ward assistant,  23% a 

nurse, 22% a patient, 22% a caregiver, and 8% a physician. The majority of contacts were of brief 

duration, but long and frequent contacts especially between patients and caregivers were also found. 

In the setting under study, caregivers do not represent a significant potential for infection spread to a 

large number of  individuals,  as their  interactions mainly involve the corresponding patient.  Nurses 

would deserve priority in prevention strategies due to their central role in the potential propagation 

paths of the infection.

Conclusions

Our study shows the feasibility of accurate and reproducible measures of the pattern of contacts in a 

hospital setting. The obtained results are particularly useful for the study of the spread of respiratory 

infections, for monitoring critical patterns, and for setting up tailored prevention strategies. Proximity-

sensing  technology  should  be  considered  as  a  valuable  tool  for  measuring  such  patterns  and 

evaluating nosocomial prevention strategies in specific settings.
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Introduction 

The knowledge of contact patterns among individuals is of paramount importance in the control of 

infections  transmitted  from  person  to  person.  Patterns  of  transmission  of  infections  in  a  given 

population  can be studied using data on contact  patterns,  knowing the transmission  route of  the 

infection,  the characteristics of  the infectious  agent,  and the immunity  profiles  of  individuals.  The 

knowledge  of  patterns  of  transmission  is  essential  to  identify  specific  mechanisms  that  favor 

transmission and thus to set up tailored intervention strategies such as social or physical barriers, 

targeted  immunization,  pharmaceutical  interventions,  and  other  measures  aimed  at  preventing 

transmission and controlling the spread of the disease (1-8). 

The parameters relevant to contact patterns are mostly obtained from surveys conducted in samples 

of individuals or can be indirectly estimated from seroprevalence data or from time-use data, and are 

then extrapolated  to  the general  population  (9-15).  Several  empirical  studies  have  been  recently 

conducted to determine the pattern of contacts between and within groups in different social settings 

to model the spread of infectious diseases, most often relying on self-reported methods (10, 16). The 

study of contacts through interviews and recall of previous encounters has however some limitations, 

as the data  collection  is  not  based on objective  measurements and is  generally  performed on a 

random day,  thus  lacking  the longitudinal  dimension  (17).  Most  importantly,  this  approach  has a 

limited applicability to specific settings, such as, e.g., hospitals, that require high-resolution information 

both at the spatial and temporal level to accurately characterize the interactions among individuals, in 

an objective way and by means of non-obtrusive methodologies. 

The  lack  of  such  information  has  so  far  limited  the  guidelines  on  preventive  strategies  for  the 

epidemiology of hospital acquired infections mostly to general and qualitative recommendations, that 

cannot take into account the characteristics of patients, procedures, hospital wards, structures and 

logistics,  and  the  related  heterogeneities  across  diverse  hospital  settings  (18).  Similarly,  while 

mathematical  models  have  begun  to  provide  insights  into  many  important  questions  in  the 

epidemiology of nosocomial infections (19), these results mostly focus on qualitative predictions (20), 

due to the very basic and homogeneous approaches adopted in the description of the population 

contact structure. On the other hand, fine-grained behavioral information may be used to inform and 

validate agent-based models of nosocomial infection (35).

To  overcome  such  limitations  and  address  the  lack  of  empirical  data  relevant  to  the  study  of 

nosocomial  infections,  we rely on the technology of  networked wearable sensors,  that  provides a 

novel approach to obtain accurate and tailored estimates of the contact patterns at the individual level 

in a given community (21-25,36). Specifically, we use active Radio-Frequency Identification Devices 

(RFID)  as  wearable  sensors  to  measure  face-to-face  proximity  with  a  high  spatial  and  temporal 
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resolution (23-25). The deployment of these devices may support the collection of accurate and timely 

information useful to inform and parameterize models for the study and prediction of the transmission 

of  nosocomial  infections,  as  well  as  to  tailor  containment  measures  for  the  control  of  potential 

outbreaks. To this aim, we present here the results of a study on the measurement and analysis of 

contact patterns within a pediatric hospital involving patients, caregivers, and health care workers. Our 

work illustrates the feasibility of contact measures through RFID devices in hospital settings, aimed at 

providing data-driven knowledge to inform models and prevention strategies. 
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Methods 

Study setting 

The study was performed in a general pediatric ward of the Bambino Gesù Hospital in Rome, Italy, a 

large third level pediatric hospital. The ward under study has 44 beds arranged in 22 rooms with 2 

beds each,  and mostly  admits  children with acute diseases  who do not  require  intensive care or 

surgery. The occupancy rate of the ward is rarely below 95%.  The pediatric ward is located in the 

Department of Pediatrics and is physically separated from other wards and facilities of the Hospital. In 

a typical workday 10 physicians, 20 nurses, and 6 ward assistants are on duty. Patients admitted into 

the ward are accompanied by one parent or tutor who spends the night in the same room on a chair.  

Visitors are allowed to visit the ward during the scheduled visit time of 1 hour in the afternoon.  The 

study was conducted from the 9th to the 16th of  November 2009 (weeks 46 and 47),  during the 

incidence peak of the influenza A/H1N1v pandemic in Italy (25). 

Data collection infrastructure 

Data  were  obtained  and  collected  through  the  deployment of  an  infrastructure  consisting  of  a 

distributed sensing component,  comprising wearable  active Radio-Frequency Identification Devices 

(RFID), and of a data collection and processing component made of RFID readers installed in the 

ward, a local area network (LAN), and a central computer system for data collection and storage. The 

deployed  RFID  devices  exchange  ultra-low  power  radio  packets  in  a  peer-to-peer  fashion.  The 

devices perform a scan of their neighborhood by alternating transmit and receive cycles. During the 

transmit phase, low-power packets are sent out on a specific radio channel; during the receive phase, 

the  devices  listen  on  the  same  channel  for  packets  sent  by  nearby  devices.  By  including  the 

transmitting signal strength in the payload, the receiving device can estimate the degree of proximity 

of the transmitting device, and this operation can be carried out in a decentralized fashion throughout 

the sensing network. A more detailed description of the data gathering infrastructure is reported in 

Refs. (23-25).

The lowest power level used in this deployment was selected to allow packet exchange only between 

devices  within  1–1.5  meters  of  one  another. This  setting  ensures  that  when  individuals  wear  the 

devices on their chest, exchange of radio packets between RFID devices is only possible when they 

are facing each other,  as the human body acts as a RF shield at  the carrier  frequency used for 

communication.  When a relation of  face-to-face proximity  is  detected,  it  is  relayed from the RFID 

devices to the RFID readers installed in the hospital ward. The receiving infrastructure only covered 

the area within the hospital ward under study. The RFID devices are embedded in small hermetically 

sealed  badges  to  comply  with  the security  regulations  of  the  hospital,  and  to  minimize  potential 
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damage arising from their use. Each device has a unique identification number that was used to link 

the information on the contacts established by the person carrying the device with his/her profile.

Study design 

The study was approved by the Ethical Committee of the Bambino Gesù Hospital. Before the study 

started,  health  care  workers  were invited  to  participate  in  a  meeting  where the project  was  fully 

explained  and  its  procedure  was  illustrated  in  detail.  Health  care  personnel,  patients,  and  their 

caregivers  (defined  as  tutors,  accompanying  persons  and  visitors)  were  systematically  invited  to 

participate in the study. At the time of enrollment, all participants signed an informed consent form, 

were given an RFID badge, and were asked to wear it at all times within the ward. The RFID tags of a 

patient and accompanying persons were returned to the study personnel at patient discharge or when 

moved to another ward. Visitors returned their tag at the end of the visit, whereas health care workers 

wore RFID tags for the entire duration of the study during working hours. Correct wearing of the RFID 

tags was monitored daily, and in case of loss or other anomalies the tag was replaced with a new one. 

The correct operation of devices was also monitored by reviewing the quality of the received signals 

on a daily  basis,  and replacing malfunctioning devices.  While  patients were fully  identified to link 

personal information to pattern of contacts detected by RFID devices, no personal identifiers were 

used for caregivers or health care workers participating in the study, which were only associated to 

their professional category. However, the association between a given health care worker and the 

corresponding RFID tag was fixed throughout the study, i.e., it was possible to track the behavior of 

the (anonymous) given individual across hospital shifts and across working days. Overall, individuals 

were distinguished  into  the following  classes or  roles for  the purpose of  the present  study:  ward 

assistants (A), who are health care workers in charge of cleaning the ward and distributing the meals, 

physicians (D), nurses (N), patients (P), and caregivers (C), who comprise tutors and non professional 

visitors.

Data processing and analysis 

We tuned the rate at which low-power packets are emitted and the fraction of time the devices spend 

listening on the contact channel so that the face-to-face proximity of two individuals wearing the RFID 

tags can be assessed with a probability in excess of 99% over an interval of 20 seconds. This sets the 

time scale over which we perform the temporal aggregation of  the collected data, allowing for  an 

adequate  description  of  person-to-person  interactions  that  includes  brief  encounters.  Faster 

timescales  are prone to increasing noise and do not  result  in  a higher  accuracy of  the detection 

process. We defined that a ‘contact’ occurs between two individuals  during an interval of 20s if and 

only if the RFID devices worn by the individuals exchanged at least one packet at the lowest power 
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level during that interval. After a contact is established, it is considered ongoing as long as the devices 

continue to exchange at  least  one such packet  for  every subsequent  20s interval.  Conversely,  a 

contact is considered broken if a 20s interval elapses with no exchange of low-power packets. 

The patterns of  close encounters between individuals  and the mixing patterns  among classes of 

individuals were analyzed through several indicators. The high spatial and temporal resolution of the 

infrastructure allows us to monitor the number of contacts that each individual establishes with any 

other individual, to record the time spent on each such encounter, the cumulative time spent in contact 

between two individuals, and the frequency of encounters between any two individuals. More in detail, 

for each pair of individuals  i and  j we define several possible weights  wij, each corresponding to a 

different quantity measured on the collected data:  the occurrence of the contact wij
p
, with w ij

p=1  if at 

least one contact between i and j has been established, and 0 otherwise; the frequency of the contact 

w ij

n
, indicating how many times the contact between i and  j  is observed during the study; the time 

spent on each such encounter; the cumulative duration of the contact w ij
t

, indicating the sum of the 

durations of all  contacts established between  i and  j  observed during the study. In addition to the 

above quantities,  that  are  weights  defined for  pairs  of  individuals  i and  j,  it  is  possible  to define 

corresponding quantities si  for each individual  i, aggregating on all individuals  j  who had a contact 

with i, i.e. si = wij∑ . In relation to the previously defined weights, one obtains the following quantities: 

the  number of distinct  contacts si
p

,  indicating the number of distinct individuals  with whom  i  has 

established at least one contact (i.e., a contact between  i  and j  that occurs  wij
n >1 times is counted 

only  once);  the  number  of  contacts si

n
,  indicating  the  overall  number  of  contacts  established  by 

individual  i, counting repeated contacts with the same individual  j  as distinct events; the  cumulative 

time in contact si

t
, corresponding to the total sum of the duration of all contacts involving individual i.

In the following, unless otherwise stated, all measures are normalized on a 24-hour (daily) interval, 

e.g., all  cumulative times in contact are divided by the duration of the study expressed in days (8 

days).  Figure 1 provides an example on how the above quantities are computed for  a schematic 

sequence of contact data, where the individuals i and j belong to two different classes, nurses (N) and 

patients (P). 
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Results 

Sample characteristics 

A total of 195 individuals were invited to participate in the study, and 7 of them (3.6%, 5 health care 

workers, 1 patient, 1 caregiver) declined participation. A total of 188 individuals were provided with an 

RFID tag. Before performing the analysis, we reviewed the collected data with specific regard to the 

quality of signals, and monitored the continuous detection of signals from the devices. In particular, for 

patients and caregivers classes, we compared the duration of their physical presence at the ward, as 

obtained from hospital records, with the presence recorded from the RFID infrastructure. We identified 

and excluded 69 RFIDs belonging to patients or  caregivers whose signals  were not  continuously 

detected by the receiving infrastructure and were missing for  at  least  25% of  the time they were 

assigned to the individuals.  Given that  patients and caregivers spend most of the time at  a fixed 

location in the ward, the above exclusion criterion mainly has the purpose of ensuring good radio 

coverage  of  the  corresponding  rooms.  No  exclusion  was  considered  in  the  case  of  health  care 

workers,  as  their  RFID  tags  were  anonymized  and  therefore  not  traceable  to  their  duties;  no 

comparison with paper records was possible, and all signals from those tags were thus retained in the 

analysis. Results were statistically assessed in terms of their robustness with respect to such filtering 

procedure and to the chosen 25% threshold, and no strong dependence on the selected subset of 

individuals was found, as shown in Fig. S1 of the Supplementary Information, which displays unfiltered 

data. 

The analysis therefore included a total of 119 individuals: 10 ward assistants (8.4% of the total number 

of  individuals),  20 physicians  (16.8%),  21 nurses (17.6%),  37 patients (31.1%) and 31 caregivers 

(26.1%). Table 1 reports the characteristics of patients and their discharge diagnoses with regard to 

airborne infections. Age, length of stay, and the proportion of children with any respiratory infections 

were  similar  when  comparing  the two subsets  of  patients  retained  and  excluded  from the study 

because of the filtering procedure. We used the median test for comparing age and length of stay, and 

the chi- square test for the distribution of diagnoses, and the statistical comparison did not yield results 

signaling any significant  difference between the two subsets. Despite the majority of patients was 

discharged with a diagnosis of a potentially transmissible disease, during the study period no evidence 

of transmission of nosocomial infection in patients or health care workers was reported according to 

the routine nosocomial infection surveillance system. 

Number, frequency and duration of contacts by category
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A  total  of  nearly  16,000 contacts  were  recorded  during  the  study  period,  with  a  median  of 

approximately  20  contacts per  participants  per  day.  Table  2 reports  the total  number  of  contacts 

established by individuals for each class, and the median values per participant of the given category. 

A very large number of contacts involve at least a ward assistant or a nurse. In addition, significant 

fractions of  the overall  number of  contacts are found to involve at  least  a patient  or  a caregiver,  

representing  approximately  22% of  the  total  in  both  cases.  The  minimum number  of  contacts  is 

observed for physicians (8%).

The daily  median number of  contacts per individual,  shown in Figure 2A, is highest  among ward 

assistants, and it is much higher than the values observed for other classes (the second largest value 

is 45.5 contacts established by an average nurse, compared to 99.5 contacts in the ward assistant 

case).  This  pattern  is  explained  by  the  organization  of  the  staff  duties,  as  ward  assistants  are 

requested mainly to clean up, to transport patients, and to distribute food, and they mostly work in  

pairs. Figure 2B reports the daily median number of distinct contacts s
p that participants of a given 

class establish with any other participant, showing that health-care workers are involved in interactions 

with a larger number of distinct individuals,  typically 3 – 5 distinct contacts, whereas patients and 

caregivers mostly interact with a single person, with high frequency. In addition to the number and the 

frequency of contacts, the RFID infrastructure enables the accurate measurement of the duration of 

contacts between individuals, providing a more detailed characterization of proximity events, which is 

generally hard to achieve by using traditional survey methodologies. Figure 2C shows the cumulative 

time  in  contact,  s t ,  spent  by  individuals  belonging  to  each  of  the  roles.  This  quantity  is  highly 

heterogeneous, ranging, daily, from a few minutes for physicians up to approximately one hour for 

ward assistants.

The computed quantities show large heterogeneities among individuals of the same class and across 

the various days of the study. Figure 3A reports the probability  density function  )P(sn  (number of 

events in each bin divided by the bin width) of the number of contacts s
n  obtained for each class of 

participants. The distribution P sn   for a given class is defined as the probability that a randomly 

selected participant  of that class has established a total  of  s
n

 contacts with any other individual 

during a given day. Large fluctuations are visible in the number of contacts per individual, varying over 

2 or 3 orders of magnitude, and the largest fluctuations are observed in the case of patients and 

caregivers. Figure 3B reports the probability density functions of the cumulative time in contact, for 

individuals of each class. The longest durations, up to nearly 4 hours, are observed for contacts that 

involve at least one patient or one caregiver. The observed broad probability distributions are typical of 

human-driven systems and have been already observed elsewhere (24,25). Figure 4 shows boxplots 

for  the distributions of  cumulative contact durations  w
t  between pairs of  individuals  belonging to 
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given categories. Overall, about 95% of the contacts have a cumulated duration  w
t  of less than 4 

minutes.

Besides characterizing the overall behavior of a given class of participants interacting with any other 

individual, the collected data allow to further inspect the interaction behavior by focusing on face-to-

face proximity between pairs of  categories. Figure 5 reports three contact matrices defined on the 

classes of participants, taking into account the different numbers of individuals in each class (3), and 

measured using the three quantities defined above: the number of contacts s
n  (panel A), the number 

of distinct contacts s
p  (panel B), and the cumulative time in contact s

t  (panel C). Panel A shows that 

the majority of contacts occur within the ward assistant class, followed by nurse-nurse interactions. A 

number of contacts larger than 10 is also observed for patient-caregiver interactions, considering both 

the number of contacts that a patient  had with any caregiver,  and the number of contacts that  a 

caregiver had with any patient. These contacts, however, are characterized by a very high frequency, 

as signaled by the very small number of distinct contacts reported in panel B for the same two classes, 

consistent with a strong one-to-one patient-caregiver interaction. A smaller number of distinct contacts 

is also observed among ward assistants, compared to the median value of 63 contacts, whereas the 

nurse-nurse interaction remains strong also in terms of number of distinct contacts. The number of 

contacts (both distinct and non-distinct) among patients is noticeably very low and close to zero. The 

contact  matrix  computed  in  terms  of  the  cumulative  time  in  contact  provides  yet  another 

characterization of the interaction behavior among classes. Long interactions are observed between 

patients  and  caregivers,  among  nurses,  and  among  ward  assistants.   The  time  spent  in  close 

proximity by a pair of patients or by a pair of visitors is extremely small, and interactions between a 

health care worker and a non-health care worker are very limited. Fluctuations of these values are 

reported in Tables S2-S4 of the Supplementary Information. 

Individual level resolution

The  results  presented  so  far  are  broken  down  into  categories  of  participants  and  provide  an 

aggregated  quantitative  estimation  of  the  interaction  behavior  inter-  and  intra-classes.  Additional 

information  can  however  be  gathered  at  the  individual  level,  given  the  high  resolution  of  the 

infrastructure used for the data collection. A reconstruction of the network of interactions among single 

individuals can be achieved to inspect in a deeper fashion the aggregated features reported above. 

Figure  6  shows  a  set  of  interaction  networks  for  each  pair  of  classes  and  within  each  class, 

corresponding to the entire monitoring period. In these networks, a node represents an individual, and 

an edge is drawn between two individuals whenever a face-to-face proximity event involving them was 

recorded. The networks restricted to physicians, nurses or ward assistants are rather dense, indicating 
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a large diversity of contacts: within a given role, each health care worker interacts with many others. 

The picture is completely different for patients and caregivers: not only are there very few contacts  

between caregivers or between patients, but,  as expected, the patient-caregiver contacts are very 

specific. Each patient has contacts with essentially one caregiver, and vice-versa, which corresponds 

to the fact that each patient was accompanied by one caregiver, confirming at the individual level the 

results previously observed at the class level. Contacts among caregivers and among patients are 

barely observed. 
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Discussion  

Mathematical and computational models  play an increasingly important role in the assessment and 

control of epidemics. In addition to studies focusing on the general population, models are also used 

to study the spread of infectious diseases in specific settings, such as, e.g., hospitals. Nosocomial 

infections  represent  a  major  public  health  issue with  high  morbidity  and mortality  and high  costs 

associated with prolonged treatments, which deserve urgent and efficacious prevention strategies. 

The  sources  and  transmission  paths  of  nosocomial  infections  are  indeed  often  unknown  and 

unrecognized. The application of epidemic models to hospitals is therefore crucial to provide valuable 

insights on the routes of infection propagation and to identify tailored measures for prevention and 

control of hospital acquired infections. Models need to be informed with the pattern of interactions 

among  individuals  along  which  the  transmission  of  infection  can  occur,  however  only  simple 

homogeneous assumptions have been considered so far. Our study provides for the first time direct 

measures of the number and duration of close contacts by different role and at the individual level in a 

hospital  setting.  By  taking  advantage  of  the  RFID  technology,  our  results  account  for  important 

heterogeneities in the hospital population and in the interactions among patients, health care workers, 

and visitors, that enable an accurate parameterization of models for infectious disease spread on the 

close-contact route.

Our main finding is the very limited interaction that we observed between pairs of patients or between 

pairs of caregivers, and between health care workers and caregivers. This is empirically found both in 

the number  of  contact  events,  taking  into  account  both  distinct  and  repeated events,  and  in  the 

duration of such contacts.  This result  has immediate practical  implications for the development of 

prevention measures for respiratory infections within the hospital, which represent the most frequent 

nosocomial infections (27,28). Current guidelines (18) identify the caregiver class as the priority group 

that control strategies should target (29), given that they may carry asymptomatic or mild community 

acquired respiratory illnesses and then spread the infection within the hospital to susceptible patients 

and staff. While caregivers may represent a source of the infection, our results show that their pattern 

of  interaction  is  very stable  and mostly  spent  in  contact  with  the corresponding patient,  thus not 

favoring  the  spread  of  a  potential  infection  to  a  large  number  of  individuals  in  the  ward.  This 

observation  can  inform models  aimed  at  testing  different  prevention  recommendations,  exploring 

control resources focused mainly on the caregiver-patient interaction as opposed to resources focused 

on all possible interactions that a caregiver may have in the ward. 

Another major insight concerns patients. Our results show that in addition to intense and continuative 

interactions with the caregivers, patients are contacted most frequently and with the longest duration 

by nurses, among all health care categories. Nurses were also found to have a pattern of frequent and 

long contacts among each other.  Thus,  in  our setting,  where a high proportion of  patients had a 
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diagnosis of respiratory infection, the intensive professional contact of nurses with patients and among 

themselves  may result  in  a higher  risk for  airborne infections among nurses.  These observations 

highlight  the  crucial  importance  of  prioritizing  nurses  in  local  infection  control  interventions,  and 

confirm the findings of a recent study where data on contacts were collected through a questionnaire 

(30). On the other hand, the pattern of contacts between physicians and patients showed a small  

number of contacts of short duration suggesting a less important role of this health care category in 

infection transmission. It is worth to mention that, although our study was conducted during the peak 

of  influenza A/H1N1v activity  in  Italy,  no case of influenza transmission was observed among the 

individuals  included  in  the  study.  This  observation  is  in  line  with  a  strict  application  of  H1N1 

containment guidelines in the hospital setting established by the Italian Ministry of Health (31).

We have studied the statistics associated with the collected data and we found a large degree of 

heterogeneity  in  the  number  of  contacts  and  in  the  duration  of  contacts  across  classes.  Large 

fluctuations up to 2 or 3 orders of magnitude are observed in the number of contacts established by an 

individual in a given class with any other individual, and similar results are observed in the duration of 

contacts. These fluctuations are however reduced when considering specific class-class interactions, 

highlighting the presence of well-defined interaction behaviors that are class-specific. Large variations 

are  observed  in  the  patient-caregiver  interaction,  providing  additional  empirical  evidence  for  the 

importance of focusing control efforts on such interactions as they may lead to large variations in a 

potential outbreak.

Though observed in the hospital  context,  the large variability observed in the contact number and 

contact duration is consistent with empirical data collected in other settings. As an example, the same 

RFID technology was applied to investigate contact patterns in scientific conferences (23,25) showing 

also in this case a strong heterogeneity of the contact durations between individuals – most contacts 

were very short in this setting, but contacts of very different durations were observed, including very 

long ones. This similarity points to the presence of common statistical signatures in the way people 

interact, that go beyond the constraints and behavioral patterns imposed by the specific context.

Our study allows to define risks of transmission between classes of individuals by calculating matrices 

of  contacts  of  class-class  type  along  the  three  quantities  describing  a  contact  event  that  we 

considered – the number of contacts, the number of distinct contacts, the overall duration of contacts. 

These contact matrices represent the input ingredients for the parameterization of mathematical and 

computational models of nosocomial infections, going beyond simple homogeneous assumptions and 

simple  structuring of  the  population  into  two classes –  patients  and health  care  workers – as  in 

previous studies (20,32). This work complements similar efforts that focus on the community level 

(9,10),  though our  data  collection  method ensures  a higher  objectivity  of  the measure of  contact 

events, and a higher resolution both in time and in space. By taking full advantage of this resolution, 
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RFID technology can be used to inform increasingly complex models that require a finer classification 

of contacts by personal characteristics (33,34). Differently from survey methodologies,  our method 

affords data collection and behavior characterization at the individual level, and thus may be used to 

inform  agent-based  modeling  approaches.  This  could  provide  additional  insights  and  uncover 

unexpected behaviors induced by the fluctuations observed even within the class-class structuring of 

the population.

However,  in  order to obtain reliable and statistically significant  results from numerical  simulations, 

longer  and  more  extensive  deployments  should  be  considered  to  better  characterize  expected 

behaviors and the associated fluctuations. Although this study was carried out over a period of one 

week, it was conducted in a period when strict rules for infection control were applied because of the 

threat of cross infection with the 2009 A/H1N1 pandemic influenza virus. We do not believe that the 

conduction  of  the  study  itself  has  changed  the  behavior  of  health  care  workers,  but  longer 

deployments would in this respect be needed to assess the stability of the results over time.

A strength of the present study is the high participation rate of individuals in our experiment. We did 

not  encounter  major  opposition  in  the  acceptance  of  the  experimental  procedure  by  health  care 

workers, patients, or caregivers, and only a very limited fraction of them (3.6%) declined participation. 

Once  enrolled  in  the  study,  most  participants  regularly  wore  the  RFID  devices  according  to  the 

instructions, thus contributing to the collection of high quality data. These observations suggest that if  

appropriate protocols are provided, and privacy protection is ensured, measures of contacts through 

RFID devices  are easily  replicable,  and it  is  conceivable  to aim at  fully  covering entire wards or 

hospitals. In this respect, such an approach would constitute a major improvement in the collection of 

high quality data, if compared to available studies based on interviews where the participation rate 

was much lower and where logistics and resources limited the length and coverage of the survey 

(9,28).

Our  method  presents  limitations  as  well.  First  of  all,  given  that  the  RFID  tags  exchange  radio-

frequency signals, the collected data can only provide information on the proximity of two badges (and 

therefore of the persons carrying the badges), but no information on the possible occurrence of a 

physical contact between the two persons is available. Our measures can thus be used for properly 

estimating  the  transmission  parameters  of  respiratory  infections  but  they  are  less  informative  for 

infections transmitted by direct contact. Note however that physical contact can only occur between 

persons who are already in  spatial  proximity.  Therefore,  it  would be very interesting to study the 

fraction  of  close  encounters  that  result  in  a  physical  contact,  as  this  may help  to  identify  useful 

parameters for  modeling  infections transmitted through physical  contact.  In  the future,  the use of 

sensors that can directly resolve physical contact may be explored. Another possible limitation is the 

fact that settings with no wireless connections involve additional complexity in the implementation of 
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the measurements and in the definition of  procedures,  as limited by the available communication 

infrastructure. However, upcoming new technology that will allow operating the RFID sensing layer in 

a fully distributed fashion with on-board storage on the devices, will have minimal requirement on the 

host  infrastructure  and  is  expected  to  provide  increasingly  larger  opportunities  for  deployment  of 

wearable sensing systems for the measurement of contacts patterns. This new technology would be 

also very important to run similar data collection campaigns that cover full hospitals, to assess whether 

logistic  and  behavioral  characteristics  and  procedures  that  are  ward-specific  are  reflected  in  the 

observed  contact  patterns.  Finally,  a  comparative  study  between  different  hospitals  may  provide 

valuable insights into how structural organization and procedural management may impact the contact 

patterns among individuals, and therefore the potential epidemic spreading within the hospital. This 

would also allow us to assess the specificity of the results obtained in the present study. On the other 

hand, human behavior has been shown in many studies to exhibit important regularities, and a certain 

number of characteristics of our results can be expected to hold across different wards or hospitals: for 

example the broad distributions of Fig. 3, or the overall structure of the interaction networks, with the 

strong specificity of patient-caregiver contacts contrasted to the HCW interactions.

Our study represents, to our knowledge, the first example of unsupervised data collection of face-to-

face contacts in a hospital setting by means of wearable radio frequency devices. The obtained results 

provide significant advances in our knowledge of the mixing patterns taking place in a hospital ward, 

and allow for a fine structuring of the population into classes of individuals based on their role, along 

with the evaluation of the corresponding contact matrices. The resulting analysis may help to identify 

specific interactions at increased risk of transmission, and to explore a variety of possible interventions 

by means of numerical simulations obtained with modeling approaches informed by measured contact 

matrices. Outbreak investigations conducted concurrently with proximity sensing by wearable devices 

may further augment the knowledge we have on the routes of transmission and thus help in reducing 

the burden of nosocomial infection.
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Figure legends  

Figure 1.  Schematic representation of detected contacts among 2 nurses (N1, N2) and 3 patients 

(P1, P2, P3) and corresponding measured quantities. Each individual is represented by a node and a 

link corresponds to a contact established between two individuals. The width of the link is a measure 

of the duration of the contact, also indicated explicitly in terms of minutes. Multiple links can occur 

between two individuals, as highlighted in the pair N1-P1, indicating a contact of frequency larger than 

1.  The  quantities  introduced  in  the  Materials  and  Methods  section  are  calculated  for  the  pair  of 

individuals N1 and P1. The pair established one contact ( w ij
p=1 ) with frequency equal to two ( w ij

n=2

) for a total duration of six minutes ( w ij

t
=6 min ). By taking into account all interactions, individual N1 

has established  three contacts  ( si
n=3 ),  two of  which  were distinct  contacts  ( si

p=2 ),  for  a total 

duration of contacts equal to seven minutes ( si

t
=7 min ). 

Figure 2.  Contact number and duration per role (A: ward assistants; D: Doctor; N: Nurse; P: Patients; 

C: Caregiver).  The plots show the median values per participant  in each class of:  the number of 

contacts s
n  (panel A), the number of distinct contacts s

p  (panel B), the cumulative time in contact 

s
t  (panel C). All quantities for a given class are computed on the contacts established by participants 

in that class with any other participant. Data are normalized to a 24-hour interval.

Figure 3. Probability density functions of the number of contacts per individual, s
n  (panel A), and of 

the cumulative time in contact s
t  (panel B). Each plot corresponds to a given class and considers the 

contacts that  an individual  in  that  class  established  with any other  individual.  Contact  duration  is 

expressed in seconds and is normalized to a 24-hour interval.

Figure  4. Boxplots  for  the  distributions  of  cumulative  contact  durations  w
t  between  individuals 

belonging  to  given  role  pairs  (horizontal  axis),  given  the  occurrence  of  a  contact. Here  we only 

consider non-zero values of w
t , and contact durations are expressed in seconds and are normalized 

to a 24-hour interval. On normalizing, the experimental resolution of 20 seconds yields the lowest 

value of 2.5 seconds visible in the figure. As usual, the bottom and top of the boxes correspond to the 

25th and 75th percentiles, and the horizontal segment indicates the median. The ends of the whiskers 

correspond to the 5th and 95th percentiles. The dots are outliers located outside the 90% confidence 

interval, i.e., events falling below the 5th percentile or above the 95th percentile. 

Figure 5. Contact  matrices  defined  on the classes  of  individuals.  Matrices  are  displayed  for  the 

number of contacts s
n  (panel A), the number of distinct contacts s

p  (panel B), and the cumulative 

time in contact s
t  (panel C). The matrix entry for classes X (row) and Y (column) is the median value 
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of the node strengths for individuals of class X, computed on the contacts they had with individuals of 

class Y; the asymmetry of the matrices depends on the different numbers of individuals populating 

each class (3). Individuals of class X that did not have contacts with individuals of class Y count as 

nodes with zero strength, i.e., they affect the median value for the corresponding matrix entry. To 

increase the readability  of  the figure,  matrix entries are grayscale-coded according to the median 

values, with the lightest and darkest shade of gray respectively corresponding to the minimum and 

maximum value for each matrix. Contact durations are expressed in minutes and normalized to a 24-

hour interval.

Figure 6. Cumulative contact networks of individuals, for all pairs of classes and within each class. 

Nodes represent unique individuals, and edges between nodes represent a cumulative face-to-face 

time over the whole monitoring period. In the off-diagonal layouts, nodes are positioned from left to 

right in increasing order of number of edges.
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Tables

Table 1. Characteristics of patients included and excluded from the analysis.

Patients excluded from 
analysis due to poor 

signal quality

Patients included in the 
analysis

Total

Number 39 37 76

Age, years; median 
(range)

3.04 (41 d – 17 y) 3.54 (44 d – 17 y) 3.38 (41 d – 17 y)

Length of stay, days; 
median (range) 

5 (1-36) 7 (1-29) 6 (1-36)

No. of patients with 
H1N1 infection (%)

7 (17.9%) 12 (32.4%) 19 (25.0%)

No. of patients with 
acute respiratory 
infections other than 
H1N1 (%)

18 (46.1%) 14 (37.8%) 32 (42.1%)
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Table 2. Characteristics of the study sample in terms of classes and number of contacts. The total  

number of daily contacts measured per class is the sum of all contacts s
n  established by individuals 

in  that  class.  The number of  daily  contacts  per participant  is  the median value of  the number of 

contacts si
n

, with i belonging to the given class. 

Role No. 

participants 

(%)

Total no. 

daily 

contacts

No. daily contacts per 

participant [90% 

confidence interval]

[90% CI]

(A) ward 

assistants

10 (8.4 %) 991.1 99.5 [38.3-172.8]

(N) Nurses 21  (17.6 %) 920.2 45.5 [9.2-83.1]

(C) Caregivers/
Accompanying 
persons/Visitors 

31 (26.1%) 910.2 18.1 [3.4-69.4]

(P) Patients 37  (31.1%) 880.6 16.1 [0.5-63.6]

(D) Physicians 20 (16.8%) 325 14.0 [0.4-41.8]
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