
HAL Id: hal-00573278
https://hal.science/hal-00573278v1

Submitted on 3 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Turbo product code decoder without interleaving
resource: From parallelism exploration to high efficiency

architecture
Camille Leroux, Christophe Jego, Patrick Adde, Deepak Gupta, Michel

Jezequel

To cite this version:
Camille Leroux, Christophe Jego, Patrick Adde, Deepak Gupta, Michel Jezequel. Turbo product code
decoder without interleaving resource: From parallelism exploration to high efficiency architecture.
Journal of Signal Processing Systems, 2011, 64 (1), pp.17-29. �hal-00573278�

https://hal.science/hal-00573278v1
https://hal.archives-ouvertes.fr

J Sign Process Syst
DOI 10.1007/s11265-010-0478-5

Turbo Product Code Decoder Without Interleaving
Resource: From Parallelism Exploration to High Efficiency
Architecture

Camille Leroux · Christophe Jego · Patrick Adde ·
Deepak Gupta · Michel Jezequel

Received: 13 November 2009 / Revised: 15 March 2010 / Accepted: 15 March 2010
© Springer Science+Business Media, LLC 2010

Abstract This article proposes to explore parallelism
in Turbo-Product Code (TPC) decoding through a par-
allelism level classification and characterization. From
this design space exploration, an innovative TPC de-
coder architecture without any interleaving resource
is presented. This architecture includes a fully-parallel
SISO decoder capable of processing n symbols in
one clock period. Syntheses results show the better
efficiency of such an architecture compared with exist-
ing solutions. Considering a six-iteration turbo decoder
of a BCH(32,26)2 product code, synthesized in 90 nm
CMOS technology, 10 Gb/s can be achieved with an
area of 600 Kgates. Moreover, a second architecture
enhancing parallelism rate is described. The throughput
is 50 Gb/s while an area estimation gives 2.2 Mgates.
Finally, comparisons with existing TPC decoders and

This paper was presented in part at the IEEE workshop on
Signal Processing Systems, October 8–10, Washington, D.C.
Metro Area, U.S.A, 2008.

C. Leroux (B) · C. Jego · P. Adde · D. Gupta · M. Jezequel
Institut TELECOM, TELECOM Bretagne, CNRS
Lab-STICC, UMR 3192, Université Européenne
de Bretagne, Technopôle Brest-Iroise,
83818-29238 Brest Cedex 3, France
e-mail: camille.leroux@telecom-bretagne.eu

C. Jego
e-mail: christophe.jego@telecom-bretagne.eu

P. Adde
e-mail: patrick.adde@telecom-bretagne.eu

D. Gupta
e-mail: deepak.gupta@telecom-bretagne.eu

M. Jezequel
e-mail: michel.jezequel@telecom-bretagne.eu

existing LDPC decoders are performed. They validate
the potential of proposed TPC decoder for Gb/s optical
fiber transmission systems.

Keywords TPC decoding · Parallelism exploration ·
Ultra-high-speed integrated circuits

1 Introduction

Nowadays, high throughput telecommunication sys-
tems such as optical fiber transmission systems or pas-
sive optical networks require powerful error correcting
codes in order to increase their optical budget. Iterative
decoding [1, 2] provides effective solutions for next gen-
eration optical systems. Recently, a (660,480) LDPC
code decoder ASIC implementation was proposed. The
throughput is 2.4 Gb/s while it could be enhanced to
10 Gb/s with a (2048,1723) LDPC code [3]. Turbo
product codes [4] also tend to be good candidates for
emerging optical systems [5]. In [6], a TPC decoder
is included in a 12.4 Gb/s optical experimental setup.
Since only a part of the transmitted data is actually
encoded, the throughput of the TPC turbo decoder is
156Mb/s.

The inherent parallel structure of the product code
matrix confers to TPC a good ability for parallel decod-
ing. Nevertheless, enhancing parallelism rate rapidly
induces the use of a prohibitive amount of memory.
Many solutions were proposed to efficiently exploit
parallelism in TPC decoding. However, TPC decoding
provides several level of parallelism and it is not always
clear which level is the most efficient.

In [7], we proposed a fully parallel turbo product
code decoder without interleaving resource. In this

J Sign Process Syst

paper, we set this architecture in the more general
context of parallelism level exploration. We propose
a parallelism level taxonomy that helps to classify and
characterize parallelism in TPC decoding. Similarly to
[8], we provide insights on the benefits that each paral-
lelism level can bring to the architecture performance.
From this design space exploration, a parallelism level
that has not been fully used in previous work is iden-
tified. Then, we propose an architecture of a highly-
parallel TPC decoder that efficiently takes advantage
of the exploited parallelism.

After a brief introduction of the TPC coding and
decoding concept in Section 2, Section 3 defines and
characterizes all the parallelism levels in TPC decoding.
In Section 4, a review of existing solutions is given
before the description of an innovative TPC decoder ar-
chitecture without any interleaving resource. This orig-
inal TPC decoder includes a novel fully-parallel SISO
decoder architecture which is described in Section 5.
Section 6 gives some synthesis results and demonstrates
the efficiency of the proposed TPC decoder by com-
parison with current TPC and LDPC decoders. The
interconnection issue is assessed and compared with an
equivalent LDPC code decoder implementation.

2 TPC Coding and Decoding Principles

Product codes usually have high dimension which pre-
cludes Maximum-Likelihood (ML) soft-decision de-
coding. Yet, the particular structure of this code family
lends itself to an efficient iterative “turbo” decoding
algorithm offering close-to-optimum performance at
high enough Signal-to-Noise-Ratios (SNRs).

2.1 Product Codes

The concept of product codes is a simple and efficient
method to construct powerful codes with a large min-
imum Hamming distance d using cyclic linear block
codes [9]. Let us consider two systematic cyclic lin-
ear block codes C1 having parameters (n1, k1, d1) and
C2 having parameters (n2, k2, d2) where ni, ki and di

(i = 1, 2) stand for code length, number of information
symbols and minimum Hamming distance respectively.
The product code P = C1 × C2 is obtained by placing
(k1 × k2) information bits in a matrix of k1 rows and k2

columns, coding the k1 rows using code C2 and coding
the n2 columns using code C1, as shown on Fig. 1.

Considering that C1 and C2 are linear codes, n1

rows are codewords of C2 exactly as all n2 columns
are codewords of C1 by construction. Furthermore, the
parameters of the resulting product code P are given

Figure 1 Product code matrix structure.

by np = n1 × n2, kp = k1 × k2, and dp = d1 × d2 and
the code rate Rp is given by Rp = R1 × R2. Thus, it
is possible to construct powerful product codes using
linear block codes. In the following sections, we will
consider a squared product code, meaning that n1 =
n2 = n. The most commonly used component codes are
Bose Chaudhuri Hocquenghem (BCH) codes. These
codes are an infinite class of linear cyclic block codes
that have capabilities for multiple error detection and
correction. Product codes were adopted in 2001 as an
optional correcting code system for both the uplink
and downlink of the IEEE 802.16 standard (WiMAX)
[10]. Reed-Solomon (RS) codes can also be used as
component codes. RS codes are non-binary codes in
which symbols are represented on MRS = log(n + 1)

bits while MBCH = 1. It has been shown that they pro-
vide similar performance for a low decoding complexity
[11, 12].

2.2 Iterative Decoding of Product Codes

TPC decoding involves successively alternate decoding
rows and columns using SISO decoders. Repeating
this soft decoding during several iterations enables the
reduction of the Bit Error Rate (BER). It is known as
the TPC decoding process. Each decoder has to com-
pute soft information [R′]it+1 from the channel received
information [R] and the information [R′]it computed
during the previous half-iteration.

Despite the existence of several other decoding al-
gorithms [13], the Chase–Pyndiah algorithm is known
to give the best tradeoff between performance and
decoding complexity [14]. The Chase–Pyndiah SISO
algorithm for a t = 1 BCH code [4, 15] is summarized

J Sign Process Syst

below. t represents the maximum number of cor-
rectable errors.

1. Search for the L = |λi| least reliable bits from the
previous half-iteration output vector [R′]it such that
mini(|[R′]it|) = λi. mini(.) represents the ith mini-
mum function.

2. Compute the syndrome S(t0) of [R′]it,
3. Compute the parity of [R′]it,
4. Generate τp test patterns τi obtained by inverting

some of the L least reliable bits (τp ≤ 2L).
5. For each test pattern (1 ≤ τi ≤ τp − 1)

– Compute the syndrome S(τi),
– Correct the potential error by inverting the bit

position S(τi),
– Recompute the parity considering the detec-

tion of an error and the parity of [R′]it,
– Compute the square Euclidian distance (met-

ric) Mi between [R′]it and the considered test
pattern τi.

6. Select the Decided Word (DW) among test pat-
terns having the minimal metric (MDW) and choose
Cw competitors codewords ci (1 < i < Cw) having
the second minimum metric.

7. For each symbol of the DW,

– Compute the new reliability Fit:

Fit =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

βit = (|R′
it| +

∑L

i=1
λi)

− min(Mi) when no competitor exists

Fit = min2(Mi) − min(Mi) otherwise,

– Compute extrinsic information Wit = Fit − R′
it,

– Add extrinsic information (multiplied by αit) to
the channel received word, R′

it+1 = R + αitWit.

As explained in [16], decoding parameters L, τp,
Cw and the number of quantization bits of the soft
information q have a considerable effect on decoding
performance and complexity. The αit coefficient allows
decoding decisions to be damped during the first iter-
ations. βit is an estimation of Fit when no competitor
exists. As detailed in [17], it is based on the least reliable
bits value.

3 Parallel Processing Levels in TPC Decoding

An architecture can be characterized by different met-
rics such as throughput, latency, hardware complex-
ity, power consumption, routing density, etc. In this

study, we aim at high speed architectures with low
hardware complexity. Consequently, the performance
is measured by throughput (T) while the cost function
is the hardware complexity (C). In such a context, the
efficiency of an architecture is defined as the through-
put/complexity ratio : E = T/C. An efficient architec-
ture would process a high data rate at a low hardware
complexity.

The parallelism of an architecture can be defined as
“the ability of the system to process several data in paral-
lel”. We formerly define the parallelism P of a decoder
as the number of bit that can be processed/decoded in
a single clock cycle. Parallelism directly influences the
performance of an architecture. In order to quantify
the benefit/disadvantage brought by the application of
a parallelism Pi to an architecture, we define three
metrics, the speed gain GS, the computational ratio RC

and the ef f iciency gain GE:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

GS(Pi = p) = TPi=p

TPi=1

RC(Pi = p) = CPi=p

CPi=1

GE(Pi = p) = EPi=p

EPi=1
= GS(Pi=p)

RC(Pi=p)

A parallelism level Pi is considered to be ef fective if
GS(Pi) > 1, while it is ef f icient when GE(Pi) > 1 ⇐⇒
GS(Pi) > RC(Pi). In the following of this section, all
parallelism levels in TPC decoding are detailed and
characterized.

3.1 Frame Parallelism

The highest level of parallelism can be observed at the
frame level, this is known as frame parallelism. It is a
form of spatial parallelism and is suitable to any de-
coding scheme. It consists in duplicating the processing
resources, e.g. the turbo-decoder. By using this paral-
lelism level in TPC decoding, P frame matrices can be
decoded at the same time. Considering P frame turbo-
decoders that have the same throughput T0, the speed
gain and complexity ratio are equivalent: GS = RC =
P frame. Consequently the efficiency does not increase
with P frame: GE = 1. Actually, this level of parallelism
is only limited by the affordable silicon area. Although
frame parallelism do make TPC decoder architecture
more effective, it does not improve its efficiency.

3.2 Iteration Parallelism

In a sequential TPC decoder implementation, each
iteration is performed by the same decoder that reads

J Sign Process Syst

and writes data in the Interleaving Memories (IM). It
is however possible to use the iteration parallelism by
duplicating the elementary decoder in a pipelined struc-
ture. The maximum depth of such a structure equals to
the maximum number of iteration itmax. Iteration par-
allelism is a type of temporal parallelism. Here again,
the throughput benefit equals to the complexity ratio:
GS = RC = Pit. It means that the iteration parallelism
does not improve efficiency.

3.3 Sub-block Parallelism

In a product code matrix, each row (column) is ob-
tained independently from the others (See Section 2.1).
This interesting property can also be used during the
decoding process, where each row (column) is decoded
independently. In an implementation prospective, it
means that more than one decoder can be assigned to
row (column) decoding. Considering a product code
matrix of size n2, a maximum number of n decoders can
be duplicated for row (column) decoding. We designate
this parallelism level as sub-block parallelism Psb . In
a straightforward application of this parallelism level,
one would simply duplicate the SISO decoders and the
associated memory resources. It leads to a non-efficient
parallelism exploitation, in particular due to the large
size of the memory blocks that have to be duplicated
Psb times. In [18, 19] solutions are proposed to avoid
interleaving resource duplication when Psb increases.
This makes the complexity ratio lower than the speed
gain, which means that the ef f iciency gain of the archi-
tecture increases with Psb . GE can be expressed as:

GE = Psb (CSISO + Cπ)

Psb CSISO + Cπ

GE > 1 ⇐⇒ Psb > 1

CSISO and Cπ are the hardware complexity of
the SISO decoder and the interleaving resource
respectively.

3.4 Symbol Parallelism

A finer-grained parallelism is the symbol parallelism.
It can be defined as the ability of a SISO decoder,
to process Psym symbols of the same sub-block (row
or column) in parallel. In a sequential SISO decoder,
input data is shifted in a serial manner. Every in-
coming symbol implies some internal metrics to be
updated. By increasing Psym, some parts of the de-
coder datapath has to be duplicated, (e.g. the relia-
bility computation stage). However, the other blocks,
such as the test pattern metric computation, or the

competitor vector determination block, remain identi-
cal when Psym increases. Consequently, the complexity
ratio is lower than the speed gain: GE < 1. Increas-
ing Psym also means that the interleaving memory
should be able to read/write more than one data during
the same clock cycle. Solutions were provided in [20]
to exploit this parallelism while avoiding interleaving
memory duplication. Synthesis results confirm that the
efficiency increases with Psym. For an architecture that
avoid interleaving resource duplication, GE can be ex-
pressed as:

GE > 1 ⇐⇒ CDEC(Psym = p) < p × CDEC(Psym = 1)

CDEC(Psym = p) is the hardware complexity of a
SISO decoder with a symbol parallelism equals to p.
In [20], this inequality has been verified by synthesis
for Psym = {1; 2; 4; 8} for a BCH(32,26)2 TPC decoder.
In this paper, we propose to verify this inequality for
the same code and for Psym = n = 32. This challenging
architecture is described in Section 5.

3.5 Intra-symbol Parallelism

In TPC decoding, BCH codes are often used for their
good decoding performance/complexity tradeoff. Re-
cent work [11, 21] has shown that using RS codes as
component codes, can provide similar decoding perfor-
mance at a reasonable computational complexity.

From an architectural point of view, the non-binary
structure of RS codes enables to exploit an extra par-
allelism level, the intra-symbol parallelism Pis. In a RS
code of size n, a symbol consists in log(n + 1) bits (see
Fig. 1). A RS-SISO decoder can either shift-in symbols
bit by bit or symbol by symbol. It provides a maximal
parallelism rate of max(Pis) = log(n + 1).

Similarly to the symbol parallelism, the resource
sharing within the RS-SISO decoder increases the
efficiency. However the ef f iciency gain provided by Pis

is hard to estimate because it is highly related to the
internal architecture of the SISO decoder. Neverthe-
less, it is possible to give a condition that guarantees
GE(Pis) > 1:

C(Pis > 1) < Pis × C(Pis = 1)

3.6 Parallelism Levels Comparison

Table 1 summarizes benefits of parallelism levels in
TPC decoding. For each parallelism Pi, the maximum
speed gain, the ef f iciency gain and the Pi value that
maximizes the efficiency are given. Frame parallelism
is only limited by technological issues (e.g. silicon area).
This parallelism improves the effectiveness of the archi-

J Sign Process Syst

Table 1 Comparison of parallelism levels in TPC decoding.

Pi max(GS) GE arg(max(E))

P frame ∞ � 1 [0;+∞[
Pit ITc � 1 ITc

Psb n ≥ 1 n
Psym n ≥ 1 n
Pis log(n + 1) ≥ 1 log(n + 1)

tecture; it is straightforward to implement but it does
not improve efficiency. Iteration parallelism has the
same impact but has an upper bound limited by the
maximum number of iteration required by the decoding
process.

Application of lower levels of parallelism (Psb , Psym

and Pis) improves the architecture efficiency. It is even
maximized for highest parallelism value. However, the
use of these parallelism levels is not as straightforward
as P frame and Pit. It requires some specific scheduling
and/or implementation strategies.

4 Parallel Decoding of Product Codes

Designing turbo-decoder architectures compatible with
data rates higher than 10 Gb/s is a challenging issue.
In this section we first introduce previous work. Then,
the proposed Interleaving-Memory-free (IM-free) TPC
decoder architecture is detailed. It jointly uses Psym and
Psb and includes fully-parallel SISO decoders that are
described in Section 5.

4.1 Previous Work

Many TPC decoder architectures were previously de-
signed. In current architectures, the rebuilding of the
product code matrix is necessary between each itera-
tion: memory blocks are used at each half-iteration to
read and store [R′]it and [R]. Each interleaving memory
block is then composed of four memories of n2 × (M ×
q)-bits data . This solution has several drawbacks. First,
a large amount of memory is required which increases
the global latency and the hardware complexity of the
design. In addition, increasing the degree of parallelism
at the sub-block level produces memory conflicts when
several data have to be accessed at the same time. In
Table 2, existing architectures are reviewed in terms
of achieved parallelism Pi and associated hardware

complexity. The hardware complexity is given for inter-
leaving resources (Cπ) and decoding resources (CDec).

In [18], authors suggested to use a barrel shifter
between decoding resources and the interleaving mem-
ory in order to avoid memory conflicts. This solution
enables to use the sub-block parallelism at its highest
rate: Psb = n. The extra-complexity consists in a simple
barrel shifter with a complexity of O(n log(n)). How-
ever, it still includes a large amount of interleaving
memory.

In [16, 19, 22], an IM-less architecture is detailed and
prototyped onto an FPGA device. In this architecture, a
particular scheduling of the product code matrix decod-
ing enables the interleaving memories to be replaced
by an interconnection network (omega network). This
TPC decoder also has a maximal sub-block parallelism
(Psb = n), while the hardware complexity of the inter-
leaving resources is drastically reduced.

Moreover, in [20] an architecture that uses symbol
parallelism in conjunction with sub-block parallelism,
was proposed. The idea is to store several product
code matrix symbols at the same address and to design
elementary decoders able to process Psym = m symbols
during the same clock period (denoted as m-decoders).
A half-iteration structure includes m decoders each
decoding m symbols in one clock period and an inter-
leaving memory of size 4 × q × M × n2. This scheme
actually exploits symbol parallelism on one dimension
of the matrix and sub-block parallelism on the other
dimension in such a way that Psb = Psym = m. The re-
sulting throughput is O(m2) while the overhead factor
of the decoder complexity is ∼ m2

2 . In this previous
work, the maximum reached parallelism rate was m2 =
64, with m = 8 SISO decoders.

These three architectures can reach high parallelism
degrees (i.e. high throughput) for different hardware
cost. A TPC decoder is composed of interleaving re-
sources and decoding resources. More than 50% of the
complexity is in the memory for IM-based architecture,
while it represents less than 10% for omega network-
based structure [19, 22]. On the decoding resources
side, increasing the parallelism rate by duplicating com-
putation resources is inefficient since the reuse of avail-
able resources is not optimized. In the following section
we propose a more efficient architecture that keeps a
memory-less interleaver and uses both symbol and sub-
block parallelism in the decoding stage.

Table 2 Current TPC
decoder architecture
comparison.

Architecture Pi Cπ (1/2iter) CDec(1/2iter)

[18] Psb = n O(4qn2) + O(n log(n)) O(n)

[16, 19] Psb = n O(n log(n)) O(n)

[20] Psb = m; Psym = m O(4qn2) O(m2/2)

J Sign Process Syst

Figure 2 Proposed parallel decoding scheduling of a product
code matrix.

4.2 Proposed IM-Free Architecture Using
Fully-Parallel SISO Decoder

Considering that one can design a Psym = n SISO de-
coder, a product code matrix can be decoded without
any interleaving resource as shown in Fig. 2.

At t = 0, the fully-parallel SISO decoder processes
the column 1. During the next clock period, n se-
quential SISO decoders (Psym = 1) start decoding the
first symbol of each row while the parallel decoder
process the column 2. During the nth clock period, se-
quential decoders complete matrix decoding while the
parallel decoder is already decoding the next matrix.

Figure 3 Previous TPC decoder architecture (a) and proposed
fully-parallel SISO based TPC decoder architecture (b).

Data generated by the parallel decoder is immediately
used by a sequential decoder. Consequently, no IM or
data routing resources are required between the fully-
parallel decoder and sequential decoders. The resulting
proposed architecture and the previous architectures
[18, 19] for one iteration are depicted on Fig. 3.

This architecture uses row-wise Psb and column-wise
Psym. More specifically, we have:

{
Psym(col) = Psb (row) = n
Psb (col) = Psym(row) = 1

One should notice that Psb (col) = Psym(row) can be
further exploited.

4.3 Towards a Maximal Parallelism Rate

Starting from the IM-free architecture presented in the
previous section, parallelism can be further enhanced.
Figure 4 shows the alternate product code matrix par-
allel decoding scheme in which Psb (col) = Psym(row) =
m and Psym(col) = Psb (row) = n. The TPC decoder
consists in m× n-decoders for column decoding and
n× m-decoders for row decoding. A m-decoder can
process m symbols in one clock period and 1 ≤ m ≤
n. In such an architecture, the maximum reachable
parallelism rate P = n2 can be achieved by using n
fully-parallel SISO decoders for column decoding and
n fully-parallel SISO decoders for row decoding. Intra-
symbol parallelism can also be used to increase the
total parallelism to P = Psb × Psym × Pis = n2 log(n).

Figure 4 Alternative turbo decoding scheduling for enhanced
parallelism rate.

J Sign Process Syst

All these new schemes however require to design a
SISO decoder capable of processing n symbols in one
clock period.

5 Architecture of a Fully-Parallel Combinatory SISO
Decoder

The proposed IM-free TPC decoder architecture re-
quires a fully-parallel combinatorial SISO decoder. To
the best of our knowledge, only sequential SISO de-
coders able to process m ≤ n symbols in one clock
period have been previously designed. The design of a
fully-parallel combinatorial SISO decoder is a challeng-
ing issue for designer. In the following section, such an
architecture is proposed and described.

5.1 Algorithmic Parameter Reduction

As explained earlier in Section 2, the Chase–Pyndiah
algorithm includes parameters (L, τp, Cw, q) which
impact on both the performance and the complex-
ity of the turbo decoding. BER simulation were per-
formed with different parameters: L = {2; 3; 4; 5}, τp =
{4; 8; 16}, Cw = {0; 1; 2; 3}, q = {3; 4; 5}. Performing
eight iterations, the parameter set P0 = {L = 5, τp =
16, Cw = 3, q = 5} gives the best performance for a
maximal complexity [14]. However, algorithmic simula-
tions showed that the reduced parameter set P1 = {L =
3, τp = 8, Cw = 0, q = 5} only induce a performance
loss of 0.25dB at BER= 10−6 while it becomes null
below BER = 10−9. Further reducing these parameters
would induce a notable performance loss. For exam-
ple by simply reducing the number of test patterns:
P2 = {L = 2, τp = 4, Cw = 3, q = 5}, the performance
loss reaches 0.5dB. Consequently, using P1 enables the
architecture to be simplified at very low performance
lost below BER=10−9.

Figure 5 Combinatorial version of the fully-parallel SISO
decoder.

5.2 Fully-Parallel SISO Decoder Architecture

Figure 5 depicts the architecture of the fully-parallel
SISO decoder. In the first attempt a purely combinato-
rial designed was conceived. Later, a critical path study
mandated the insertion of pipeline stages within the
structure. The SISO decoder is split in three stages,
namely the reception stage, the test pattern processing
stage and the soft output computation stage.

5.2.1 Reception Stage

The reception stage corresponds to steps (1–3) of the
Chase–Pyndiah algorithm detailed in Section 2.

The syndrome of the incoming vector R′
it can be

derived as S(R′
it) = H × sign(R′

it) where H is the parity
check matrix of the BCH code. A straightforward im-
plementation of such a matrix multiplication is depicted
on Fig. 6. The H matrix, the corresponding parity check
equations and the syndrome S(t0) = [s2, s1, s0] imple-
mentation of a BCH(7,4) code are detailed.

It can be noticed that some parity check equations
have similar terms. For instance, the term (x1 ⊕ x0) is
used in both s1 and s2 computation. This enables a reuse
of computation resources for an even more efficient
implementation. The parity of the incoming vector R′

it
is computed with a similar structure by “xoring” (n − 1)
incoming bits. Selecting the least reliable bits among
the incoming vector in parallel requires a sorting net-
work. Such structures are composed of interconnected
Compare and Select operators (CS). The interconnec-
tion scheme depends on the considered sorting algo-
rithm. Many parallel sorting algorithm are conceivable
[23]. However, most of them are optimized for a com-
plete sorting, while the Chase–Pyndiah algorithm only
requires a partial sorting (i.e. extracting L minima).
Consequently we devised a network optimized, in terms
of area and critical path, for the partial sorting of L =
3 values among n = 32, as depicted on Fig. 7. The

Figure 6 BCH(7,4) code: a Parity check matrix b Parity check
equations c Syndrome parallel computation implementation.

J Sign Process Syst

Figure 7 Optimized sorting network for least reliable bits
selection.

structure is based on shuffle networks coupled with
local minima computation blocks. After the first shuffle
stage, min1 is in the lower section while the upper
section can either contain min2 or min3 or no minimum.
The same reasoning is applied recursively. After five
shuffle stages, the minimum is determined while five
values can still be min2 and min3. A local sorting of this
five values enables the determination of min2 and min3

value. This partial sorting network requires 35 CS and
29 minimum elements. The critical path consists of nine
comparison stages.

5.2.2 Test Pattern Processing Stage

The test pattern processing stage corresponds to steps
(4–5) in the Chase–Pyndiah algorithm detailed in
Section 2. Instead of being processed sequentially, test
patterns are processed in parallel. The syndrome of
each test pattern is computed by adding S(t0) with the
position of the inverted reliable bits. The parity man-
agement block computes the parity of R′

it+1 considering
the parity of R′

it and the detection of an error which
is the case when S(ti) �= 0. Metrics of each test pattern
is then computed by adding the contribution of each
inverted bit in the current test pattern (least reliable
bits, syndrome corrected bits and, the new parity bit).
The minimum metric is determined in the DW selection
block. The structure is a simple minimum selection tree.
The multiplexer selects R′

it(S(ti)) in order to compute
test pattern metrics.

5.2.3 Soft Output Computation Stage

The last stage is a duplication of n soft output computa-
tion blocks. As shown in Fig. 8, this block first computes
the new reliability Fit of each symbol. Since, no com-
petitor word is considered, the β value is automatically
assigned. The β value is based on an estimation of the

Figure 8 Soft output computation stage.

competitor word metric value. It is calculated from the
reliability of the corrected bit and the least reliable
bits. Then, the extrinsic information is computed and
damped by the coefficient αit which is devised to be
a power of 2 making the multiplication a simple bit
shifting. Finally, the channel information is added to
generate the soft output R′

it+1. Within this block, all
computation are performed in sign and magnitude for-
mat. Other arithmetic format were explored but the
chosen one requires less computation resources than
others.

6 Comparison with Existing TPC and LDPC Decoders

In classical iterative decoders, the hardware complexity
corresponds to the cumulative area of computational
resources and memory resources. In proposed IM-free
architecture, only the hardware complexity of the SISO
decoders have to be considered. Consequently, the
following synthesis results will only focus on hardware
complexity of SISO decoders. Moreover, some com-
parisons with current TPC and LDPC decoders are
given to demonstrate the potential of the proposed TPC
decoder.

6.1 BCH(32,26) SISO Decoder Logic Synthesis Results

In Section 3, we demonstrated that exploiting sym-
bol parallelism is efficient if CDEC(Psym = p) < p ×
CDEC(Psym = 1).
In order to verify this inequality, we compare one
parallel (Psym = n) BCH SISO decoder vs n × sequen-
tial (Psym = 1) SISO decoders. Five versions of the
BCH(32,26) parallel SISO decoder were designed and
have from one to five pipeline stages. The one-pipeline
stage version is a fully-combinatorial architecture with
register banks only at the input and output stages.
Table 3 summarizes synthesis results of the five
different parallel SISO decoders and compare them
with n = 32 duplicated sequential SISO decoders. s is
the number of pipeline stages inserted in the SISO
decoder, fmax is the maximum frequency reached dur-

J Sign Process Syst

Table 3 Comparison of
parallel and sequential
BCH(32,26) SISO decoder
performance.

s Parallel SISO decoder (Psym = 32) 32 sequential SISO decoders (Psym = 1)

1 2 3 4 5 3

fmax(Mhz) 125 333 500 500 714 700
T(Gb/s) 4.0 10.7 16.0 16.0 22.9 22.4
A (Kgates) 18 26 31 26 34 200
E (Mb/s/gate) 0.15 0.27 0.34 0.41 0.44 0.07
GE 2.1 3.9 4.9 5.9 6.3 1

ing synthesis, the throughput T is calculated such as
T = P × fmax, A represents the area of the design in
equivalent gate count and E is the efficiency: E = T

A .
Logic syntheses were performed using Synopsys Design
Compiler with a ST-microelectronics 90 nm CMOS
process. The area is transposed in logic gate count.
One equivalent logic gate corresponds to the area of
a two-input NAND gate. It enables a more technology-
independent measure of the hardware complexity.

As expected, the maximum frequency of the combi-
natorial decoder (s = 1) is lower than a sequential ver-
sion. However, by inserting pipeline stages inside the
combinatorial structure, the same frequency is reached
with s = 5. For this last version, the throughput is even
higher than n sequential SISO decoders. The hardware
cost of the pipeline stages insertion depends on reg-
isters location in the decoder. This is the reason why
A(s = 4) < A(s = 3). In this particular case, having s =
4 pipeline stages enables register stages to be assigned
at regular intervals, for a lower hardware cost. In terms
of efficiency, a parallel SISO decoder can reach the
same throughput as n sequential SISO decoders with

a six times lower complexity. The efficiency gain in-
creases with s.

These synthesis results demonstrate the higher
efficiency of parallel SISO decoding for the code
BCH(32,26). Now, if one consider larger code
with the same correction power (i.e. BCH(64,57),
BCH(128,120)), the complexity of the reception stage
and the soft output computation stage would grow
linearly with the code size n. However the complexity
of the test pattern processing stage would only
increase linearly with τp < n. Consequently, the overall
complexity of the parallel SISO decoder is lower
than a duplication of n sequential SISO decoders. It
confirms that a fully-parallel SISO decoder enables a
better reuse of computation and memory resources
and makes the whole TPC decoder more efficient.

One should notice that, for higher correction power
(t > 1), the algebraic decoding requires more complex
algorithms such as Berlekamp–Massey algorithm [24,
25] which make the decoder complexity significantly
higher. This is the reason why t = 1 codes were selected
is this study.

Table 4 Comparisons with current TPC decoders and LDPC decoders.

Decoder features Code Pi Ptotal itmax T Area E Coding gain (dB)
(Gb/s) (Mgates) (Kb/s/gate) @BER=10−9

This work BCH(32,26)2 Psym = 4, Psb = 32 128 6 10.7 0.4 26.8 8.0
BCH(32,26)2 Psym = 32, Psb = 32 1,024 6 85.3 2.0 42.7 8.0

Barrel shifter + IM [18] BCH(32,26)2 Psb = 32, P frame = 4 128 6 10.7 2.6 4.1 8.4
Omega network + BCH(32,26)2 Psb = 32, P frame = 4 128 6 10.7 1.6 6.7 8.4

no IM [19] BCH(64,57)2 Psb = 64, P frame = 2 128 6 10.7 2.0 5.4 8.6
BCH(128,120)2 Psb = 128 128 6 10.7 2.7 4.0 8.7

Multi-data access IM [20] BCH(32,26)2 Psym = 8, Psb = 8, 128 6 10.7 3.5 3.1 8.4
P frame = 2

Omega network + RS(15,13)2 Pis = 4, Psb = 15, 120 6 10 0.3 33.3 8.4
no IM [11] P frame = 2

RS(31,29)2 Pis = 5, Psb = 31 155 6 12.9 0.8 16.1 8.4
RS(63,61)2 Pis = 3, Psb = 63 378 6 15.8 1.3 12.1 7.5

Commercial RS decoder RS(255,239) Pis = 8, P frame = 4 32 X 10.7 0.12 89 5.0
(ASICS ws)

Omega network + RS(31,29)2 Pis = 5, Psb = 31 155 1 35 0.4 95 5.2
no IM [11]

Commercial TPC decoder BCH(144,128) ? ? 4 10.0 18.0 0.6 10
(Mitsubishi) ×BCH(256,239)

LDPC decoder [3] LDPC(2048,1723) ? 64 8 16.0 2.2 7.2 7.5
LDPC decoder [26] LDPC(1440,1344) ? 360 8 6.1 0.4 15.3 5.5

J Sign Process Syst

6.2 Comparison with Existing TPC Decoder
Architectures

Table 4 compares performance of the proposed so-
lution with current architectures in a ultra-high-
throughput context (T > 10 Gb/s). For each solution,
the decoder architecture main features, the targeted
code, the levels of parallelism that were used in order
to reach T = 10 Gb/s, the resulting total parallelism
(Ptotal = ∏

i Pi), the maximum number of iteration itmax

are given. We consider that one iteration is actually
implemented. The resulting throughput is T = Ptotal ×
fmax/ itmax. Finally, the gate count (A), the efficiency
(E = T/A) and the achieved coding gain at BER=10−9

are given. Such a low BER is usually targeted in very
high speed application (e.g. data transmission over Pas-
sive Optical Networks).

For a fair comparison, architectures described in [11,
18–20] were synthesized with the same technology: ST
Microelectronics, CMOS 90 nm with a target frequency
fmax = 500 MHz. For the remaining architectures, we
gathered information from the published papers and
technical reports.

Two versions of the proposed turbo decoder were
synthesized. The first one consists in 4 parallel SISO
decoders together with 32 Psym = 4-SISO decoders.
The reached throughput is then sufficient for 10 Gb/s
applications. The second version uses only fully-parallel
SISO decoder, 32 of such decoders are duplicated
for each half-iteration. The maximum throughput is
85 Gb/s for the best efficiency.

The barrel-shifter-based solution [18] can achieve
10 Gb/s with 2.6 Mgates. In order to reach a sufficient
parallelism level, it was necessary to use frame paral-
lelism. The efficiency of this solution is six times lower
than the proposed architecture. This low efficiency is
mainly due to the use of interleaving memory.

For the same reason, the TPC decoder with multi-
access data [20] has a low efficiency and also requires
the use of frame parallelism to achieve 10 Gb/s.

In [19], the elimination of interleaving memories
improves the efficiency but the maximum parallelism
rate is limited by the code size n, which makes the use
of frame parallelism mandatory in a ultra high speed
context. However, the proposed solution provides a
maximum parallelism rate of n2.

The study in [11] shows that RS-TPC are a practical
solution for 10 Gb/s transmission over optical networks.
As we mentioned in Section 3, using RS codes enables
the use of intra-symbol parallelism. With an omega-
network-based architecture, this solution also presents
good efficiency gain for similar decoding performance.

One should notice that the proposed fully-parallel ar-
chitecture is applicable to RS decoding as well. We
expect that the application of intra-symbol parallelism
would further increase the overall efficiency of the TPC
decoder. Moreover. when comparing a single iteration
of RS-TPC decoding with a commercial RS(255,239)
code decoder, one can observe that superior efficiency
is achieved for slightly better decoding performance.

Mitsubishi has recently proposed a TPC decoder for
10 Gb/s optical transmissions. The component code is a
BCH(144,128)×BCH(256,239). These codes are more
powerful than t = 1 BCH codes that are used in this
study, however the implementation is very costly in
terms of hardware complexity. Indeed, 18 Mgates are
necessary to implement such a decoder, which makes
the efficiency very small. This is the cost that have to be
paid for a 2dB extra coding gain provided by this TPC
decoder.

6.3 Comparison with Current LDPC Decoders

As a matter of comparison, we gathered results from
recent academic implementation of LDPC decoders.
Since the code rates are different, the decoding per-
formance comparison is not straightforward. However
the architectural results help to locate the different de-
coders in the design space. Synthesis results show that a
fully-parallel TPC decoder achieves higher throughput
(85 Gb/s) than comparable LDPC decoders with a
lower hardware complexity (2 Mgates).

However, placing and routing 2n parallel SISO de-
coders onto the same chip would reduce the maximum
working frequency of the parallel SISO decoder. Nev-
ertheless, with Ptotal =1,024, throughput T=10 Gb/s is
reached when f > 88 MHz which is a most probably
achievable frequency on an ASIC target. Furthermore,
a reasonable working frequency of f =300 MHz leads
to a BCH(32,26)2 product code turbo decoder with
an throughput T =50 Gb/s. The total area of such a
parallel turbo decoder is A = 2.2 Mgates= 10 μm2.
In parallel LDPC code decoder, one of the main is-
sues is the routing congestion induced by the Tan-
ner graph implementation. The number of intercon-
nections among the TPC decoder is In(TPCD) = 2 ×
n2

BCH × q while an equivalent fully parallel 1024-LDPC
decoder would have In(1024-LDPC) = nLDPC × q × dv

where dv represents the variable node degree. Con-
sequently, as long as dv > 2, the following inequa-
tion is verified: In(T PCD) < In(1024 − LDPC). Con-
sequently, despite the high parallelism level that can
be reached in TPC decoding, both area and routing
congestions are in favor of TPC decoders.

J Sign Process Syst

7 Conclusion

TPC decoding is a realistic solution for next generation
high throughput optical communications such as long-
haul optical transmissions or passive optical networks.
The structure of the product codes makes them very
suitable for parallelisation, however the exploitation of
some parallelism levels may not be efficient in terms
of throughput/complexity ratio. This is particularly true
when interleaving memory has to be duplicated.

In this paper we proposed to review and characterize
all parallelism levels in TPC decoding. This analysis
helps to better understand and classify existing TPC
decoders. In previous TPC decoders, high through-
put architecture complexity is made prohibitive by the
amount of memory usually required for data interleav-
ing and pipelining.

After this design space exploration, we propose an
innovative architecture that jointly exploit sub-block
parallelism and symbol parallelism. This novel struc-
ture enables any interleaving resource to be removed.
The proposed TPC decoder requires a fully-parallel
SISO decoder capable of processing n symbols in one
clock period. Such a SISO decoder architecture is de-
scribed and includes a new optimized parallel sorting
network.

ASIC-based logic syntheses confirm the better
efficiency of the proposed IM-free TPC decoder archi-
tecture compared to existing TPC decoders and recent
LDPC decoders. Actually, when compared to previous
work, the area is reduced while the same throughput
is achieved. A BCH(32,26)2 product code can be de-
coded at 33.7 Gb/s with an estimated silicon area of
10μm2.

References

1. Gallager, R. G. (1962). Low density parity check codes. IRE
Transactions on Information Theory, IT, 21–28.

2. Berrou, C., Glavieux, A., & Thitimajshima, P. (1993). Near
Shannon limit error-correcting coding and decoding: Turbo-
codes. In IEEE international conference on communications
1993, ICC 93, Geneva, 23–26 May 1993.

3. Darabiha, A., Carusone, A. C., & Kschischang, F. R. (2007).
A 3.3-Gbps bit-serial block-interlaced min-sum LDPC de-
coder in 0.13-um CMOS. In IEEE conference on custom inte-
grated circuits, 2007, CICC ’07.

4. Pyndiah, R., Glavieux, A., Picart, A., & Jacq, S. (1994). Near
optimum decoding of product codes. In IEEE global telecom-
munications conference, 1994, GLOBECOM ’94.

5. Mizuochi, T., Kubo, K., Yoshida, H., Fujita, H., Tagami, H.,
Akita, M., et al. (2003). Next generation FEC for optical
transmission systems. In Optical f iber communications con-
ference, 2003, OFC 2003.

6. Mizuochi, T., Ouchi, K., Kobayashi, T., Miyata, Y., Kuno,
K., Tagami, H., et al. (2003). Experimental demonstration
of net coding gain of 10.1 dB using 12.4 Gb/s block turbo
code with 3-bit soft decision. In Optical f iber communications
conference, 2003, OFC 2003, 23–28 March.

7. Leroux, C., Jego, C., Adde, P., & Jezequel, M. (2008). A
highly parallel turbo product code decoder without inter-
leaving resource. In SiPS 2008: IEEE workshop on signal
processing systems, 8–10 October, Washington, D.C. Metro
Area, U.S.A.

8. Muller, O., Baghdadi, A., & Jezequel, M. (2006). Exploring
parallel processing levels for convolutional turbo decoding.
In ICCTA’06: IEEE international conference on information
and communication technologies: From theory to applications,
24–28 April, Damas, Syria (pp. 2353–2358).

9. Elias, P. (1954). Error-free coding. IEEE Transactions on
Information Theory, 4(4), 29–37.

10. IEEE Standard 802.16-2001 (2001) IEEE standard for local
and metropolitan area networks part 16: Air interface for
fixed broadband wireless access systems.

11. Bidan, R. L., Leroux, C., Jego, C., Adde, P., & Pyndiah,
R. (2008). Reed–Solomon turbo product codes for optical
communications: From code optimization to decoder design.
EURASIP Journal on Wireless Communications and Net-
working, 2008, 909–912.

12. Leroux, C., Jego, C., Adde, P., & Jezequel, M. (2008). On the
higher efficiency of parallel Reed–Solomon turbo-decoding.
In ICECS’08: 15th international conference on electronics, cir-
cuits and system, 31st August–3rd September.

13. Forney, J. G. (1966). Generalized minimum distance decod-
ing. IEEE Transactions on Information Theory, IT-12, 125–
131.

14. Adde, P., Pyndiah, R., & Raoul, O. (1996). Performance
and complexity of block turbo decoder circuits. In Proceed-
ings of the third IEEE international conference on electronics,
circuits, and systems, 1996. ICECS ’96, 13–16 October 1996
(Vol. 1, pp. 172–175).

15. Chase, D. (1972). A class of algorithms for decoding block
codes with channel measurement information. IEEE Trans-
actions on Information Theory, IT, 170–182.

16. Leroux, C., Jego, C., Adde, P., & Jezequel, M. (2007). To-
wards Gb/s turbo decoding of product code onto an FPGA
device. In IEEE international symposium on circuits and Sys-
tems, 2007. ISCAS 2007, 27–30 May 2007 (pp. 909–912).

17. Adde, P., & Pyndiah, R. (2000). Recent simplifications and
improvements in block turbo codes. In 2nd international sym-
posium on turbo codes & related topics, 4–7 September, Brest,
France (pp. 133–136).

18. Chi, Z., & Parhi, K. (2002). High speed VLSI architecture
design for block turbo decoder. In IEEE international sym-
posium on circuits and systems, 2002. ISCAS 2002, 26–29 May
2002 (Vol. 1, pp. I-901–I-904).

19. Jego, C., Adde, P., & Leroux, C. (2006). Full-parallel ar-
chitecture for turbo decoding of product codes. Electronics
Letters, 42, 55–56.

20. Cuevas, J., Adde, P., Kerouedan, S., & Pyndiah, R. (2002).
New architecture for high data rate turbo decoding of
product codes. In Global telecommunications conference,
2002. GLOBECOM ’02. IEEE, 17–21 Nov. 2002 (Vol. 2, pp.
1363–1367).

21. Piriou, E., Jego, C., Adde, P., Le Bidan, R., & Jezequel, M.
(2006). Efficient architecture for Reed Solomon block turbo
code. In 2006 IEEE international symposium on circuits and
systems, 2006. ISCAS 2006. Proceedings, 21–24 May 2006
(4pp.).

J Sign Process Syst

22. Leroux, C., Jego, C., Adde, P., & Jezequel, M. (2009). High-
throughput block turbo decoding: From full-parallel archi-
tecture to FPGA prototyping. Journal of Signal Processing
Systems, 57, 349–361.

23. Akl, S. G. (1985). Parallel sorting algorithms. New York:
Academic.

24. Berlekamp, E. R. (1984). Algebraic coding theory, revised
edition. Laguna Hills: Aegean.

25. Massey, J. L. (1969). Shift-register synthesis and bch decod-
ing. IEEE Transactions on Information Theory, IT, 122–127.

26. Yamagishi, H., & Noda, M. (2008). High throughput hard-
ware architecture for (1440,1344) low-density parity-check
code utilizing quasi-cyclic structure. In 2008 5th international
symposium on turbo codes and related topics (pp. 78–83).

Camille Leroux was born in Vannes, France, in 1981. He received
his M.S. in Electronics Design and Systems Architecture from
the University of South Brittany in 2005. He performed his
Ph.D. (2005–2008) in the Electronic Engineering Department at
TELECOM Bretagne, France. He is currently a Postdoc fellow
in the Department of Electrical and Computer Engineering at
McGill University, Montréal, Canada. His research interest focus
on hardware implementation of iterative decoding algorithms.

Christophe Jego was born in Auray, France, in 1973. He re-
ceived the M.S. and Ph.D. degrees from the Université Rennes
1, Rennes, France, in 1996 and 2000, respectively. He joined
the Electronic Engineering Department of TELECOM Bretagne
as a full-time Associate Professor in 2001. He was a visiting
professor in the Department of Electrical and Computer En-
gineering at McGill University during 10 months (Sept. 2006 –
June 2007). In 2009, he received Research Habilitation from
University of Bretagne Sud. It is the highest French university
diploma passed after a few years of active research and student
supervision. His research activities are concerned with analysis
and design of architectures for iterative processing in the digital
communication systems.

Patrick Adde was born in Caen, France, in 1953. He received the
degree of “Ingénieur” from the “École Nationale d’ingénieur de
Brest”, Brest, France in 1974. In 1979, he joined the École Na-
tionale Supérieure des Télécommunications de Bretagne, where
he is currently Professor. His research interests are about the
design of efficiency architectures for turbo decoding of product
codes.

J Sign Process Syst

Deepak Gupta was born in Haryana, India in 1983. He received
his Bachelor of Technology degree from Guru Gobind Singh
Indraprastha University, New Delhi, India in 2005. In 2008, he
received M.Sc. degree in IC design and communications from
TELECOM Bretagne, France during which he worked on chan-
nel coding and frequency multiplier architectures. Currently, he
is working towards a Ph.D. in ultra-low power SoC design for
biomedical applications in the Electronics department, Telecom
Bretagne, France.

Michel Jezequel (M’02) was born in Saint Renan, France, on
February 26, 1960. He received the degree of “Ingénieur” in elec-
tronics from the “École Nationale Supérieure de l’Électronique
et de ses Applications”, Paris, France in 1982. In the period
1983–1986 he was a design engineer at CIT ALCATEL in Lan-
nion, France. Then, after an experience in a small company, he
followed a one year course about software design. In 1988, he
joined the TELECOM Bretagne, where he is currently Professor,
head of the Electronics Department. His main research interest is
circuit design for digital communications. He focuses his activities
in the fields of Turbo codes, adaptation of the turbo principle
to iterative correction of intersymbol interference, the design of
interleavers and the interaction between modulation and error
correcting codes.

	Turbo Product Code Decoder Without Interleaving Resource: From Parallelism Exploration to High Efficiency Architecture
	Abstract
	Introduction
	TPC Coding and Decoding Principles
	Product Codes
	Iterative Decoding of Product Codes

	Parallel Processing Levels in TPC Decoding
	Frame Parallelism
	Iteration Parallelism
	Sub-block Parallelism
	Symbol Parallelism
	Intra-symbol Parallelism
	Parallelism Levels Comparison

	Parallel Decoding of Product Codes
	Previous Work
	Proposed IM-Free Architecture Using Fully-Parallel SISO Decoder
	Towards a Maximal Parallelism Rate

	Architecture of a Fully-Parallel Combinatory SISO Decoder
	Algorithmic Parameter Reduction
	Fully-Parallel SISO Decoder Architecture
	Reception Stage
	Test Pattern Processing Stage
	Soft Output Computation Stage

	Comparison with Existing TPC and LDPC Decoders
	BCH(32,26) SISO Decoder Logic Synthesis Results
	Comparison with Existing TPC Decoder Architectures
	Comparison with Current LDPC Decoders

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

