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Turbo Decoding of Product Codes
using Adaptive Belief Propagation

Christophe J́ego†, member IEEE and Warren J. Gross‡, member IEEE

Abstract—The Adaptive Belief Propagation (ABP) algorithm
was recently proposed by Jiang and Narayanan for the soft
decoding of Reed-Solomon (RS) codes. In this paper, simplified
versions of this algorithm are investigated for the turbo decoding
of product codes. The complexity of the Turbo-oriented Adaptive
Belief propagation (TAB) algorithm is significantly reduced
by moving the matrix adaptation step outside of the belief
propagation iteration loop. A reduced-complexity version of the
TAB algorithm that offers a trade-off between performance and
complexity is also proposed. Simulation results for the turbo
decoding of product codes show that belief propagation based
on adaptive parity check matrices is a practical alternative to
the currently very popular Chase-Pyndiah algorithm.

I. I NTRODUCTION

Belief Propagation (BP) decoding [1] is a SISO decoding
algorithm for linear block codes that is based on the propa-
gation of soft information along the edges of a graph defined
by the parity check matrix associated with the code. The BP
algorithm is considered to be the reference LDPC decoding
algorithm and it exhibits a high degree of parallelism making
it suitable for high data rate applications. It is commonly
believed that the BP algorithm is not suitable for decoding
codes with non-sparse parity check matrices such as BCH and
RS codes. Recently, however, the Adaptive Belief Propagation
(ABP) algorithm was proposed for the decoding of RS codes
with high-density parity check matrices [2]. This method
adapts the parity check matrix at each iteration of the BP
algorithm according to the bit reliabilities in order to sparsify
the columns of the parity check matrix associated with the
unreliable bits.

The motivation of this work is to find a BP-based algo-
rithm to be applied to linear block codes with a non-sparse
matrix for use in turbo decoders of product codes. The ABP
algorithm seems especially interesting for decoding product
codes whose parity check matrix is not sparse. Indeed, the
graph-based message passing step of the ABP algorithm is
highly parallelizable, unlike the Chase-Pyndiah algorithm [3].
However, due to the adaptation step that performs the spar-
sification at every iteration, the complexity of ABP becomes
prohibitive for hardware implementation. A possible solution
is to run a small number of iterations of the BP algorithm
on the same parity check matrix as suggested in [4]. We thus
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investigate a simplified version of the ABP algorithm for turbo
product codes using BCH or RS component codes called the
Turbo-oriented Adaptive Belief propagation (TAB) algorithm
in Section II. In order to decrease the complexity of the TAB
algorithm, a complexity reducing method for the BP process
is proposed in Section III. This version, called TAB Simplified
(or TABS), offers a good trade-off between performance and
complexity for the iterative decoding of product codes. Some
performance results for different product codes using BCH
or RS component codes are given in Section IV. The results
show that belief propagation based on adaptive parity check
matrices can provide performance similar to that of Chase-
Pyndiah algorithm.

II. T HE TAB ALGORITHM APPLIED TO ITERATIVE

DECODING OF PRODUCT CODES

Turbo decoding of product code involves sequentially de-
coding rows and columns using a SISO decoding algorithm.
The turbo decoding process repeats this soft decoding for
several iterations. Each decoding process computes soft in-
formation y′

(it+1) from the channel received informationy
and the information computed in the previous half-iteration,
y(it). The extrinsic informationw(it) is obtained by subtract-
ing the soft input informationy(it+1) from the soft output
information f(it). The soft informationy′

(it+1) is given by
y′

(it+1) = y + α(it)w(it) whereα(it) is a scaling factor that
reduces the effect of the extrinsic information in the soft
decoder during the first decoding steps. Each component code
(Ni,Ki) of the product code has a parity check matrixH

with Ni − Ki rows andNi columns. In this section, we pro-
pose the Turbo-oriented Adaptive Belief propagation algorithm
(TAB), a simplified version of the standard ABP algorithm
[2] to be used as the SISO decoding algorithm during the
turbo decoding of product codes. Each iteration of the ABP
algorithm consists of two sub-steps: matrix sparsificationand
belief propagation. The TAB algorithm is motivated by the
high cost of the Gaussian elimination required for adaptation
in each iteration of the ABP algorithm. We propose eliminat-
ing the adaptation from the iteration loop leaving only one
adaptation in the initialization phase. The modified algorithm
is composed of four steps. First, the received vectory′

(it)

is ordered according to the absolute value of the soft input
symbols in an ascending order (from the least reliable value
to the most reliable value). Then, theN − K columns of
the original parity check matrixH corresponding to the least
reliable bits iny′

(it) are reduced to obtain an identity matrix by
applying Gaussian elimination. The objective is to decrease the
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number of ones in the part of the parity check matrix that are
associated with the least reliable symbols. Adapting the parity
check matrix makes it suitable for the standard BP algorithm.
The standard BP algorithm is applied in Step 3 to generate
the soft output informationf(it). We note that few iterations
(3 to 5) are necessary during the BP process in the proposed
algorithm. Running a very small number of iterations on the
same parity check matrix is especially effective in our turbo
process. Indeed, the belief propagation is not exact due to the
short cycles in the associated Tanner Graph. We call these local
iterations to distinguish them from the iterations of the turbo
process which we call global iterations. As the matrix updating
stage is not in the local iterative loop, a significant decrease
of the SISO decoding algorithm complexity is obtained. In
addition, no damping coefficient [2] is necessary for the TAB
algorithm. Instead, the reduction of the extrinsic information
effect is done during the soft information computation.

III. A VARIANT OF THE TAB ALGORITHM : THE TABS
ALGORITHM

In order to decrease the complexity of the standard Belief
Propagation algorithm, simplified versions have been pro-
posed. The best-known is the BP-based algorithm proposed by
Fossorier et al. [5] In the BP-based algorithm, the parity check
node processing is replaced by a selection of the minimum
value for the magnitude. The memory and the complexity
reductions are significant but the degradation in terms of
BER can also be significant. For this reason, we propose a
more accurate simplification. The computation of parity check
nodes depends mainly on the smallest values of the messages
Vn,mVn,mVn,m from variable nodes. These messages depend on the log-
likelihood ratioLnLnLn of the received bitn. Consequently, the BP
decoding iterative process depends mainly on the least reliable
bits. On the other hand, the first step of the TAB algorithm
provides an ordering of the soft input symbols. For these
reasons, we propose to apply the BP algorithm to a subsetSnSnSn

of the soft input symbols of the codewordy =(y1, y2, ..., yn)
to decrease the memory and the computation complexity.SnSnSn is
obtained by taking into account the reliability of the symbols
and the least reliable received bits are considered. LetP (n)P (n)P (n)
andQ(m)Q(m)Q(m) denote the set of all the parity check nodes that are
connected to the variable noden of the subsetSnSnSn and the set
of all variable nodes of the subsetSnSnSn that are connected to the
parity check nodem of the subsetSnSnSn respectively.P (n)/mP (n)/mP (n)/m
is the set of the parity check nodes that are connected to the
variable noden without the parity checkm andQ(m)/nQ(m)/nQ(m)/n is
the set of variable nodes that are connected to the parity check
nodem without the variablen. The proposed simplified Belief
Propagation (sBP) algorithm is carried out as follows:

• Define a subset of soft symbols in function of the
reliability: SnSnSn

• MessageCm,nCm,nCm,n computation:

Cm,n =
∏

n′∈N(m)/n
sign (Vn′,m) ∗

2tanh−1
∏

n′∈P (m)/n tanh
∣

∣

∣

Vn′,m

2

∣

∣

∣

• MessageVn,mVn,mVn,m computation:

Vn,m =
∑

m′∈Q(n)/m Cm′,n + Ln

• Extrinsic informationVnVnVn computation:

Vn =
∑

m∈Q(n) Cm,n + Ln

During the iterative process, the messagesCm,nCm,nCm,n are com-
puted for the setQ(m)Q(m)Q(m). The check node update rule can be
separated into the sign and the magnitude processing. The
magnitudes of the messagesVn,mVn,mVn,m are computed for the set
P (n)P (n)P (n) and the signs of the messagesVn,mVn,mVn,m are updated for the
initial setN(m)N(m)N(m). A similar strategy was previously presented
in [6]. In this paper, the authors investigated the performance
of modified versions of adaptive BP algorithms for iterative
soft-decision decoding of RS codes over magnetic recording
channels. The reduced-complexity version of the standard
ABP algorithm, called MABP, is based on the fact that
unreliable bits are more likely to be erroneous. In the MABP
algorithm, the received bit sequence is divided into two groups
according to the absolute value of the soft input symbols:
unreliable bits and reliable bits. The columns of the original
parity check matrixH corresponding to the unreliable bits
are reduced to obtain an identity matrix by applying Gaussian
elimination. Then, the LLRs for the group of unreliable bits
are updated by using the BP process and the LLRs of reliable
bits are kept unchanged. The numbers of elements in the
two groups areN − K unreliable elements andK reliable
elements respectively [7]. This means that the group sizes
depend on the parameters of the component codes. In contrast,
our method enables us to choose the size of the subsetSnSnSn of
the soft input symbols. In practice, it is necessary to choose
a number betweenN/2 and N to obtain an efficient ratio
between performance and complexity. Moreover, as LLRs of
reliable bits are kept unchanged in the MABP algorithm, this
method can not be applied if the parity check matrix adaptation
is done before the BP process like in the TAB algorithm. For
theses reasons, our method that consists of applying the BP
algorithm to a subsetSnSnSn of the soft input symbols is more
suitable to obtain an efficient trade-off between performance
and complexity for the turbo decoding of product codes. We
call this variant the TABS (Turbo-oriented Adaptive Belief
propagation Simplified) algorithm.

Table I gives complexity comparison in terms of operations
between the proposed sBP algorithm and the classical BP
algorithm. The memory requirements are also given. The
complexity of the BP algorithm depends on the code length
N , the number of information bitsK, the average degree of
the variable nodesDv, the average degree of the check nodes
Dc and the number of local iterationsIter. The complexity
of the sBP algorithm depends on the same parameters and
on another oneS that defines the number of unreliable bits
of the subsetSnSnSn. First, multiplications are necessary for
the initialization of the LLRLnLnLn. Computation of extrinsic
information VnVnVn is done through additions and subtractions.
During the check node update, the processing of the sign
and magnitude of the check to variable messagesCm,nCm,nCm,n is
done separately. The computation of the signs of theCm,nCm,nCm,n

messages is processed through an XOR function. In contrast,
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the magnitude processing is the bottleneck in the computation
of Cm,nCm,nCm,n messages. Performing in the logarithmic domain
simplifies this computation greatly, since the multiplications
become additions. In the logarithmic domain, the parity check
node processing is simplified as follow:

Cm,n =
∏

n′∈N(m)/n
sign

(

Vn′,m

)

∗

f−1

(

∑

n′∈P(m)/n
f(Vn′,m)

)

where f(x) =−ln
[

tanh
(

|x|
2

)]

The magnitude processing is computed by lookup tables
(LUT) for thef(x)f(x)f(x) function and additions. Received symbols,
Vn,mVn,mVn,m messages andCm,nCm,nCm,n messages have to be stored during
the BP iterative process. Table I shows that the sBP algorithm
is less complex than the standard BP algorithm. A decrease
by a factor (1 − S/N) is obtained for the computation of
the extrinsic informationVnVnVn and the magnitude update of the
check to variable messagesCm,nCm,nCm,n. Moreover, the numbers of
Vn,mVn,mVn,m messages andCm,nCm,nCm,n messages to store decreases by the
same factor(1−S/N). In summary, the sBP algorithm enables
significant reductions of memory requirements and complexity
in terms of operations.

Operations BP algorithm simplified BP (sBP) algorithm 

Extrinsic information 

additions/subtractions 
Iter*(N*2Dv) Iter*(S*2Dv) 

Check node  

additions 
Iter*((N-K)*(2Dc-1)) Iter*((N-K)*{2(Dc*(S/N))-1)} 

Exclusive OR Iter*((N-K)*(2Dc-1)) Iter*((N-K)*(2Dc-1)) 

LUT for f(x) Iter*((N-K)*2Dc) Iter*((N-K)*{2(Dc*(S/N))} 

Multiplication N N 

   

Memories BP algorithm simplified BP (sBP) algorithm 

received symbols N words  N words  

variable->check 

messages 
N*Dv words  S*Dv words  

check->variable 

message 
(N-K)*Dc words  (N-K)* (Dc*(S/N)) words  

TABLE I
COMPARISON IN TERMS OF OPERATION AND MEMORY COMPLEXITIES

BETWEEN THE SBP AND BP ALGORITHMS.

IV. I TERATIVE DECODING OF PRODUCT CODES

In this section, the Bit Error Rate (BER) vs. Signal to
Noise Ratio (SNR) performance of iterative decoding of
product codes is presented. Concerning BCH codes, extended
codes are considered because they are more efficient than
non-extended codes. In the case of product codes using RS
component codes, extended codes are not efficient because the
impact on code rate and consequently on the Shannon limit
is not significant as shown in [8]. Thus, turbo product codes
using RS component codes are limited to non-extended codes
in this paper.

A. Performance for several BCH product codes on a Gaussian
channel

The performance of the TAB algorithm is compared with
that of the Chase-Pyndiah algorithm for different product
codes using BCH component codes. Three local iterations
and 8 global iterations are chosen for the TAB algorithm.
Eight global iterations and 16 error patterns are chosen for
the Chase-Pyndiah algorithm. Bit error rate performance of
turbo decoding of BCH product codes on Gaussian channel
for two error correction powers (t=1 and t=2) are depicted in
Fig. 1. For comparison, the uncoded BPSK is also plotted.
The performance of the TABS algorithm for all the chosen
BCH product codes is also given. For each case, a complexity
decrease factor(1 − S/N) is selected to offer a good trade-
off between complexity and performance. No significant BER
deviation is observed between the Chase-Pyndiah and the
TAB algorithms. The Chase-Pyndiah algorithm outperforms
the TAB algorithm by about 0.135 dB at BER of10−6 for
(32, 26)2 BCH product codes. In contrast, the TAB algorithm
outperforms Chase-Pyndiah algorithm by about 0.090 dB at
10−3 for a (32, 21)2 BCH product code. These two cases are
the greatest deviations observed in favor of each algorithm.
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Fig. 1. Bit error rate performance of turbo decoding of BCH product codes
(t=1 and t=2) on a Gaussian channel.

B. Iterative Decoding of Reed-Solomon Product Codes

The TAB and TABS algorithms are applied to the binary
image expansion of the parity check matrix of the RS com-
ponent codes of the product codes. It has been shown that RS
codes can be decomposed into BCH subfield subcodes [9]. The
performance of the TAB algorithm is compared with that of the
Chase-Pyndiah algorithm for different product codes usingRS
component codes. The performance of the TABS algorithm is
also given. The complexity factors(1−(11/15)), (1−(25/31))
and(1−(57/63)) were chosen for RS product codes with code
lengths N=15, 31 and 63 respectively. Five local iterations
and eight global iterations are chosen for the TAB algorithm.
Three local iterations and eight global iterations are sufficient
for the TABS algorithm. Eight global iterations and 16 error
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Fig. 2. Bit error rate performance of turbo decoding of Reed-Solomon
product codes (t=1) on a Gaussian channel.

patterns are chosen for the Chase-Pyndiah algorithm. Bit error
rate performance of turbo decoding of RS product codes
on Gaussian channel for a correction power t=1 is depicted
in Fig. 2. We note that turbo decoding based on the TAB
algorithm outperforms turbo decoding based on the Chase-
Pyndiah algorithm for the three considered RS product codes.
In particular, the proposed algorithm enables a gain in terms of
convergence performance at low SNR. It provides around 0.3
dB gain at BER=10−3 for the three performances curves. For
high SNR, performance results between the two algorithms
are close. However the trade-off between performance and
complexity is obtained with a slight degradation of BER
performance compared with the TAB algorithm. On the other
hand, a significant complexity gain and also a decrease from
5 to 3 of the local iterations are achieved. Figure 3 gives the
bit error performance of turbo decoding of RS product codes
on a Gaussian channel for correction power t=2. We observe
that in terms of error performance the TAB algorithm clearly
outperforms Chase-Pyndiah decoding solution for RS product
codes with a correction power of t=2. The TAB algorithm
enables a significant gain in terms of convergence performance
at low SNR. For the TABS algorithm, complexity decrease
factors(1− S/N) were chosen for each RS product codes to
offer a good trade-off between complexity and performance.
Fig. 3 shows the slight degradations of BER performance
compared with the TAB algorithm.

V. CONCLUSION

In this paper, simplification versions of the ABP algorithm
have been proposed for the turbo decoding of product codes
using BCH or RS component codes. In order to further
decrease the complexity of the TAB algorithm, a complexity
reducing method for the BP process is introduced as the
TABS algorithm. Simulation results have shown that the TAB
algorithm is an alternative to the Chase-Pyndiah algorithm
for product codes. Moreover, the proposed TABS algorithm
offers a trade-off between performance and complexity. The
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Fig. 3. Bit error rate performance of turbo decoding of Reed-Solomon
product codes (t=2) on a Gaussian channel.

major advantages of the two algorithms are their high degreeof
parallelism for high data rate applications and the possibility
of applying to it a new decoding method calledstochastic
decoding. Stochastic decoding previously applied to the BP
decoding of LDPC codes [10], has the potential to be applied
to turbo decoding of product codes with the TAB algorithm.
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