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Abstract Ultra high-speed block turbo decoder archi-
tectures meet the demand for even higher data rates
and open up new opportunities for the next genera-
tions of communication systems such as fiber optic
transmissions. This paper presents the implementation,
onto an FPGA device of an ultra high throughput block
turbo code decoder. An innovative architecture of a
block turbo decoder which enables the memory blocks
between all half-iterations to be removed is presented.
A complexity analysis of the elementary decoder leads
to a low complexity decoder architecture for a negli-
gible performance degradation. The resulting turbo
decoder is implemented on a Xilinx Virtex II-Pro
FPGA in a communication experimental setup which
also includes an innovative parallel product encoder.
The implemented block turbo decoder processes input
data at 600 Mb/s. The component code is an extended
Bose, Ray-Chaudhuri, Hocquenghem (eBCH(16,11))
code. Some solutions to reach even higher data rates
are finally presented.

Keywords Block turbo decoding ·
Full-parallel architecture · Complexity analysis ·
FPGA implementation

1 Introduction

In telecommunications, forward error correction (FEC)
is a system of error control that improves digital com-
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munication quality. Error correction encoding is the
addition of redundancy into the binary information
sequence that is to be transmitted over the communica-
tion channel. This redundancy allows the error correc-
tion decoder to detect and/or to correct the effects of
noise and interference encountered in the transmission
of the information through the communication channel.
Turbo coding was a powerfull improvement in error
correction systems [1]. This family of codes consists
of two key design innovations: concatenated encoding
and iterative decoding. Soft Input Soft Output (SISO)
decoders are used in the iterative decoding process.
A SISO decoder both receives soft decision data and
produces soft decision output. The general concept of
the iterative SISO decoding of concatenated convolu-
tional codes has been extended to product codes [2]
and LDPC codes [3]. Moreover, the principle of turbo
processing has been extended into new receiver topolo-
gies such as turbo detection, turbo equalization, turbo-
coded modulation, turbo MIMO, etc. Since 1999, turbo
codes have been adopted by several applications. They
are particularly attractive for cellular communication
systems and have been included in the specifications
for both the UMTS and CDMA2000 third-generation
cellular standards. Similarly, turbo codes were chosen
in the field of Digital Video Broadcasting (DVB) and
Wireless Metropolitan Area Networks (IEEE 802.16)
to increase transmission rates and/or to guarantee
Quality of Service (QoS). Currently, research is under
way to use turbo codes to protect data stored on
hard drive or DVD and in fiber optical transmission.
Fiber optical communications are an important tech-
nology in supporting broadband networking. The ear-
liest FEC for optical communication [4] employed the
well known Reed-Solomon (RS) codes to recover the
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degradation in bit error rate (BER) due to the effects
of fiber nonlinearity and polarization-dependent phe-
nomena. The standard interfaces and rates are specified
in the ITU-T G.709 for Optical Transport Networks
(OTN). A G.709 OTN frame includes an RS(255,239)
code that helps reduce the number of transmission
errors on noisy links, which enables the increase in
transmission capacity. A net coding gain of around 6dB
is provided by the RS(255,239) code. During the last
few years, more powerful FECs have been studied to
increase the net coding gain. Block Turbo Codes (BTC)
have a theoretical potential net coding gain of around
10 dB with a redundant overhead of less than 25 %
[5, 6]. Typically, realistic block turbo codes can operate
at less than 1dB from the Shannon limit for a binary
symmetric channel. Very high-speed data transmission
developed for fiber optical networking systems have
necessitated the implementation of ultra high-speed
FEC architectures to meet the continuing demands for
even higher data rates. Currently, the RS(255,239) code
can be used in ultra high-speed (40 Gb/s [7] and 80 Gb/s
[8]) fiber optic systems. However higher coding gain
can be reached using turbo product codes. In 2002,
a new architecture for turbo decoding product codes
was presented [9]. This architecture can theoretically
achieve a throughput of 6.4 Gb/s on an ASIC target,
but no concrete realisation were performed. In 2005,
Mitsubishi Electric announced the development of the
first block turbo decoder for 10 Gb/s optical transmis-
sion [10]. Since the BTC decoder is framed with a dum-
my sequence, effective input throughput is 193 Mb/s
while the information throughput is 156 Mb/s (taking
account of the code rate). In classical parallel architec-
ture approaches [11], BTC decoders requires a large
amount of memory between each half-iteration. In this
paper, we show that Interleaving Memory (IM) can be
replaced by a simple connection network. In such a
parallel architecture, most of the hardware complexity
remains in the duplicated elementary Soft Input Soft
Output (SISO) decoders. That is the reason why a com-
plexity analysis of the SISO decoder was performed,
resulting in a low complexity parallel decoder. This low
complexity architecture was finally implemented onto
a low cost FPGA device. This paper is organized as
follows. Section 2 recalls the basic principles of decod-
ing for product codes: their construction and the turbo
decoding process. In Section 3 an innovative, memory-
less, full-parallel decoder architecture is presented. In
Section 4, we propose a complexity and performance
analysis of the elementary decoder which allows a rapid
and efficient estimation of the decoder complexity.
Section 5 describes an implementation of the resulting

turbo decoder within an experimental setup onto an
FPGA target.

2 BTC Coding and Decoding Principles

In this section, the concept of product codes, their con-
struction and the principle of the decoding algorithm
are presented.

2.1 Linear Cyclic Block Codes

Bose Chaudhuri Hocquenghem (BCH) codes are an
infinite class of linear cyclic block codes that have
capabilities for multiple error detection and correction.
Reed-Solomon (RS) codes are a subclass of non-binary
BCH codes. Actually, a code is linear if and only if
the set of codewords forms a vector subspace over a
finite field like a Galois field. Moreover, in a cyclic
code, for every codeword c = (c0, c1, ..., cn−2, cn−1), c′ =
(cn−1, c0, ..., cn−3, cn−2) is also a codeword. Thus all n
shifts of c are also codewords. BCH and RS codes
are usually specified as BCH(n, k) with binary symbols
and RS(n, k) with m-ary symbols. This means that
the encoder takes k data symbols and adds (n − k)

redundant symbols to generate an n symbols codeword.
The minimum Hamming distance d is the minimum
distance between two distinct codewords, over all pairs
of codewords. The decoder can correct up to t symbols
that contain errors in a received word, where t = d−1

2 .
Concerning BCH codes, it is also possible to extend
the code by adding a parity check bit at the end of
the codeword. Extended BCH codes are denoted as
eBCH codes. This simple overhead allows an increase
of the code distance with a factor 1 and the additional
complexity is very low.

3 Algebraic Codes Decoding

Algebraic codes are based on Galois field arithmetic. A
(n, k) code works in a Galois field GF(n − 1) defined
by its generator polynomial. Moreover, given a symbol
size m, the maximum codeword length is n = 2m − 1.
Decoding algebraic codes consists in resolving the key
equation:

S(x)σ (x) = �(x)mod(xn−k). (1)

S(x) is the syndrome polynomial, σ(x) is the error
locator polynomial and �(x) is the error estimator
poynomial. First, syndrome values of the to be decoded
vector are computed. RS code decoding requires 2t
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syndromes while BCH codes decoding requires only
t syndromes. Then, the roots of the error localisator
polynomial is computed, giving the position of the
errors. There are many algorithms which efficiently
solve this equation. The best known methods are the
iterative Berkelamp Massey [12, 13] algorithm and the
direct Peterson Gorenstein Zierler (PGZ) algorithm
[14]. Because of its complexity, the PGZ algorithm is
mostly used when t < 3, otherwise Berkelamp Massey
is mainly employed. Finally, in the case of RS codes,
the roots of the error estimator polynomial are com-
puted. It gives the magnitude of the errors. One of the
conventionally used algorithms was designed by Forney
[15]. In case of BCH codes, the magnitude of the error
is always 1. Correction is then obtained by inverting the
corrupted bit.

3.1 Product Codes

The concept of product codes is a simple and efficient
method to construct powerful codes with a large min-
imum Hamming distance d using cyclic linear block
codes [16]. Let us consider two systematic cyclic linear
block codes C1 having parameters (n1, k1, d1) and C2

having parameters (n2, k2, d2) where ni, ki and di(i =
1, 2) stand for code length, number of information
symbols and minimum Hamming distance respectively.
The product code P = C1 × C2 is obtained by placing
(k1 × k2) information bits in a matrix of k1 rows and k2

columns, coding the k1 rows using code C2 and coding
the n2 columns using code C1.

Considering that C1 and C2 are linear codes, it is
shown that all n1 rows are codewords of C2 exactly as
all n2 columns are codewords of C1 by construction.
Furthermore, the parameters of the resulting product
code P are given by np = n1 × n2, kp = k1 × k2, and
dp = d1 × d2 and the code rate Rp is given by Rp =

n1

n2

k1

k2

Information
symbols

Checks

on rows

Checks

on columns

Checks

on checks

Figure 1 Structure of a product code matrix.

R1 × R2. Thus, it is possible to construct powerful
product codes using linear block codes. As a general
rule, the more powerful a code, the more difficult the
decoding process. Figure 1 schematizes the construc-
tion of a product code P. In the following sections,
we will consider a squared product code, meaning that
n1 = n2 = n.

3.2 Iterative Decoding of Product Codes

Product code decoding involves sequentially decoding
rows and columns using SISO decoders. Repeating
this soft decoding during several iterations enables the
decrease of the Bit Error Rate (BER). It is known as
the block turbo decoding process. Each decoder has to
compute soft information [R′]it+1 from the channel re-
ceived information [R]it and the previous half-iteration
computed information [R′]it as shown on Fig. 2. Despite
the existence of other decoding algorithms [17], the
Chase-Pyndiah algorithm is known to give the best
tradeoff between performance and decoding complex-
ity [18]. Besides, this algorithm was adopted in 2001
as an optional correcting code system for both the
uplink and downlink of the IEEE 802.16 standard
(WiMAX) [19, 20].

The Chase-Pyndiah SISO algorithm [2, 21] is con-
cisely summarized below:

1. Search for the Lr least reliable binary bits and
compute the syndrome S0 of [R′]it,

2. Generate Tp test patterns obtained by inverting
some of the Lr least reliable binary symbols,

3. Algebraic decoding of each test pattern,
4. For each test vector, compute the square Euclidian

distance (metric) Mi(i=0, ..., Tpn−1) between [R′]it

and the considered test vector
5. Select the Decided Word (DW) having the minimal

distance with [R′] and choose Cw concurrent words
having the closest distance to [R′]it

6. Compute reliability [F]it for each symbol of
the DW,

Dit

Fit

Wit

Rit

R’it

itα

Delay

Delay

+ × +
Decoder

Rit+1

R’it+1

Figure 2 Elementary SISO decoder dedicated to product codes.
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7. Compute extrinsic information [W]it =[F]it−[R′]it

for each symbol of the DW.
8. Add extrinsic information (multiplied by αit) to the

channel received word, [R′]it+1 = [R]it + ait[W]it

A αit coefficient allows decoding decisions to be
dampened during the first iterations. It should be noted
that decoding parameters Lr, Tp, and Cw have a
notable effect on decoding performance.

4 Parallel Decoding

4.1 Previous Work

Many block turbo decoder architectures have been
previously designed. The classical high speed approach
involves the use of a pipelined structure at the iteration
level. Separate decoding resources are assigned for
each half-iteration. In such an implementation, mem-
ory blocks are necessary between each half-iteration
to store [R′]it and [R]it. Each memory block is then
composed of four memories of q × n2 symbols where
q is the number of bits to quantize the matrix sym-
bols. This solution presents several drawbacks. First,
a large amount of memory is required which increase
the global latency of the system. Moreover, increasing
the parallelism degree of each half-iteration produces
memory conflicts when several data have to be ad-
dressed at the same time. In 2002, a new architecture
was proposed [9] in order to increase the parallelism de-
gree without any extra storage between half-iteration.
The idea was to store several product code matrix sym-
bols at the same address and to use elementary de-
coders able to process several symbols at the same time.
This data organization does not require any particu-
lar memory architecture. The results obtained show
that the turbo decoding throughput is increased by
m2 when m elementary decoders processing m data
simultaneously are used and its latency is divided by
m. The area of the m elementary decoders (m-e-dec)
is increased by m2

2 while the memory is constant. A
m-e-dec decoder denotes an elementary decoder which
decodes m symbols in one clock period. In [22], authors
suggested to use a barrel shifter between decoding re-
sources and the IM in order to avoid memory conflicts.
This solution enables reaching an increased parallelism
rate P = n by rotating the to be stored data. The extra-
complexity only consists in a barrel shifter with a com-
plexity in O(nlog(n)). However, the IM requirement
is still prohibitive. In the next section, we describe a
innovative scheduling for block turbo decoding. In the

corresponding architecture, the IM is replaced by a
simple interconnection network.

4.2 Full-parallel Decoding Principle

The codewords of all rows (or all columns) of a matrix
are independent. Consequently, they can be decoded in
parallel. If the architecture is composed of n elemen-
tary decoders for each half-iteration, an appropriate
treatment of the matrix enables the elimination of the
reconstruction of the matrix between each decoding.
Let i and j be the indices of a row and a column of the
n2 matrix. In full-parallel processing, the row decoder
i begins the codeword decoding by the symbol in the
ith position. Moreover, each row decoder processes
the codeword symbols by increasing the index by one
modulo n. Similarly, the column decoder j begins the
codeword decoding by the symbol in the jth position.
In addition, each column decoder processes the code-
word symbols by decreasing the index by one modulo
n. Therefore, each new decoded data is immediately
used by the next half-iteration decoders and data only
require to be properly routed. Consequently, no IM is
required. The full-parallel decoding of a product code
matrix is detailed in Fig. 3. The proposed decoding
scheme is presented in the case of a squared product
code (n1 = n2 = n). The method is also applicable to
non-squared codes such as n1 �= n2. Defining nmin as
nmin = min(n1, n2), it is possible to decode nmin rows
and nmin columns in parallel.

The latency of an elementary decoder depends on
the structure of the elementary decoder and the code-
word length n. As the reconstruction matrix is removed,
the latency between row and column decoding is null.

i

j

symbol
(0;0)

Index (i+1) = i+1 mod n

Index (j+1) = j -1 mod n

n1 rows of n2
symbols

n2 columns of n1 symbols

Figure 3 Full-parallel decoding of a product code matrix.
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4.3 Full-parallel Architecture for Product Codes
Turbo Decoder

The major advantage of our full-parallel architecture is
that it enables the memory block of 4 × q × n symbols
between each half-iteration to be removed. However,
the codeword symbols exchanged between the row and
column decoders have to be scheduled. One solution
is to use a connection network for this task. In our
case, we have chosen an Omega network. The Omega
network is one of several connection networks used in
parallel machines [23]. It is composed of log2 n stages,
each having n

2 exchange elements. In fact, a n-input
Omega network contains log2 n

2 switch transfer blocks
and n log2 n connections. More details about the archi-
tecture can be found in Section 7.3. For example, the
equivalent gate complexity of a network with 32 inputs
quantized with 1 bit can be estimated to be 200 per
exchange bit. The proposed full-parallel architecture
for product codes is presented in Fig. 4. It is composed
of cascaded modules for the block turbo decoder. Each
module is dedicated to one iteration. However, it is
possible to process several iterations by a same module.
In our approach, 2n elementary decoders and 2 connec-
tion networks are necessary for one module. Actually,
the full-parallel turbo decoder complexity essentially
depends on the complexity of the elementary decoder
and the code size n.

The proposed IM-less architecture eliminates the
latency due to matrix reconstruction while maximizing
the reachable throughput. It also reduces the inter-
leaving resources from a large amount of memory to
a simple omega network. The structure and the com-
plexity of an omega network is detailed in Section 7.3.
Figure 5 shows the complexity (in equivalent logic gate
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Figure 5 Comparison of internal memory complexity for a
half-iteration.

count) for the previous and proposed architectures.
The curve A corresponds to the architecture proposed
in [9], the curve B corresponds to [22] and curve C
represents the interleaving logic complexity of the
proposed architecture. Area estimation were plotted
using a memory area estimation model provided by
ST-Microelectronics. It clearly shows that the IM archi-
tecture drastically reduces the IM requirements, espe-
cially when the code size increases.

Considering the proposed interleaving memoryless
architecture, the remaining complexity is in the decod-
ing processors. In such a parallel architecture, the num-
ber of required SISO decoders is DECn = 2 × it × n,
where it and n are the number of decoding itera-
tions and the code size respectively. A SISO decoder
complexity can be reduced by a decrease of algorith-
mic parameters values. However, these simplifications
lead to a loss in performance which have to be esti-
mated. In the next section, we propose a method to

Figure 4 Full-parallel
architecture of a block turbo
decoder.
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find a good tradeoff between complexity and decoding
performance.

5 Complexity and Performance Analysis for eBCH
SISO Decoders

Syntheses for the complexity estimations were per-
formed using the Synopsys tool with an STMicrolec-
tronics 0.09 μm CMOS process target. Elementary
decoders are clocked at f = 500 MHz. BER per-
formance was simulated using C-ANSI models of a
turbo decoder for the product codes eBCH(16,11)2 and
eBCH(32,26)2.

5.1 Complexity Analysis of BCH SISO Decoders

A conventional SISO decoder is composed of twelve
processing parts (see Fig. 8 in Section 7.2). Running
these existing decoder designs through logic synthesis
showed that only four parts were critical in terms of
logical gate complexity (75% of the area). As a result,
our study is focused on these parts. One of these parts
is the αit multiplication unit. In classical architectures,
it is implemented as a conversion table. Input can be
multiplied by 0.55 < αit < 0.75, the value depending
on the current iteration. Keeping αit = 0.5 for each
iteration enables the unit to be removed since the
multiplication becomes a simple bit shifting. There-
fore, the elementary decoder area is decreased by 8%.
The induced loss of performance �α is very low (0 <

�α < 0.1 dB). Consequently, the complexity analysis
will now be focused on the three remaining parts. By
analyzing the architecture of these critical parts, five
parameters appear to directly affect their complexities.
Table 1 sums up the order of complexity of the three
critical parts that depend on parameters introduced in
Section 3.2.

Decoding parameters Lr, Tp, Cw, as well as the
code size n and the number of quantization bits q have
a direct impact on the decoder complexity (area or
number of logical gates). Considering a code size n, let’s
define a set pi of decoding parameters:

pi = qi, Cwi, Tpi, Lri. (2)

Table 1 Order of complexity of the three critical parts of a SISO
decoder

Blocks n q Lr Tp Cw

Dw-Cw Sorting O(n log(n) O(q) O(Lr) O(Tp) O(Cw)

Lr sorting O(q) O(Lr) O(Tp)

Reliability O(n log(n) O(q) O(Lr) O(Tp) O(Cw)

computation

Varying pi, directly affects both the hardware complex-
ity and the decoding algorithm performance. Increasing
these parameter values improves performance while
the complexity increases. The purpose of our analysis is
to be able to compute easily the complexity of a SISO
decoder for any set of parameters pi with reasonable
accuracy. Considering a code size n, the most favorable
configuration is:

p0 = Cw0 = 3, q0 = 5, Tp0 = 16, Lr0 = 5. (3)

It gives the best decoding performance (0.1 dB from
the optimal decoding limit). Moreover, increasing pa-
rameters values of p0 does not significantly improve
performance. For this reason, this configuration is the
reference for our decoder architecture complexity. Syn-
thesis showed that, in this case, the four critical parts
represent 75% of the decoder area whatever the code
size n. In addition, assuming that the remaining 25%
of the decoder is almost not affected by the variation
of a set pi (as verified during syntheses), it can be
demonstrated that the SISO decoder complexity Cpi(n)

can be expressed as:

Cpi(n) = (1/3)(C′
p0(n)) + C′

pi(n). (4)

where C′
pi(n) is the cumulated complexity of the four

critical parts in terms of logical gates for a parameter
set pi. More details can be found in the Appendix.
Synthesizing generic descriptions of the critical parts
and carrying out a multiple linear regression analysis
led to an expression of C′

pi(n) only depending on the
decoding parameters. This expression represents the
cumulated complexity C′

pi(n) of the four critical parts
in terms of logical gates for a parameter set pi.

C′
pi(n) = 462(Cwi − 1) + 261(log(n) − 4) + 183(qi − 4)

+55(Tpi − 4) + 46(Lri − 2) + 1019 (5)

The model’s accuracy was measured a posteriori. The
maximum and average errors (between model and syn-
thesis results) are 8% and 2.5% respectively. The total
area of a half-iteration is given by:

CT = nCpi(n) + 2C�(n, q) + CRAM(n, q), (6)

where C�(n, q) is the area of a omega network routing n
data of q bits and CRAM(n, q) is the area of the internal
memory required in the SISO decoder as explained in
Section 7.2.

5.2 A Complexity–Performance Tradeoff Case
of Study

The previously presented model can be used in or-
der find a good tradeoff between performance and
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Figure 6 A complexity performance tradeoff for the
eBCH(32,26)2 code.

complexity. A case of study was performed for a code
eBCH(32,26)2. The coding gain at BER = 10−6 and
the complexity of a half-iteration were computed for
different parameter sets. Figure 6 shows the impact
of decoding parameters on the performance and the
complexity.

First, it can be observed that the complexity vari-
ation can be significant: CT(p6) − CT(p0) = 25Kgates
per half-iteration while the corresponding performance
loss is 0.8dB. Comparing p0, p3 and p4 show that, at
BER=10−6, Cw does not impact the decoding perfor-
mance while the complexity linearly decreases with Cw.
The effect of the quantization q is highlighted by para-
meter sets p0, p1 and p2. The quantization level q has
a notable impact on decoding performance and have to
be chosen considering the potential performance loss
in performance. The same remark can be done for Tp
when considering parameter sets p0, p5 and p6. This
case of study does not have any pretention to generalize
the impact of each parameter on decoding performance
but it does show some trends of the complexity for
the different parameter sets. When coupled with algo-
rithmic performance considerations, such a complexity
model can help the designer to efficiently explore the
design space of the block turbo decoder.

6 Towards Prototyping

Currently, a typical hardware design approach is to use
an FPGA development board to first prototype the
turbo decoder design and its experimental setup. The
low cost Virtex II-Pro XUP [24] development system
from Digilent was selected for our experimentation.
These boards contain a Xilinx Virtex II-Pro XC2VP30
FPGA device with 13,696 slices. Preliminary syntheses
show that only a half-iteration of the eBCH(32,26)2

block turbo decoder would fit onto the Virtex II-Pro
XC2VP30 device. Indeed, some elements of the experi-
mental setup have to fit onto the same FPGA device as
the block turbo decoder. In the case of eBCH(16,11)2,
up to 3 half-iterations (48 SISO decoders) can be imple-
mented onto the same low-cost Xilinx VII Pro FPGA
device. For this reason, the eBCH(16,11)2 was finally
chosen for our experimentation. The main concern of
the implementation phase was the limited resources
available on the targeted component. The complex-
ity model was transposed for a FPGA target and it
provided an estimation of the complexity (slices num-
ber instead of gates count) for different parameter
sets. Algorithmic simulations showed that for a small
size of product code (eBCH(16,11)2), the performance
degradation associated with the particular set p7 =
Cw = 1, q = 4, Tp = 4, Lr = 2 was reasonnable. Re-
placing parameter set p0 by p7 degrades performance,
but the gap is only 0.4 dB at BER=10−2 while it be-
comes insignificant (<0.1 dB) at BER=10−6. Compared
with p0, the complexity is reduced by 30% and allows
one full-iteration to fit onto the Virtex II Pro.

7 Full-parallel Encoder and Turbo Decoder
Implementations on an FPGA Device

7.1 Full-parallel Encoder Architecture

Linear block codes encoding consists in dividing infor-
mation vector k by the polynomial generator of the
considered code. This is conventionally implemented
by a set of shift registers with some feedback logic.
In a conventional product codes encoding process, k1

rows are firstly encoded using the code C2. Therefore,
a k1 × (n2 − k2) redundancy block is obtained. Then
the n2 columns composed of k1 × k2 information bits
and k1 × (n2 − k2) redundancy bits are encoded. This
sequential approach requires a k1 × n2 memory block
between rows and columns encoding. Alternatively, a
linear block code can be encoded by multiplying the in-
formation vector k by the generator matrix. This can be
easily implemented by an XOR arborescence which is a
parallel combinatorial solution. The original proposed
encoding scheme uses both sequential and parallel en-
coders. k sequential encoders process k1 rows and a par-
allel encoder processes the n2 columns. Figure 7 shows
the three first steps of the encoding process for a (7,4)
code. It also depicts the corresponding architecture.
During the first clock period, k1 sequential encoders
process the first bit of the k1 rows. Next, the sequential
encoder processes the second bit of each of the k1 rows
while the parallel encoder processes simultaneously the
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Figure 7 Product code
parallel encoding scheme and
architecture. ER0
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In the previous approaches, it was necessary to
encode all k1 rows before starting to encode the n2

columns. A k1 × n2 size memory was then required.
The depicted architecture decreases the latency from
k1 × n2 to only 1 symbol and avoids the use of an
intermediate k1 × n2 memory block.

7.2 Full-parallel Decoder Architecture

Full-parallel decoder architecture has been detailed in
Section 4.3. It was observed that most of the complexity
remains in the duplicated SISO decoders. The complex-

ity analysis performed in Section 5 allowed us to select a
configuration to be implemented on the SISO decoder.
The elementary SISO decoder architecture will now be
detailed as depicted on Fig. 8.

All the soft information within the decoder is quan-
tized and processed with q = 4 bits (1 sign bit and 3
reliability bits). The SISO decoder architecture is struc-
tured in three pipelined stages identified as reception,
processing and emission units. Each stage processes
n = 16 symbols in n = 16 clock periods. According to
the latency definition given in Section 4.2, the resulting
latency is then equal to 2n = 32 clock symbols. The re-
ception unit computes the syndrome S0 and the Lr = 2
least reliable bits of the word received [R′]it. This unit is
also in charge of the decoder scheduling by generating

Figure 8 Architecture of a
SISO decoder.
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some control signals. The processing unit computes the
syndrome of the Tp = 4 test patterns and their metric
values. It also sequentially selects the decided word
and the concurrent ones. The emission unit calculates
new reliabilities from metrics of the decided word and
the Cw = 1 concurrent word. Extrinsic information
[W]k and soft output [R′]it+1 are also processed during
the same clock period. A new q-bits symbol is then
transmitted at each clock period. The decoding process
needs to access the [R]it and [R′]it values during the
three decoding phases. For this reason, these words are
implemented into Random Access Memories (RAM)
of size q × n controlled by a finite state machine.

7.3 Omega Network Implementation

The multi-stage dynamically reconfigurable intercon-
nection network omega is based on a circular per-
mutation principle. The connecting scheme consists of
circularly shifted input data. Figure 9 shows an ex-
ample of communication between two sets of 8 SISO
decoders. Switches are simple logic elements that have
two possible controllable routing configurations. Such
switches blocks are easily implementable in CMOS
technology. Indeed, a 2-input switch presents an equiv-
alent complexity of 2.5 logical gates.

The complexity of an omega network with n inputs
and q-bits quantized data is then

C�(n, q) = 2.5 × q × n
2

× log n (7)

n control sequences of the omega network are gener-
ated by a configuration ROM in n cycles. The ROM
is addressed by a modulo n counter. The implemented
turbo decoder contains 2n = 32 SISO decoders per it-
eration and two connection omega networks. Between
two half-iterations, two omega network are required
to transmit [R′]it+1 and [R]it. The complexity of the
implemented 16×16 omega network for 1 iteration is
then: 2 × C�(16, 8) = 320 logical gates.

8 Implementation of a Block Turbo Decoder
in an Ultra High Rate Communication Setup

The purpose of this first implementation is to show
that a block turbo decoder can effectively work without
memories between half-iterations at high throughput.

8.1 Experimental Setup

The experimental setup is composed of two identical
development boards XUP linked with a Serial ATA
communication bus. BER measurement facilities are
implemented in order to rapidly verify the decoding
performance. Each board contains a Xilinx XC2VP30
device that can transmit data up to 2.4 Gb/s rate.
Indeed, encoded noisy data are sent from the trans-
mitter FPGA to the receiver FPGA using the high
speed Xilinx Aurora protocol. Each board has its own
digital clock management system operating at 50 MHz.
Synchronization between the two boards is carried out
by Aurora protocol control signals. The Aurora pro-
tocol is clocked at f1 = 75 MHz and the rest of the

Figure 9 Architecture of a
8-input � network.
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Figure 10 Mult-gigabit experimental setup.

setup is clocked at f0 = 37.5 MHz. Figure 10 shows
the different components of the communication setup
implemented onto the FPGA.

8.2 The Components Implemented on the Transmitter
FPGA Device

A Pseudo Random Generator (PRG) sends out eleven
pseudo random data streams at each clock period ( f0).
It is composed of eleven different LFSR. Each LFSR
has a different primitive polynomial and a different size
which insure a non correlation between the eleven out-
puts. An eBCH(16,11)2 encoder processes the eleven
data streams in parallel. This innovative architecture
avoids the use of memory between rows and columns
encoding as mentionned in Section 7.1. Eleven con-
ventional sequential encoders are cascaded with one
parallel encoder. 256 encoded data (equivalent to a
matrix 16 × 16) are generated in 16 clock periods ( f0).
The noise generator models 16 uncorrelated White
Gaussian Noise (WGN) samples and adds them to the
previously encoded data [25]. Each output sample is a 4
bit vector resulting in 64 bits to be sent in 1 clock period
( f0). The Signal to Noise Ratio (SNR) is controllable
via on-board switches 0<SNR<15.75 dB with a pitch of
0.25 dB. The Aurora protocol emission module handles
a set of control signals. It receives 64 data in 2 clock
cycles and sends 32 data every clock cycle ( f1). The
output rate is then 2.4 Gb/s.

8.3 The Components Implemented on the Receiver
FPGA Device

The Aurora protocol reception module receives data
at 2.4 Gb/s and sends out 64 bits every two clock
cycles ( f1). The turbo decoder is composed of 32 SISO
(16 SISO decoders per half-iteration) and two omega
networks used to route data between half-iterations.
The decoder architecture and the omega network are
described in Sections 4.3 and 7.3. Data arrive at 2.4 Gb/s
while the working frequency is only 37.5 MHz. The
same PRG is also implemented in the receiver. It
generates the exact same data as in the transmitter in
order to compare data before and after decoding. A
BER block is finally used to measure the error rate
comparing data from the PRG and the decoder output.
It guarantees a minimum of 1,000 errors before out-
putting the BER value. This value is then displayed on
an LCD module. The minimum reliable BER value is
10−9. Turbo decoder BER was measured after two half-
iterations. Comparing measured BER values with C
reference simulations, we observed a slight difference.
At BER = 10−4, we have a gap of 0.2 dB. This differ-
ence tends to slightly increase with SNR. However, bit-
true simulations showed that the turbo decoder strictly
performs like the C reference program. Indeed, when
providing the same soft inputs to both decoders, soft
outputs are exactly the same. Consequently the diver-
gence is most probably due to the Gaussian channel im-
plementation. The same trend was observed using this
channel implementation with a simple convolutional
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SISO decoder which again excludes the decoding fault
possibility.

8.4 Characteristic and Performance

Clocked at only 37.5 MHz, the turbo decoder processes
input data at 600 Mb/s. This frequency is limited by the
communication protocol. The turbo decoder can actu-
ally perform up to 50 MHz on this target, which corre-
sponds to 800 Mb/s. Using an FPGA device optimized
for high-performance logic would lead to even higher
frequency. The output throughput, it is defined as:

Tout = P × f × R. (8)

P is the parallelism rate (max(P) = n), f the elemen-
tary decoder frequency and R the code rate. In our
case, P = 16, f = f0 = 37.5 MHz and R = 0.473, the
resulting throughput is then 284 Mb/s. Several solutions
exist to increase the throughput, the most straightfor-
ward is to use a larger code (in order to increase P)
with a larger rate R. For instance, assuming we are
using an eBCH(32,26)2 at f0 = 37.5 MHz, the input and
output throughput become 1.2 Gb/s and 792 Mb/s re-
spectively. In our architecture, SISO decoders process
data sequentially. Designing SISO decoders that de-
code several data in one clock period, as in [9], would
again improve throughput and with a limited complex-
ity overhead. Moreover, enhancing our study to non
binary component codes like RS codes [26] can increase
throughput even more. The turbo decoder was synthe-
sized and implemented on a Virtex II Pro FPGA using
Xilinx ISE 7.1i tools. The decoder occupied 7300 slices.
So far, one iteration (32 SISO decoders and 2 omega
networks) has been fully implemented. The available
target (xc2vp30) was insufficient to implement several
iterations. Duplicating the decoders simply requires a
larger FPGA target. Implementing a 6-iteration full-
parallel turbo decoder represents 43800 FPGA slices
with a maximum throughput. Such a design can for
instance, fit onto a Xilinx Virtex 4. Another solution
would be to use as much experimental board as re-
quired iterations.

9 Conclusion

This article presents an innovative architecture for
both encoding and turbo decoding of product codes.
After introducing the full-parallel decoding principle,
we also show how we implemented this memory free,
high-throughput, full-parallel, block turbo decoder on
an FPGA device. In such parallel architectures, it is

necessary to use low complexity SISO decoders. Thus,
we proposed a complexity analysis for the eBCH(n, k)
SISO decoder. The complexity expression gives a rapid
estimation of the SISO area, for a fixed set of decoding
parameters. Then, depending on the required level of
performances, it becomes easy to decide on a set of
parameters to implement. This analysis led to a low
complexity SISO decoder (−30%) to be duplicated
in the parallel turbo decoder. Next, we describe the
experimental setup designed to test the turbo decoder
also including a full-parallel encoder. Using a more
efficient communication protocol the turbo decoder can
process input data at 3.2 Gb/s. Using a larger code,
with a higher rate and parallel SISO decoders, would
again, increase the data rate. Moreover non binary
codes like RS codes enable even higher throughputs
to be reached. Currently, a study for proposing a BTC
implementation on an FPGA device for the physical
layer of a 10 Gb/s optical access network is in progress.
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design phase.

Appendix: SISO Complexity Approximation Proof

C′
pi(n) is the cumulated complexity of the four critical

parts in terms of logical gates for a parameter set pi and
a code size n.Cpi(n) is the SISO decoder complexity in
terms of logical gates. Let’s first assume that,

Cp0(n) − Cpi(n) ≈ C′
p0(n) − C′

pi
(n) (9)

(verified during syntheses) Since the 4 critical blocks
represent 75% of the complexity, we have

Cp0(n) = ((C′
p0(n))/(0.75)) (10)

Combining (9) and (10), we obtain,

Cpi(n) = (1/3)(C′
p0(n)) + C′

pi(n) (11)
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