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Abstract
The present analysis complements the chemo-mechanical model of articular cartilage de-
veloped in Loret and Simões (2004) (2005)a, where only equilibria were considered, and
therefore time was absent. The focus here is, first, to present how transport phenomena are
aggregated to the porous media framework, and, second, to detail the constitutive equations
of these transports. Indeed, these equations are developed in the context of a three-phase
multi-species electro-chemo-mechanical model that accounts for the effects of two water
compartments, namely intrafibrillar water stored between collagen fibrils and extrafibrillar
water covering the negatively charged proteoglycans. The electrolyte circulating the two
fluid phases contains ions sodium Na+, calcium Ca2+ and chloride Cl−.

Species diffuse within their phase. They transfer from one fluid phase to the other.
The various sources of dissipation are built in a thermodynamic framework, segregated and
decoupled via the Clausius-Duhem inequality.

Linear and non linear equations of mass transfer are proposed along an onsagerist ap-
proach.

The generalized diffusion in the extrafibrillar compartment accounts for Darcy’s law of
seepage through the porous solid skeleton, Fick’s law of ionic diffusion, and Ohm’s law of
electric flow. An original derivation of the constitutive equations of generalized diffusion
is proposed. Indeed, the dissipation inequality is written in two forms, which are required
to be equivalent. This approach has the advantage of delivering the general structure of
the diffusion matrix. It also displays in explicit form the degrees of freedom for possible
refinements. Simple assumptions, phrased in terms of entities that are standard in transport
of porous media, allow to recover arrowhead diffusion matrices. Comparison with an earlier
proposal is detailed.

An osmotic coefficient is found to be hidden in the equations, and anomalous negative
osmosis is observed to take place for both sodium chloride and calcium chloride electrolytes.

Finally, an experimental setup to measure transport properties is analyzed. The model
describes correctly the increase and levelling of the experimental diffusion coefficient, and
no additional ad hoc constitutive assumptions are needed in contrast to some suggestions
in the literature.

The results are presented for sodium chloride NaCl and calcium chloride CaCl2.

Keywords: cartilage; generalized diffusion; mass transfer; osmotic coefficient
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1 Introduction

Articular cartilage is a porous medium, structured by collagen fibers, and saturated by an
electrolyte, with water as solvent and metallic ions as solutes. Charged macromolecules, the
proteoglycans, intermingled with collagen fibers, give rise to electro-chemo-mechanical couplings
that allow moderate deformation to take place, and ensure an optimal adaption of the tissue
to physiological loads.

The mechanical significance of the partition of tissue water in intrafibrillar (IF) and extrafib-
rillar compartments (EF) has been advocated by Maroudas and coworkers. The intrafibrillar
compartment is defined as the volume between the collagen fibrils. Proteoglycans (PG’s) be-
long to the extrafibrillar compartment. The presence of ions in the intrafibrillar compartment
is constrained by steric considerations : the size of a collagen molecule is 15 Å, and the dis-
tance between molecules 5 Å. Thus water molecules (of size 3.6 Å), chlorine ions Cl− (3.6 Å),
sodium cations Na+ (2 Å), and calcium cations Ca2+ (2.2 Å) can penetrate the intrafibrillar
compartment while larger molecules, like PG’s, can not, Torzilli (1985). Experimentally, the
partition between intrafibrillar and extrafibrillar water is measured by injecting serum albumin
whose size (hydrodynamic size 35 Å) is large with respect to the intrafibrillar characteristic
dimension.

Hydrated PG’s induce collagen fibers in tension: a mechanical model would consist of two
parallel systems, the pressure induced by PG’s being resisted by the applied mechanical load and
collagen in tension, Maroudas et al. (1991), Lai et al. (1991), Basser et al. (1998). For unloaded
cartilage under physiological salinity, intrafibrillar water represents up to 25% of total water, the
extrafibrillar water furnishing the complement. The latter can be moved by mechanical loading
and osmosis with water external to the cartilage (synovial fluid). The intrafibrillar water is in
contact with the extrafibrillar compartment only, and it is moved essentially by changes of the
chemical composition of the latter. Still, a mechanical loading modifies the relative chemical
composition of water (e.g. water being expelled, the concentration of proteoglycans increases),
and therefore, indirectly induces a transfer of water from the intrafibrillar to the extrafibrillar
compartments.

In Loret and Simões (2004), the two-compartment idea is reconsidered in a hierarchical
multi-phase multi-species context. In line with the idea of Maroudas, collagen fibrils behave
as a semipermeable membrane, impermeable to macromolecules of molecular mass larger than
about 4000 gm, and permeable to dissolved metallic ions and water, Li and Katz (1976). They
are viewed as separating the two fluid phases.

Experiments of Eisenberg and Grodzinsky (1985) that include both changes of the bath
composition and mechanical loads are simulated in Loret and Simões (2004). The latter refer-
ence assumes the sole dissolved sodium chloride NaCl to be present in the cartilage. In Loret
and Simões (2005)a, attention is paid to the mechanical interactions between ions, specifically
sodium Na+ and calcium Ca2+, and the simulations of ionic replacements intertwined with
mechanical loadings are performed.

The present work can be viewed as extending to transient and spatially heterogeneous
processes the chemo-mechanical model exposed in Loret and Simões (2004)(2005)a which was
restricted to equilibria. In other words, the chemical and mechanical loadings were performed
with characteristic times much larger than the times characterizing the material response.

The constitutive equations developed here use a thermodynamic framework, that in fact
embodies not only purely mechanical aspects, but also transfers of masses between the fluid
phases and diffusion of matter through the extrafibrillar phase, Sect. 3. The complete framework

2



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

is used in a companion paper, Loix et al. (2006), to solve, via the finite element method,
initial and boundary value problems in view of simulating mechanical and transport phenomena
in laboratory specimens submitted to transient mechanical and chemical loading processes.
Consequently, the purpose here is, first, to present how the transport phenomena are aggregated
to the three-phase context, and second, to detail the constitutive equations of each of these
transports.

In fact, several continuum theories have been proposed to model the mechanical and trans-
port behaviors and to describe macroscopic couplings in articular cartilages, Lai et al. (1991), Gu
et al. (1998), Huyghe and Janssen (1999). However, their structure is different, as far as the in-
trafibrillar phase is not recognized. The intra/extrafibrillar split is considered in Huyghe (1999)
and Huyghe et al. (2003), but only the mechanical aspects of cartilages bathed in a binary elec-
trolyte are addressed.

While the mechanical behavior is time-independent, the mass transfers and diffusion phe-
nomena addressed here involve typical characteristic times, so that the overall response is
time-dependent. Mass transfers relations are directly motivated by the dissipation inequal-
ity. Electroneutrality reduces the number of independent transfer relations, which, along an
Onsager approach, are proposed in linear and non-linear formats, Sect. 4.

The generalized diffusion in the extrafibrillar compartment accounts for Darcy’s law of
seepage through the porous solid skeleton, Fick’s law of ionic diffusion, Ohm’s law of electric
flow, electro-osmosis, and the existence of streaming potentials. Strong couplings exist between
these phenomena. The internal entropy inequality associated to diffusion is written in two
formats : one form involves fluxes relative to the solid, while the second form involves diffusive
fluxes relative to the fluid. The equivalence between these two formats is used to structure the
diffusion matrix, Sect. 5. The general form of the diffusion equations is provided for a ternary
electrolyte, with cations sodium, calcium and anions chloride as mobile ions, Sect. 6.1.

Two simple additional assumptions allow to recover arrowhead diffusion matrices, Sect. 6.2.
The present approach has the advantage of displaying in explicit form the complete algebraic
structure of the diffusion matrices, and therefore to pave the way for future improvements. Be-
sides, the two above additional assumptions concern entities, that are standard in the modelling
of transport in mixtures. Another approach by Gu et al. (1998) consists in working directly on
the momentum equations, and in postulating constitutive equations for the momentum trans-
fers between phases: the two methods are mainly equivalent, but the later alternative is more
abstract.

The influences of ionic strength and fixed charge density on various key transport properties
are discussed, Sect. 6.3. The interactions with mechanical deformation, through the fluid volume
fractions, are also underlined.

The tight algebraic structure of the constitutive equations of diffusion implies that the
electro-osmotic coefficient is given an explicit form in terms of the fixed charge of the proteo-
glycans. An osmotic, or reflection, coefficient ω is also shown to be hidden in the formulation.
Therefore, unlike in some other models of charged porous media where the fixed charge is not
part of the fluid phase, e.g. Mitchell (1993), Loret et al. (2004), the two above entities, namely
the electro-osmotic coefficient and the reflection coefficient, emerge naturally from the formu-
lation, and need not be provided by additional constitutive equations. Two interpretations of
the osmotic coefficient are proposed, and, negative osmosis is analyzed in detail and shown to
take place for both the sodium chloride and the calcium chloride electrolytes, Sect. 7.

Finally, an experimental setup to measure some transport properties is analyzed, Sect. 8.
Data show that the experimental diffusion coefficient increases, from a tiny value, to a plateau
as the ionic strength of the bath, the material is in contact with, is increased. This feature is
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shown to be reproduced by the model, and the key effect on the phenomenon of the intensity
of the fixed charge is quantified. The data of this setup have been sometimes improperly
interpreted, in the geomechanical literature, as providing a basic constitutive relation where
the diffusion coefficients are made functions of the transmission coefficient 1 − ω.

Notation: Vector and tensor quantities are identified by boldface letters. Symbols ‘·’ and ‘:’
between tensors of various orders denote their inner product with single and double contraction
respectively. Unless stated otherwise, the convention of summation over repeated indices does
not apply.

2 The framework

2.1 Definition of the phases

The definition of the phases is mechanically motivated. A kinematical criterion on the other
hand would classify species according to their velocities. Here, cartilage is viewed as a three-
phase, multi-species, porous medium, Fig. 1. The solid phase S contains the collagen fibers
denoted by the symbol c. The intrafibrillar fluid phase I contains intrafibrillar water w, ions
sodium Na+ and calcium Ca2+ and ions chloride Cl−. The extrafibrillar fluid phase E contains
proteoglycans, extrafibrillar water, cations sodium and calcium, and anions chloride. The sets
of species of the solid, intrafibrillar and extrafibrillar phases are respectively,

S = {c}, I = {w, Na, Ca, Cl}, E = {w,PG, Na, Ca, Cl} . (2.1)

A minimum number of cations is required to ensure electroneutrality of the extrafibrillar phase.
Therefore, mobile cations are endowed with a velocity independent of that of their non mobile
counterparts, which, like the proteoglycans, move with the velocity of the solid phase. Thus
cations in the extrafibrillar space are partitioned into a mobile mo part and a non mobile nm part.
The set Emo of extrafibrillar mobile species contains the same species as E but proteoglycans.
Exchanges of water and ions occur between the fluid phases, but only the extrafibrillar phase
communicates with the surroundings, Fig. 1.

The main assumptions, which underly the three-phase multi-species model, follow a strongly
interacting model. They have been listed in Loret and Simões (2004) in a purely mechanical
perspective. Since deformation, mass transfers and generalized diffusion are accounted for here,
they need to be re-stated in this more general context, namely,

(H1) The mass balance is required for each species.

(H2) Momentum balance is required for the mixture as a whole. Water and mobile ions
in the extrafibrillar phase are endowed with their own velocities so as to allow the latter
to diffuse in their phase and satisfy their own balance of momentum.

(H3) The velocity of any species in the intrafibrillar phase is that of the solid phase, i.e.
of collagen, vkI = vS , ∀k ∈ I. The velocities of the proteoglycans, and of non mobile
cations of the extrafibrillar phase, which do not diffuse through the cartilage are also equal
to vS . Thus, the balance of momentum of the above species is not required explicitly,
but accounted for by the balance of momentum of the mixture as a whole. Exchange of
species between the two fluid phases is viewed as a mass transfer and not as a diffusion
process.

(H4) Incompressibility of all the constituents gives rise to a lagrangian pressure pI . How-
ever, in both the intrafibrillar and extrafibrillar phases, each constituent is endowed, by
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constitutive equations, with its own “generalized pressure”, that contains specific contri-
butions in addition to pI .

(H5) Electroneutrality is required for the extrafibrillar phase alone, and for the solid and
intrafibrillar fluid phases together.

Although the point is seldom mentioned, the definition of phases in articular cartilage is not
unambiguous, because the mechanical, chemical and electrical roles of proteoglycans dictate
contradictory choices. The consequences of two options are commented further in Remark 7.
In particular, proteoglycans move with the solid but their electric charge plays a key role in the
extrafibrillar phase. One way to go around this issue is to consider a single (fluid) phase and a
single electroneutrality condition, as in Lai et al. (1991). However, topological considerations
dictate electroneutrality separately for the collagen fibers and the intrafibrillar content on one
hand, and for extrafibrillar water on the other hand. Indeed, when electroneutrality is disturbed,
typical times to recover equilibrium are expected to be much smaller than transfer times, so
that electroneutrality gets established independently in the two fluid compartments. This aspect
might become important when the collagen becomes electrically charged, under non neutral pH.

2.2 Geometry, mass and work

Various measures of mass and volume are used to formulate the constitutive equations. They
are defined below. Since a species can be present in more than a single phase, it is referred to
by two indices, one referring to the species itself, the other to the phase. The only exceptions to
this convention are proteoglycans and collagen which unambiguously belong to a single phase.

The current volume (resp. mass) of the species k of phase K is denoted by VkK (resp.
MkK). Let the initial volume of the porous medium be V0 and let V = V (t) be its current
volume. Various entities are attached to species :

- some are intrinsic like the intrinsic density ρk, the molar volume v̂k and molar mass m̂k

linked by m̂k = ρk v̂k;

- some refer to the current volume, like the volume fraction nkK = VkK/V , and the apparent
density ρkK = nkK ρk;

- some refer to the initial volume like the volume content vkK = VkK/V0 = nkK V/V0, and
the mass content mkK = MkK/V0 = ρk vkK .

The associated entities for the phase K are defined by algebraic summation of individual
contributions, e.g. the current volume VK and mass MK , the volume fraction nK = VK/V
(volume fractions satisfy the closure relation nS + nI + nE = 1), the apparent density ρK =
MK/V , the volume content vK = VK/V0 = nK V/V0, and the mass content mK = MK/V0.

Other entities live in their phase, e.g. the molar fractions and the concentrations. The
molar fraction xkK of the species k in phase K is defined by the ratio of the mole number
NkK of that species over the total number of moles within the phase NK , xkK = NkK/NK . In
each phase, the molar fractions satisfy the closure relation

∑
k∈K xkK = 1 , K = S, I,E. Since

NkK/V0 = mkK/m̂k, the molar fractions can also be expressed in terms of mass contents.
The concentration of an extrafibrillar species is equal to its number of moles referred to the

volume of extrafibrillar phase,

c
(mo)
kE =

N
(mo)
kE

VE
=

N
(mo)
kE

NE v̂E
=

1
v̂k

V
(mo)
kE

VE
=

1
v̂k

nkE
(mo)

nE
=

1
v̂k

vkE
(mo)

nE

V0

V
=

x
(mo)
kE

v̂E
, k ∈ E , (2.2)
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with v̂E =
∑

k∈E xkE v̂k the molar volume of the extrafibrillar fluid phase. The superscript (mo)

indicates that the definition holds for the entities as a whole, their mobile parts, and their non
mobile parts.

Collagen and proteoglycans are macromolecules with a large molar mass, 0.285 × 106 gm
for collagen and 2 × 106 gm for PG’s. The molar fraction xPG = NPG/NE and concentration
cPG = NPG/VE of proteoglycans are thus quite small with respect to the other species of the
extrafibrillar phase. On the other hand, the valence ζPG of proteoglycans is large at neutral
pH. Thus the effective concentration,

ePG = ζPG
NPG

VE
= ζPG cPG , (2.3)

is a key parameter of the biochemical and biomechanical behaviors of PG’s. For the sake of
accuracy in the algebraic derivations, we shall also introduce the notations c̃PG = cPG nE/nwE

and ẽPG = ePG nE/nwE, even if the ratio nE/nwE is close to one.
Note that the definition of the effective concentration of PG’s purposedly refers to the

extrafibrillar phase : indeed, according to Maroudas, the effects of PG’s is primarily felt in that
compartment. However, unlike in the formula (2.3), the effective concentration reported in the
literature usually refers to the total volume of the fluid, and, with an opposite sign, it is referred
to as fixed charge density (FCD). Maroudas (1975) reports values of FCD between 0.05 and
0.20 mole per liter of total water. According to Gu et al. (1997), the typical value of FCD is
about 0.15 M for sound articular cartilage and 0.05 M for osteoarthritic cartilage.

For different zones of the human hip cartilage, Maroudas et al. (1991) indicate values ranging
from 0.109, to 0.210 and 0.228 mole per liter of total water, equivalent to 0.14, 0.28 and 0.32
mole per liter of EF water. Basser et al. (1998) report a mean FCD of 0.37 mole per liter of
EF water for normal hip cartilage. This value drops to 0.167 for osteoarthritic cartilage.

While the FCD refers to the amount of extrafibrillar or total water, the cation exchange
capacity (CEC) [unit: Coulomb/kg or Coulomb/gm] refers to the dry mass, namely the mass
Mdry of collagen and PG’s :

CEC = F |ζPG|
NPG

Mdry
⇔ F × FCD = CEC × ndry

n
ρdry . (2.4)

Here F = 96 485Coulomb/mole is Faraday’s equivalent charge (1 Coulomb=1 A×sec), ndry

the volume fraction of the dry mass, ρdry its intrinsic mass density, and n the volume fraction
associated to the extrafibrillar fluid or total tissue fluid. In some theories of porous media, this
distinction is seen as accounting, or not, for unconnected and dead-end porosities.

For ease of interpretation, Table 1 displays the values of FCD for articular cartilages corre-
sponding to a representative value of CEC, and to representative fluid volume fraction n. Note
that, during a chemical loading process where the bath composition is varied, the CEC is kept
fixed, as far as the proteoglycans are not damaged, while the FCD varies, because the volume
fractions vary due to swelling or shrinking.

Table 1. Values of FCD [unit : M] for CEC=42.9kC/kg, ndry = 1 − n, ρdry=1800kg/m3

n 0.7 0.8 0.9
FCD 0.343 0.20 0.089

The incremental work done by the total stress σ in the incremental strain δε of the porous
medium and by the electro-chemical potentials μec

kK during the addition of mass δmkK of the
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species k to the phase K is
δΨ = σ : δε +

∑
k,K

μec
kK δmkK . (2.5)

Here the electro-chemical potentials μec
kK [unit: m2/sec2] are mass-based while the fluid-mass

contents per unit initial volume of the porous medium mkK ’s are measured in kg/m3. Note
that the above expression assumes infinitesimal strains. An extension to finite strains, while
straightforward, e.g. Loret and Simões (2005)b, would not contribute to the issues addressed
in this paper.

The chemical potential μkK of a species k in phase K identifies a generalized pressure pkK ,
and a chemical contribution which accounts for the molar fraction xkK . For a charged species in
presence of the electrical potential φK [unit Volt=kg×m2/sec3/A], the electro-chemical potential
involves in addition an electrical contribution. For incompressible species,

m̂k μec
kK = v̂k pkK + RT LnxkK + ζk FφK , k ∈ K . (2.6)

In this formula, R = 8.31451 J/mol/◦K is the universal gas constant, T (◦K) the absolute tem-
perature. The ζ’s are the valences.

The extrafibrillar generalized pressures pkE are obtained by constitutive equations: they
include in particular a purely mechanical contribution pI , a term aimed at satisfaction of
chemo-mechanical equilibrium in the hypertonic state, and a term representing the enthalpy
of formation, or affinity of ionic species to PG’s. The intrafibrillar species are subject to the
pressure pI . In addition, a hydration mechanism tends to oppose the osmotic flow, induced by
PG’s, of intrafibrillar water towards the extrafibrillar compartment. The chemo-hyperelastic
relations are detailed in Loret and Simões (2004)(2005)a.

2.3 Electroneutrality

In phase K, the electrical density IeK [unit: Coulomb/m3] is defined as

IeK =
F
V

∑
k∈K

ζk NkK [= FnE
∑
k∈E

ζk ckE for K = E] . (2.7)

For pH close to 7, the collagen can be considered neutral, Li and Katz (1976). According
to Assumption (H5), both the intrafibrillar and extrafibrillar fluid phases are then electrically
neutral, IeI = IeE = 0. Electroneutrality requires a minimal number of extrafibrillar cations,
that we refer to as non mobile cations : the charge of these cations balances the large negative
charge of the proteoglycans, that is∑

k∈E

ζk Nnm
kE = 0,

∑
k∈E

ζk Nmo
kE = 0 . (2.8)

Note however that the non mobile cations sodium do not bind to the PG’s. The situation is
more complex for cations calcium, as indicated in Sect. 2.5.2.

The electrical potential does not enter the elastic constitutive equations, that can be phrased
in terms of chemical potentials, rather than electro-chemical potentials. In fact, the incremental
energy (2.5) can be recast in terms of the chemical potentials of water and salts s1=NaCl and
s2=CaCl2 conjugated to the mass contents of water and (mobile) cations sodium and calcium,

δΨ = σ : δε +
∑

K=I,E

∑
(i,n)∈(Kin,Kne)

μnK δmiK , (2.9)
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with
Kin = {w,Na,Ca}, Kne = {w, s1 = NaCl, s2 = CaCl2} . (2.10)

Indeed, as a further consequence of electroneutrality, the number of moles of anions chloride is
no longer an independent variable and it can be eliminated in favor of the numbers of moles of
the cations,

δNClK =
∑

i∈Kin

ζi δNiK , K = I, E . (2.11)

The entities μnK , n = s1, s2, can be viewed as the chemical potentials of the dissociated salts
in phase K, namely in accordance with (2.6),

m̂i μnK =

⎧⎨
⎩

m̂i μ
ec
iK + ζi m̂Cl μ

ec
ClK ,

v̂n pnK + RT LnxiK (xClK)ζi .
(2.12)

The molar volumes v̂n and densities ρn are defined by the relations,

v̂n = ρ−1
n m̂i = v̂i + ζi v̂Cl , (i, n) ∈ (Kin,Kne) . (2.13)

The incompressibility of individual species is commonly accepted. Then, the volume change of
the whole porous medium tr ε is equal to the sum of volume changes due to addition/subtraction
of individual species, and, Loret and Simões (2005)a,

δ tr ε =
∑

K=I,E

∑
(i,n)∈(Kin,Kne)

ρ−1
n δmiK . (2.14)

2.4 Balance equations

The mass balance equations are required for all mobile species in the fluid phases but extrafib-
rillar water, and for the extrafibrillar fluid phase as a whole. The balances of mass for the
intrafibrillar species are accounted for by the transfer relations. The balance of momentum
of mobile species of the extrafibrillar phase is accounted for indirectly through the generalized
diffusion relations. Balance of momentum for the mixture as a whole is required in a standard
format.

2.4.1 Mass, volume fluxes and electrical current density

Balance equations are phrased in terms of several fluxes. Because of the incompressibility of
the species, mass fluxes and volume fluxes can be viewed as entities that differ only by their
units. The mass flux through the solid skeleton MkK and the associated volume flux JkK [unit :
m/s] of the species k of phase K are defined as,

ρ−1
k MkK = JkK = nkK

mo (vkK − vS) . (2.15)

The sum of the fluxes JkE, k ∈ E, defines the volume averaged flux JE of the extrafibrillar
fluid phase through the solid skeleton,

JE =
∑
k∈E

nkE
mo (vkE − vS) . (2.16)

The PG’s do not contribute to the above flux as a consequence of Assumption (H3).
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Let nkE
mo and nkE

nm be a partition of the volume fraction nkE into its mobile and non mobile
parts. The diffusive flux with respect to extrafibrillar water is denoted by Jd

kE ,

Jd
kE = nkE

mo (vkE − vwE) + nkE
nm (vS − vwE), k ∈ E . (2.17)

Relations between the different fluxes are detailed in Appendix A.
The electrical current density IeK in phase K [unit: A/m2] is defined as the sum of con-

stituent velocities weighted by their valences and molar densities,

IeK = F
∑
k∈K

ζk
NkK

V
vkK = F

∑
k∈K

ζk
Nmo

kK

V
vkK . (2.18)

The second equality is due to the satisfaction of the electroneutrality by the non mobile ions
and PG’s. A uniform velocity for all species of a phase satisfying electroneutrality is seen to be
a sufficient condition for the electrical current density to vanish in that phase, therefore IeI = 0.
Due to the electroneutrality of both the mobile and non mobile parts in E, IeE may be viewed
as a sum of either interphase or diffusive fluxes, namely

IeE = F
∑
k∈E

ζk
JkE

v̂k
= F

∑
k∈E

ζk
Jd

kE

v̂k
. (2.19)

2.4.2 Balances of masses

The change of mass of a species is due a priori to both transfer, i.e. a physico-chemical reaction,
and diffusion. Now, the changes in the species of the intrafibrillar fluid phase are purely reactive,
and they are due to transfer, through the membrane that separates the fluid phases, of water
and ionic species, Fig. 1. On the other hand, the species of the extrafibrillar fluid phase may
also undergo mass changes by exchanges (diffusion) with the surroundings,

δmkE

δ t
= −δmkI

δ t
− div MkE , k ∈ E . (2.20)

The symbol div denotes the divergence operator, and δ /δt represents the derivative following
the solid phase whose velocity is vS .

For incompressible species, the change of volume of the solid skeleton, which is the same as
that of porous medium, is equal and opposite to the change of volume of the extrafibrillar fluid
phase due to diffusion,

div vS + div JE = 0 . (2.21)

As another consequence of (2.20), and of the electroneutrality in the two fluid phases, the
electrical current density IeE defined by (2.18), or (2.19), may be shown to be divergence free,

div IeE = 0 . (2.22)

2.4.3 Balance of momentum

Under quasi-static loading and with the sole gravity g with intensity g as body force, the balance
of momentum of the porous medium as a whole has the standard format,

div σ + ρg = 0, (2.23)

where ρ is the density of the porous medium, i.e. ρ =
∑

k,K ρkK =
∑

K ρK .
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2.5 Calcium partition, screening and binding

2.5.1 Partition of mobile and non mobile cations

The partition between mobile and non mobile cations in the extrafibrillar phase needs to be
specified by constitutive relations. If the mobile and non mobile parts of a species were made
distinct species belonging to distinct phases, they would be endowed with their own electro-
chemical potentials, and the interchange between the two species could be viewed as a transfer
or chemical reaction, controlled by the differences of their potentials.

However, here, the mechanical effect of a species is considered to be due to the species as a
whole, and the chemical potential is defined in terms of the total molar fraction. On the other
hand, only the mobile part of the species can diffuse through the extrafibrillar water.

If there is a single cation k present in the solution, its partition in mobile and non mobile
parts is known, namely its non mobile part is defined by the relation ζk Nnm

kE + ζPGNPG = 0.
When the two cations sodium and calcium are present, their partition needs to be defined.
One might tentatively endow the mobile and non mobile parts with chemical potentials and
the partition will be defined by the equilibrium constant Keq that differentiates the affinities of
cations sodium and calcium for proteoglycans, namely in terms of concentrations

(cnm
NaE)2

(cmo
NaE)2

= Keq
cnm
CaE

cmo
CaE

. (2.24)

Therefore the concentrations can be obtained from the single positive solution of the equation

(cnm
NaE)2

≥0︷ ︸︸ ︷
cClE − cmo

NaE

Keq (cmo
NaE)2

+ cnm
NaE +

<0︷︸︸︷
ePG = 0 . (2.25)

The above discussion assumes that the extrafibrillar pH is above the isoelectric point, in which
case the electrical charge of PG’s is indeed negative.

2.5.2 Calcium binding to the fixed charge

The fixed charge of polyelectrolyte gels of biological interest and of active clays are known to
be pH-sensitive. Indeed, as the pH of the surrounding decreases (resp. increases), the fixed
charge becomes less negative (resp. more negative). For active clays, the issue is considered on
both experimental and modeling points of view in Gajo and Loret (2007). Indeed, the change
of charge is due to surface complexation mechanisms involving cations hydrogen H+ and anions
hydroxyl OH−.

The change of fixed charge might be due to the binding of other ions. Cations calcium are
known to bind, at least partially, to proteoglycans, while cations sodium do not. At sufficiently
high calcium concentration, the binding might become irreversible and modify the structure
of the proteoglycans. The ability of proteoglycans to bind calcium has been advocated to
contribute to the calcification process of articular cartilage, Werner and Gründer (1999).

Still the phenomenon remains to be quantified. Moreover it is known to be very sensitive
to a number of histological details, for example chondroitin sulfate 4 is more prone to bind
calcium than chondroitin sulfate 6.

However, the present analysis considers that the fixed charge is permanent, and cation
binding is not accounted for. In other words, a distinction among the non mobile calcium
cations into free and binded cations is not performed.

10
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3 The global structure: deformation, mass transfer, diffusion

The constitutive equations are developed in a thermodynamic framework à la Biot where the
solid skeleton is taken as reference. Such an approach has been derived in a more general
context including in addition the growth phenomenon in Loret and Simões (2005)b. A single
inequality for the internal entropy is required for the porous medium as a whole. It results in an
expression that contains three terms of distinct natures, and which consequently are required
to be positive individually,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δD1 = −δΨ + σ : δε +
∑
k,K

μkK δmkK ≥ 0 ,

δD2 = −
∑
k∈I

(μkI − μkE) δmkI ≥ 0 ,

δD3/δ t = −
∑

k∈Emo

(∇μec
kE − bkE ) · MkE ≥ 0 .

(3.1)

The chemo-hyperelastic behavior is constructed in order for the first term δD1 to exactly vanish,
Loret and Simões (2004)(2005)a. Due to phase electroneutrality, the electrical field does not
work, and this has lead to the electro-chemical potentials in δD1 and in δD2 to be replaced by
the chemical potentials. Consequently, the elastic relations and the transfer relations do not
depend directly on the electrical field, as already mentioned in a different format in Section 2.3.

Satisfaction of the second and third inequalities motivates generalized transfer equations and
generalized diffusion equations respectively: they are developed in the subsequent sections. For
quasi-static analyses, the body force densities bkE are equal to the gravity g, and individual
accelerations are neglected. Note that uniform body forces can be viewed as introducing a
sedimentation contribution into the electro-chemo-mechanical potentials.

4 Mass transfers as physico-chemical reactions

In view of the electroneutrality of the fluid phases, the inequality dissipation associated to mass
transfer can be recast in terms of the independent intrafibrillar variables Iin, namely

δD2 = −
∑

(i,n)∈(Iin,Ine)

(μnI − μnE) δmiI ≥ 0 . (4.1)

This inequality can be recast in vector form, δD2 = −X · δY ≥ 0, with

Y =

⎡
⎢⎣ mwI

mNaI

mCaI

⎤
⎥⎦ , X =

⎡
⎢⎣ μwI − μwE

μs1I − μs1E

μs2I − μs2E

⎤
⎥⎦ . (4.2)

The simplest way to satisfy the dissipation inequality is to introduce the linear transfer relations,

δY
δt

= −T ·X . (4.3)

Dissipation is ensured if the nion ×nion transfer matrix T is symmetric positive (semi-)definite.
As a simplification, uncoupling between the mass transfers amounts to a diagonal transfer
matrix. It implies that the sole chemical out-of-equilibrium of water does not result in cation
transfers, and conversely. Each of the transfer equations is then characterized by a characteristic
transfer time τi, i ∈ Iin, and a configuration constant Kcn, n ∈ Ine, used to define the equilibrium
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constant. The transfer times can be displayed by dimension analysis of the diagonal terms of
the matrix T,

Ti = Ai
ρi

τi
, i ∈ Iin , (4.4)

where Ai [unit: sec2/m2] is a material parameter.
More general transfer rules that satisfy the dissipation inequality can be postulated if the

above uncoupling holds. Indeed, consider the inequality −μ dm/dt ≥ 0, where μ is understood
as the difference μwI − μwE. The linear rate equation dm/dt = −Aμ satisfies the inequality
if A is a positive scalar. So does the rate equation dm/dt = (exp(−εAμ) − 1) ε, with ε = ±1.
While the latter rate equation reduces to the linear equation at small μ, its behavior at large
positive and negative μ depends strongly on ε, Fig. 2.

Consider now the transfer of water with ε = 1. If the intrafibrillar pressure of water is
large, then the above μ is positive, water tends to leave the intrafibrillar compartment, but the
trend to exhaustion of the intrafibrillar water is limited. On the other hand, if the intrafibrillar
pressure is much smaller than the extrafibrillar pressure, the rate of replenishment becomes
exponential. The value ε = −1 has converse effects on the rate of in- and outflow of water,
Fig. 2. The same reasoning applies for the transfer of ions.

As a final remark, observe that the rate relation

δmiI

δt
=

ρi

τi

[
exp(−Ai|μnI − μnE |) − 1

]
sμ, (i, n) ∈ (Iin, Ine), (4.5)

with sμ = sign(μnI−μnE), is an example of transfer law that 1. is motivated by, and satisfies the
inequality dissipation, 2. ensures a finite rate of transfer at any concentration, and 3. reduces
to the linear transfer law (4.3) close to equilibrium.

5 Generalized diffusion: formal constitutive equations

Inequality δD3 ≥ 0, eqn (3.1), is ensured by generalization of Darcy’s law of seepage through
the porous medium, Fick’s law of diffusion of ions in the extrafibrillar fluid phase, and Ohm’s
law of electrical flow. There are at least two ways of using the inequality to build the generalized
diffusion equations. However, the end results of the two separate developments are shown below
to be equivalent, and the relations between the coefficients of the two generalized diffusion
matrices introduced, of respective sizes (1 + nion) × (1 + nion) and (2 + nion) × (2 + nion), are
provided. nion is the number of mobile ionic species, namely three for a ternary electrolyte.

An electro-osmotic coefficient and an osmotic, or reflection, coefficient are shown to emerge
naturally from the formulation.

The analysis assumes the constitutive equations for generalized diffusion to be isotropic.
Extension to account for anisotropy in Darcy’s law, Fick’s law and Ohm’s law is formally
straightforward, but, to be useful, would require data to be available.

5.1 Two equivalent forms of the dissipation due to generalized diffusion

5.1.1 Diffusion in terms of fluxes relative to the solid

An immediate way to satisfy the inequality δD3 ≥ 0, eqn (3.1), is to postulate the existence
of a symmetric positive (semi-)definite matrix (PsD) κ that provides the volume fluxes as a
function of the electro-chemical potentials, namely,

j = −κ f , κ = κT PsD , (5.1)
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that is, formally,

j =

⎡
⎢⎢⎢⎢⎢⎢⎣

JwE

JNaE

JCaE

JClE

⎤
⎥⎥⎥⎥⎥⎥⎦

, f =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρw ∇μwE

ρNa ∇μec
NaE

ρCa ∇μec
CaE

ρCl ∇μec
ClE

⎤
⎥⎥⎥⎥⎥⎥⎦

, κ =

⎡
⎢⎢⎢⎢⎢⎢⎣

κww κw Na κw Ca κw Cl

κNa w κNaNa κNa Ca κNa Cl

κCa w κCaNa κCa Ca κCa Cl

κCl w κClNa κCl Ca κCl Cl

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.2)

In fact the choice of the conjugate pair of fluxes and forces contains two degrees of arbi-
trariness. Indeed, let α be an arbitrary strictly positive scalar, and Δ be an arbitrary, but
invertible, diagonal matrix. Then the pair (j, f), defined by

j = αΔj , f = Δ−1 f , (5.3)

satisfies
δD3/δt = −fT j = −α−1 fT j ≥ 0 . (5.4)

Therefore it is equivalent to postulate the generalized diffusion law on the pairs (j, f) and (j, f).
The symmetry and positive definiteness of the diffusion matrix κ carry over to the diffusion
matrix κ, and conversely,

j = −κ f , κ = αΔκΔ . (5.5)

5.1.2 Diffusion in terms of diffusive fluxes and current density

A more familiar form, where the diffusive fluxes and electric current density appear, emerges by
using the expression of the electro-chemical potential (2.6), the closure relation satisfied by the
molar fractions, and eqns (2.15),(2.17). Then the dissipation inequality δD3 ≥ 0 is obtained as
the sum of four terms:
- the pressure term can be simplified as follows. First, the gradients of the generalized pressures
∇pkE are all identical in the model developed in Loret and Simões (2004)(2005)a. Second, the
total flux JE may be approximated by the flux of water JwE. Then∑

k∈Emo

∇pkE · JkE � ∇pwE · JwE ; (5.6)

- the chemical term can be additively decomposed, using (A.1), in the classic term plus a term
due to the presence of PG in the extrafibrillar phase,

∑
k∈Emo

RT ∇LnxkE · JkE

v̂k
=

∑
k∈Eions

RT ∇LnxkE · Jd
kE

v̂k
− RT ∇c̃PG · JwE ; (5.7)

- the electrical term is simply
∇φE · IeE ; (5.8)

- in the gravity term, using (A.6),

∑
k∈Emo

−ρk g · JkE = −g ·
(ρE

∗
nE
∗

JE +
∑

l∈Emo

(ρk − ρE
∗

nE
∗

)Jd
kE

)
, (5.9)

the total flux JE may be approximated once again by the flux of water JwE.
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To derive the above expressions, repeated use has been made of the relation: ∇LnxwE/v̂w =
−∇c̃PG − ∑

l∈Eions nlE/nwE∇LnxlE/v̂l.

Therefore, equivalent to (3.1)3, the dissipation inequality can be formally written as the
sum of products of a flux times a driving force,

δD3/δt = −FT J = −FE · JwE −
∑

k∈Eions

Fd
kE · Jd

kE − FeE · IeE ≥ 0. (5.10)

The vector flux J and its conjugate vector F have now 2 + nion entries,

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JwE

Jd
NaE

Jd
CaE

Jd
ClE

IeE

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FE

Fd
NaE

Fd
CaE

Fd
ClE

FeE

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇PwE − ρE
∗ /nE

∗ g

RT/v̂Na ∇LnxNaE − (ρNa − ρE
∗ /nE

∗ )g

RT/v̂Ca ∇LnxCaE − (ρCa − ρE
∗ /nE

∗ )g

RT/v̂Cl ∇LnxClE − (ρCl − ρE
∗ /nE

∗ )g

∇φE

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.11)

where ∇PwE = ∇pwE − RT ∇c̃PG.
The generalized diffusion law can be expressed via a symmetric matrix K of size (2+nion)×

(2 + nion),
J = −KF , K = KT PsD, (5.12)

with components ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kEE kd
ENa kd

ECa kd
ECl ke

kd
NaE kd

NaNa kd
NaCa kd

NaCl kd
Nae

kd
CaE kd

CaNa kd
CaCa kd

CaCl kd
Cae

kd
ClE kd

ClNa kd
ClCa kd

ClCl kd
Cle

ke kd
eNa kd

eCa kd
eCl σe

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.13)

Remark 1: On the dependence of the components of J and F
The components Fd

NaE, Fd
CaE and Fd

ClE of the vector F are linearly independent, even in
absence of gravity, due to the presence of PG’s. In fact, extrafibrillar electroneutrality implies∑

k∈Eions

ζk ckE v̂k Fd
kE = −RT ∇ePG . (5.14)

On the other hand, the components of the flux J are linearly dependent. Indeed the electrical
current density IeE is a linear combination of the ionic diffusive fluxes Jd

kE, eqn (2.19)2, and of
the flux of water, which is proportional to the diffusive flux of PG’s,

IeE − F
∑

k∈Eions

ζk
Jd

kE

v̂k
= F ζPG

Jd
PG

v̂PG

= −F ẽPG JwE . (5.15)

Remark 2: Positive definiteness of the diffusion matrix K
As a consequence of the above remark, the lines of the diffusion matrix K are linearly

dependent and K can be at best positive semi-definite (PsD). That the matrices κ and K are
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actually PsD will be addressed in Remark 4 below.

Remark 3: Identification procedures

Any identification of the diffusion coefficients uses data from specific experimental processes.
There are typically two main methods. The generalized diffusion coefficients can be obtained
from ionic mobilities measured in experiments

- either at vanishing pore pressure gradient FE = 0, in which case the diffusive fluxes
simplify to

Jd
kE = −

∑
l∈Eions

kd
kl F

d
lE − kd

ke FeE , k ∈ Eions , (5.16)

- or at vanishing water flux JwE = 0, and then

Jd
kE = −

∑
l∈Eions

(kd
kl −

kd
Ekk

d
lE

kEE
)Fd

lE − (kd
ke −

ke

kEE
kd

Ek)FeE , k ∈ Eions . (5.17)

5.2 Relations between the 4×4 and 5×5 diffusion matrices

As noted above, the simplest way to define the diffusion properties would be to identify directly
the matrix κ. Its coefficients are a priori independent and they are restricted only by symmetry
and positive (semi-)definiteness. However, more information is available on the matrix K. But
this matrix K is not definite, and therefore there exist relations between its coefficients.

So there are two ways of proceeding:
- either postulate directly the matrix K and unveil the compatibility between its coefficients

due to (5.15) and symmetry, as done in Loret et al. (2004) in their analysis of two-phase
clays where the fixed charges (clay platelets) belong to the solid phase. Note that the
fact that the fixed charge belong or not to the extrafibrillar compartment has far reaching
consequences, as stressed in Remark 7;

- or use directly the compatibility relations inferred by the relations between the coefficients
of the matrices κ and K. This is the method followed here. As a by-product of the
identification, the coefficients of the matrix κ will be known.

It is instrumental to introduce the coefficients,

κd
kl ≡ κkl −

nkE

nwE
κwl , k ∈ Eions , l ∈ Emo . (5.18)

The coefficients of the matrix K are given in terms of those of the matrix κ as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kEE = κww × kd
El =κd

lw × ke = F
∑

l∈Eions

ζl
κwl

v̂l

× × × × ×

kd
kE =kd

Ek ×
kd

kl =kd
lk =

κd
kl −

nlE

nwE
κd

kw

× kd
ke = F

∑
l∈Eions

ζl
κd

kl

v̂l

× × × × ×

ke × kd
el = kd

le × σe = F2
∑

k,l∈Eions

ζk
κkl

v̂kv̂l
ζl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.19)
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The symmetry of the matrix κ has been used to establish (5.19). The matrix K inherits the
symmetry property: even if a priori κd

kl 	= κd
lk, for k 	= l, the central coefficients do so, in fact

kd
kl = kd

lk = κkl −
nkE

nwE
κlw − nlE

nwE
κwk +

nkE

nwE

nlE

nwE
κww, k, l ∈ Eions .

The 2 + nion compatibility relations that the coefficients of the generalized diffusion matrix K
have to satisfy due to the relation of linear dependence (5.15) can now be cast in the format⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ke = F
∑

l∈Eions

ζl
kd

lE

v̂l
− F ẽPG kEE ,

kd
ek = F

∑
l∈Eions

ζl
kd

kl

v̂l
− F ẽPG kd

kE, k ∈ Eions,

σe = F
∑

l∈Eions

ζl
kd

le

v̂l
− F ẽPG ke .

(5.20)

A particular consequence of these compatibility relations is worth to be recorded, namely

F2
∑

k,l∈Eions

ζk
kd

kl

v̂kv̂l
ζl = σe + 2 ke F ẽPG + kEE F2 ẽ2

PG . (5.21)

6 Identification of the constitutive functions

The general form of the diffusion coefficients is now restricted. Indeed, these coefficients are
constrained by the equivalence of the two forms of the dissipation inequality shown in Sect. 5.1,
by the compatibility conditions (5.20),(5.21), and further by the condition of positive (semi-
)definiteness of the generalized diffusion matrices. In addition, as pointed out in the Remark 3
above, experimental conditions that are used to measure the parameters should be specified : the
analysis in Sects. 6.1 to 6.2 below considers that the ionic mobilities are measured at vanishing
pore pressure gradient.

It is instrumental to introduce the following (pseudo-)vectors N and Z of length equal to
the number nion of ions:

Nk =
1
v̂k

nkE

nwE
, Zk = ζk, k ∈ Eions . (6.1)

Repeated use of electroneutrality will be made in the forms

Z · Z⊥ = 0, Z ·N = Z ·Nnm = −ẽPG . (6.2)

Here Z⊥ is the vector space of dimension nion − 1 which is orthogonal to Z. When mobile and
non mobile ions are distinguished, Z⊥ may also assume the value Nmo.

6.1 A general form of diffusion with mobile and non mobile ions

The format of the generalized diffusion equations is based on three key assumptions.

(D1) The hydraulic conductivity Kh is known :

Measurement of hydraulic conductivity, at uniform concentrations of ions and PG’s, and
at vanishing electrical current IeE , necessarily gives rise to a streaming potential ∇φE =
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−ke/σe FE. Thus JwE = −kD FE, and if ke > 0, water flows against pore pressure
gradient but along the streaming potential gradient. The entity measured is thus the
“open circuit” coefficient kD = kEE − k2

e/σe [unit : m3×sec/kg].

Alternatively, measurement of the flow at given fluid pressure, at uniform concentrations
of ions and PG’s, and uniform electrical potential yields the “short circuit” permeability
kEE = κww, which is proportional to the hydraulic conductivity Kh, namely JwE =
−kEE FE.

(D2) The effective ionic mobilities u∗
k, k ∈ Eions, are known :

The velocity relative to water that the ionic species k can reach under an electrical
potential φE at uniform ionic concentrations and vanishing pore pressure gradient is
−u∗

k sgn ζk ∇φE . The effective ionic mobility refers to the mobility in the porous struc-
ture, while the ionic mobility refers to a blank solution. The difference is introduced via
the notion of tortuosity, described in Sect. 6.3. The sign of the electrical charge indicates
that a cation is moving towards the cathode, while an anion is moving towards the anode,
i.e. in the direction of increasing electrical potential. In suspension mechanics and en-
vironmental geomechanics, this phenomenon known as electro-phoresis is used to densify
fine particle suspensions around the anode; densified materials are removed periodically
to allow for the process of anion elimination to continue. In agreement with the usual
convention, the electrical current density has a direction opposite to that of electrons.

Since the diffusive flux involves both mobile and non mobile parts, there is an ambiguity on
the volume fraction involved in the resulting flux, and, temporarily, the volume fraction is
left undecided as ñkE, that is, at uniform ionic concentrations, Jd

kE = −ñkE u∗
k sgn ζk ∇φE .

The coefficients kd
ke, k ∈ Eions, result as indicated in (6.7)2. Then, using the definition of

kd
ke in (5.19), the coefficients κd

kl are obtained to within a vector A,

κd
kl

v̂kv̂l
= nE c̃kE

u∗
k

F |ζk|
Ikl + Ak Z⊥

l k, l ∈ Eions . (6.3)

(D3) The matrix κ is enforced to be symmetric:

Upon insertion of the relation (6.3) in the definition (5.18), symmetry of

κkl

v̂kv̂l
= nE c̃kE

u∗
k

F |ζk|
Ikl + Ak Z⊥

l + Nk
κwl

v̂l
, k, l ∈ Eions , (6.4)

implies
Ak Z⊥

l − Z⊥
k Al =

κwk

v̂k
Nl − Nk

κwl

v̂l
, k, l ∈ Eions . (6.5)

A general solution of (6.5) involves three arbitrary coefficients αi, i ∈ [1, 3], and implies a
particular structure of the κwk/v̂k’s, k ∈ Eions,

Ak = α1 Z⊥
k − α2 Nk ,

κwk

v̂k
= α2 Z⊥

k + α3 Nk , k ∈ Eions . (6.6)

Hence, with help of (5.19), (6.4)-(6.6), the electrical conductivity and electro-osmotic
coefficient are defined up to the coefficient α3. Moreover (6.6) implies kd

Ek/v̂k = κd
kw/v̂k =

κwk/v̂k−Nk κww, k ∈ Eions, and, then kd
kl/v̂kv̂l = κd

kl/v̂kv̂l−Nl κ
d
kw/v̂k, k, l ∈ Eions, results

from (6.3).
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In summary,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kEE =
Kh

ρw g
> 0, kD = kEE − k2

e

σe
,

kd
ke

v̂k
= nE c̃kE u∗

k sgn ζk , k ∈ Eions,

kd
Ek

v̂k
= α2 Z⊥

k + (α3 − kEE )Nk, k ∈ Eions,

kd
kl

v̂kv̂l
= α1 Z⊥

k Z⊥
l − α2

(
Z⊥

k Nl + Nk Z⊥
l

)
+ (kEE − α3)Nk Nl

+ nE c̃kE
u∗

k

F |ζk|
Ikl , k, l ∈ Eions,

ke = −α3 F ẽPG, σe = nE F
∑

k∈Eions

|ζk| c̃kE u∗
k + α3 F2 ẽ2

PG .

(6.7)

The generalized diffusion matrix is left with three arbitrary coefficients αi, i = [1, 3]. The
relations (6.7)5−7 agree with the compatibility condition (5.21). A formal way to define these
coefficients is proposed in Sect. 6.2.

The 4 × 4 diffusion matrix κ is known as soon as the 5 × 5 diffusion matrix K is, using
successively κww = kEE , (6.6), and (6.4) :

⎧⎪⎪⎨
⎪⎪⎩

κwk

v̂k
= α2 Z⊥

k + α3 Nk , k ∈ Eions ,

κkl

v̂kv̂l
= nE c̃kE

u∗
k

F |ζk|
Ikl + α1 Z⊥

k Z⊥
l + α3 Nk Nl , k, l ∈ Eions .

(6.8)

In the above analysis, a single vector Z⊥ has been used. This covers completely the case
of a binary electrolyte. For ternary electrolytes, two independent vectors Z⊥ should appear in
e.g. (6.3).

To summarize the analysis at this point, let us emphasize that the only assumption of
symmetry of the diffusion matrices and their algebraic equivalence has provided the general
structure of the constitutive equations to within three scalars and nion − 1 vectors of size nion.

6.2 The particular case of arrowhead diffusion matrices

A particular form of diffusion is derived below under the following assumptions:

- Assumption (D1) : the diffusive flux of ions is not affected by a gradient of fluid pressure :
thus α2 = 0 and α3 = kEE . In view of the symmetry of the diffusion matrix K, the above
assumption is equivalent to the fact that the ionic gradients do not affect the water flux;

- Assumption (D2) : a gradient of concentration of ion k does not affect the diffusive flux of
ion l 	= k. Then α1 = 0.
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Therefore the diffusion matrix takes the symmetric arrowhead form

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kEE 0 0 0 ke

0 kd
NaNa 0 0 kd

Nae

0 0 kd
CaCa 0 kd

Cae

0 0 0 kd
ClCl kd

Cle

ke kd
eNa kd

eCa kd
eCl σe

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.9)

and its coefficients are given in terms of the hydraulic conductivity Kh, effective ionic mobilities
u∗

k and fixed charge ẽPG as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kEE =
Kh

ρw g
> 0, kD = kEE − k2

e

σe
≥ 0,

kd
ke

v̂k
= nE c̃kE u∗

k sgn ζk , k ∈ Eions,

kd
kl

v̂kv̂l
= nE c̃kE

u∗
k

F |ζk|
Ikl, k, l ∈ Eions,

ke = −kEE F ẽPG ,

σe = σion
e + σPG

e , σion
e = nE F

∑
k∈Eions

|ζk| c̃kE u∗
k, σPG

e = kEE F2 ẽ2
PG .

(6.10)

The short circuit permeability kEE is naturally positive. The open circuit permeability kD is
positive as well due to the relation,

kD

kEE
=

σion
e

σe
≥ 0 . (6.11)

Given the matrix K, the matrix κ becomes

κ = kEE

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 LNa LCa LCl

LNa L2
Na LNaLCa LNaLCl

LCa LCaLNa L2
Ca LCaLCl

LCl LClLNa LClLCa L2
Cl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 kd
NaNa 0 0

0 0 kd
CaCa 0

0 0 0 kd
ClCl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.12)

the L′s being defined as Lk = nkE/nwE, k ∈ Eions. This formulation turns to be similar to that
obtained by Gu et al. (1998) through another path. Gu et al. (1998) postulate the diffusion law
in a format inverse to that used here. Indeed they write the gradients of electrochemical poten-
tials in terms of fluxes through a frictional matrix, their eqn 14. They deduce the coefficients of
the inverse relation that gives fluxes as functions of electrochemical potentials, their eqn 19, and
finally the coefficients of the present generalized diffusion matrix K. One should note however
that the similarity of the generalized diffusion equations of the present approach and of Gu et
al. (1998) is only formal because the repartition of species in phases is quite different.

A key assumption in Gu et al. (1998) is the fact that the frictional submatrix affected to ions
is diagonal. This assumption can be shown to be equivalent to the submatrix κkl, (k, l) ∈ Eions
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to be equal to a diagonal matrix plus a certain dyadic product: this implies the diffusive
submatrix kd

kl, (k, l) ∈ Eions to be diagonal, which is indeed our Assumption (D2). An algebraic
proof is deferred to Appendix B.

Remark 4: Back to the dissipation inequality

Note that the diffusion matrix K, eqn (6.9), is positive semi-definite because four of its
principal minors kEE , kd

kk, k ∈ Eions, are strictly positive while the matrix itself is singular.
Therefore the dissipation (3.1)3 due to diffusion is indeed positive or zero.

Remark 5: Back to the identification procedures

Since now the coefficients kd
Ek, k ∈ Eions, are zero, then the identification procedures at

vanishing gradient of pore pressure, and at vanishing flux of extrafibrillar water are identical,
as observed by comparing eqns (5.16) and (5.17).

6.3 Refinements and ranges of the coefficients

The constitutive equations above introduce several parameters or functions. Typical values,
gathered from literature, for human articular cartilage, Maroudas (1968), and for bovine carti-
lages, Mansour and Mow (1976), Frank and Grodzinsky (1987), Sachs and Grodzinsky (1989),
Gu et al. (1998), Mow and Guo (2002), are listed below :

- Kh ∈ [10−12, 70 × 10−12] [unit: m/sec] is the hydraulic conductivity. In geomechanics, it
is sometimes considered as varying with the void ratio according to the Kozeny-Carman
formula, namely Kh/Kh0 = (e/e0)3 (1 + e0)/(1 + e), where the subscript 0 indicates
the reference (unstrained) state. As for articular cartilage, the data of Mansour and
Mow (1976) indicate that the permeability decreases when increasing compressive strain
while the bath pressure is fixed. Lai et al. (1981) consider relations of the form Kh/Kh0 =
(1 + e)M/(1 + e0)M , or Kh/Kh0 = exp(M trε) : in the latter relation, M is a positive
parameter that may range up to 20. Holmes and Mow (1990) propose a two-parameter
expression, namely, Kh/Kh0 = (e/e0)M1 exp(M2 trε) with M1 ∼ 0.1 and M2 ∼ 4 − 5.
In a finite deformation extension of this formula, Ateshian et al. (1997) take, for bovine
articular cartilage as well, M1 = 2 and M2 = 0.4 − 3.2. Gu et al. (2004) use M2 = 0
and M1 around 3 for uncharged agarose gels and around 7 for porcine lumbar annulus
fibrosus.

Indeed, the elastic modulus of cartilage is presumably, and actually, in direct relation with
the collagen and GAG content. The hydraulic conductivity is on the other hand in inverse
relation with GAG content, but independent of the ionic content, Maroudas (1975)(1979).
Thus, as water is expelled during compression, the relative content of GAG increases and
therefore the hydraulic conductivity is expected to decrease. In any case, the wide range
of values of the parameters M above indicate that the actual dependence of hydraulic
conductivity in terms of strain is not completely resolved by these expressions, for at
least two reasons. First, an assessment of these relations revolves around the definition of
the void ratio ! In the present three-phase context, the void ratio involved would be e∗ =
VE/(VI+VS), while the void ratio e in biphasic theories is (VE+VI)/VS . Second, the actual
permeability depends not only on the actual porosity, but also on the microstructure of
this porosity. The notion of hydraulic tortuosity is briefly discussed below in relation with
ionic mobilities and diffusion coefficients.
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Moreover, these relations imply that the mechanical and transport properties should vary
across depth of the cartilage layer, as the chemical composition of cartilage does, Chen et
al. (2001);

- Dk ∈ [2 × 10−10, 20 × 10−10] [unit: m2/sec] is the coefficient of diffusion of the ion k;

- uk ∈ [8 × 10−9, 80 × 10−9] [unit: m2/sec/Volt] is the mobility of the ion k in the porous
medium. The ionic mobility is linked to the coefficient of diffusion by the Nernst-Einstein
relation : uk = Dk |ζk|F/RT .

The effective diffusion coefficient accounts for several aspects that imply diffusion in the
porous medium to be slower than diffusion in a free infinitely dilute solution. For any
ion, the coefficients of intrinsic diffusion D and of effective diffusion D∗ = τ D are linked
by the tortuosity factor τ < 1 (this entity is sometimes defined as the inverse of the one
used here). A similar relation applies to effective ionic mobilities, namely u∗ = τ u. One
contribution to the tortuosity factor τ stems from geometrical considerations, namely
the actual path that an ion has to travel in a porous medium is larger than in a blank
solution. For a cross-linked polymer membrane, the tortuosity factor τ for ions that
do not interact with the membrane has been defined, using statistical arguments, by
Mackie and Meares (1955), as a function of the relative volumes of water and solid,
namely τ = τ1(e) = e2/(2 + e)2 for a two-phase mixture. This relation would take the
format τ = τ1(e∗) in the present three-phase context. Mechanical compression expels first
extrafibrillar water out of the cartilage, and therefore, according to this model, it reduces
considerably the tortuosity factor and therefore the effective diffusion coefficients. A
formula of the same flavor which goes by the name of Archie’s law is used for rocks by the
geophysical community, where the tortuosity factor is postulated as a power relationship
nm−1, where n is a (model-dependent) fluid volume fraction. The exponent m varies in
the typical range [1.5, 2.5] for cemented, or not cemented, granular materials. It reaches
the minimum value 1.5 for a random array of spheres, and it is greater than this value for
flat particles.

As such, the above formulas have a main drawback: the tortuosity factor τ1 accounts
solely for geometrical aspects of the pore structure. However, the presence of fixed charges
modifies considerably the effective coefficients of diffusion and ionic mobilities. Indeed,
at small concentrations, the range of action of the fixed charge is large, and the ionic
mobilities are reduced. This aspect may be inserted in the tortuosity factor τ which
can be viewed as the product τ1 τ2 of two terms, the Mackie-Meares’s geometrical factor
τ1, and a second factor of electro-chemical nature τ2 that vanishes at infinitely small
concentrations of mobile ions. It is customary to adopt

Assumption (T ) : tortuosity affects all ions identically;

- σe ∈ [10−2, 1][unit: Siemens/m=A/Volt/m] is the bulk electrical conductivity of the porous
medium. Notice that the electrical conductivity given in the format (6.10) is not constant,
it assumes a minimal non zero value for distilled water and it increases with ionic strength.
The various constituents of cartilage contribute to the electrical conductivity :

(1) In the present model, the collagen network is considered infinitely resistive. The
intrafibrillar ions are not involved either. However, mass transfers and the trend toward
chemical equilibrium between the intra- and extrafibrillar phases affect indirectly the
extrafibrillar ionic concentrations and volume of water, and therefore the tortuosity factor.
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So, the possibility that increasing high extrafibrillar ionic strength be accompanied by a
decrease of electrical conductivity can not be ruled out a priori.

(2) The contribution of the PG’s is strictly positive, except at the isoelectric point where
the fixed charge vanishes. The isoelectric pH is reported to be around 2.75 by Frank and
Grodzinsky (1987)-I. Note that, if PG’s were part of the solid phase, they would not enter
in σe in (6.10), nor would the non mobile ions, Loret et al. (2004).

(3) Ions in the extrafibrillar fluid phase contribute additively, with an intensity propor-
tional to the product of their effective ionic mobilities and of their concentrations. Here,
the mobilities are taken constant. However, according to Kohlrausch’s square root law,
they decrease with concentration c, say generically as u = u0 − (α u0 + β)

√
c, where u0

is the electrical conductivity at dilute concentration, α and β are positive parameters.
Therefore, the contribution of an ion to the overall conductivity, essentially proportional
to c u∗, would not increase linearly with concentration, but would tend to flatten, or
possibly to decrease at higher concentration.

(4) Non-mobile extrafibrillar ions can be made to either contribute or not, depending
whether, in (6.10), ñkE is set to nkE or to nkE

mo. Only the former option is pursued in the
sequel.

- ke ∈ [0.1×10−8, 5×10−8] [unit: m2/sec/Volt] is the electro-osmotic coefficient. According to
the Helmholtz-Smoluchowski theory, it should be proportional to the fixed charge, with
opposite sign. The expression (6.10)4 is in perfect agreement with these requirements. As
pH decreases, the charge of PG’s becomes less negative. It vanishes at the isoelectric point,
and it becomes positive at lower pH, Grodzinsky et al. (1981). Therefore, in absence of
pressure and concentration gradients, a difference of electrical potential induces an osmotic
water flow towards the cathode at neutral and high pH, and towards the anode at low
pH, a phenomenon termed “reverse osmosis” not to be confused with “anomalous negative
osmosis” investigated below.

The general trends of electrical conductivity and of some other indicators of hydraulic and
electrical transport are displayed on Figs. 3 and 4. Some features are worth of notice:

- for the reference CEC=43kC/kg, the ionic conductivity tends to vary linearly with the
ionic strength of the bath cClB for cClB ≥ 0.2 M. The influence of the fluid volume fraction
would be moderated if the tortuosity would follow Archie’s law;

- as CEC decreases to zero, the electrical conductivity tends to FnE cClB (u∗
k + u∗

Cl);

- the difference in electrical conductivity between the sodium chloride and calcium chloride
electrolytes is small;

- as expected, the relative contribution of ions to the electrical conductivity increases when
the ionic strength of the bath increases, when the fluid volume fraction increases, and
when the CEC decreases. The influence of the fluid volume fraction would be amplified
if the tortuosity would follow Archie’s law;

- the ratio of open and short circuit permeabilities may be significatively smaller than 1 at
low ionic strength;

- the ratio ke/σe decreases as the ionic strength of the bath increases, but varies non
monotonously in terms of fluid volume fraction and CEC. For articular cartilages under
physiological conditions, the ratio takes values around 1 × 10−8 Volt/Pa, in agreement
with measurements by Frank and Grodzinsky (1987)II and Huyghe et al. (2002).
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The trends may be checked against data available in the literature, where both the fixed
charge density and fluid volume fractions are known accurately. For example, Huyghe et
al. (2002) analyzed a hydrogel with fixed charge of -0.15 mole per liter of fluid tissue, with
fluid volume fraction of 0.977, in contact with a bath at 0.15 M of NaCl. They report the
following measurements : ke = 0.88 × 10−8 m2/sec/Volt and σe = 0.76 Siemens/m, so that
the ratio ke/σe is equal to 1.16 × 10−8 Volt/Pa. These data yield the short circuit per-
meability kEE = −ke/F/ePG = 0.61 × 10−15 m4/N/sec and the open circuit permeabil-
ity kD = kEE − k2

e/σe = 0.51 × 10−15 m4/N/sec, so that kD/kEE = 0.83. Assuming
ρdry = 1800 kg/m3, the corresponding CEC is 347.4 kC/kg: this value is much larger than
in articular cartilages due to the high fluid volume fraction. The model yields values quite
in the range of experimental measurements, namely kD/kEE = 0.82, σe = 1.15 Siemens/m,
ke/σe = 1.54 × 10−8 Volt/Pa.

While the model of generalized diffusion does not introduce explicitly an osmotic coefficient,
the latter is in fact hidden in the equations, as shown in the next section.

7 The reflection, or osmotic, coefficient

Let a cartilage specimen to be in contact with a bath. Its mechanical and chemical state is
in general spatially non uniform. Still, each material point of the cartilage can be viewed to
be in equilibrium with a fictitious bath. Of course, if the cartilage state is spatially uniform,
then the local fictitious baths become all identical to the real bath. This is the situation we
have in mind below when we will plot the reflection coefficient and the diffusion coefficients as
a function of the chemical composition of a bath.

The two compartments, namely the extrafibrillar phase, and the real or fictitious baths, are
in chemical equilibrium, they contain the same species, and they both satisfy electroneutrality.
The fixed charge, assumed to be spatially uniform, is given by (2.4)2.

Assuming the chemical composition of the fictitious or real baths to be given, the com-
position of the extrafibrillar phase is deduced first, Sect. 7.1. Two particular electrolytes are
envisaged, namely a binary symmetric electrolyte NaCl, and a binary nonsymmetric electrolyte
CaCl2, denoted by the index k=Na and k=Ca respectively.

On comparing the ionic fluxes in the cartilage and in the bath, Sect. 7.3. a reflection
coefficient is evidenced as characterizing the filtration properties of the fixed charged medium.
Indeed, at small ionic concentrations of the bath, and at small ionic concentrations of the
mobile ions in the cartilage, the range of influence of the fixed charge is large, and ω is close
to one. Thus the co-ions, and, by electroneutrality, the counter-ions, are repelled. As the ionic
concentrations increase, the range of influence of the fixed charge decreases, leaving ions more
freedom to diffuse, and the reflection coefficient tends to vanish.

Another interpretation of the reflection coefficient can be proposed, Sect. 7.5. Indeed, the
fluid fluxes in the cartilage and in the bath can be compared, rather than the ionic fluxes. This
comparison features the osmotic coefficient. Osmotic and reflection coefficients are shown to
be one and the same.

7.1 Equilibrium relations for the two binary electrolytes

In view of the electroneutrality of each of the two compartments,

xClB = ζk xkB, xClE = ζk xkE + yPG , yPG ≡ ζPG xPG , (7.1)
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the chemical potentials of the salts NaCl or CaCl2 can be brought in the form (2.12). The me-
chanical contribution to the chemical potential of the salts is now considered small with respect
to the chemical contributions. Then equilibrium of the salt between these two compartments
implies

xkE (xClE)ζk = xkB (xClB)ζk , k = Na, Ca . (7.2)

The variations of the molar fractions of the cations are connected by the relation
dxkE

dxkB
=

dxClE

dxClB
=

1 + ζk

xkB

xkE xClE

ζ2
k xkE + xClE

, k = Na, Ca . (7.3)

The equilibrium of the chemical potentials of water between the two compartments provides
the osmotic pressure pwE − pB (neglecting the concentration cPG of PG’s) as

v̂w

RT
(pwE − pB) � yPG + (1 + ζk) (xkE − xkB) , k = Na, Ca . (7.4)

The explicit relations between the molar fractions in the two compartments are now detailed.
For the NaCl electrolyte, the extrafibrillar molar fractions express in terms of the molar

fractions of the bath as

xNaE = −yPG

2
+

√
(
yPG

2
)2 + x2

NaB, xClE =
yPG

2
+

√
(
yPG

2
)2 + x2

NaB . (7.5)

For the CaCl2 electrolyte, the molar fraction of cations calcium is obtained via the positive
solution y =

√
xCaE of the cubic equation,

y3 +
yPG

2
y − (

√
xCaB)3 = 0 , xCaE = y2, xClE = 2 y2 + yPG . (7.6)

Conversely, for both binary electrolytes, the ionic molar fractions in the bath express in terms
of the ionic molar fractions of the extrafibrillar phase as

xkB =
xClB

ζk
=

(
xkE

(xClE

ζk

)ζk
)(1+ζk)−1

. (7.7)

7.2 The absolute fluxes for an open circuit

For open electrical circuit, IeE = 0, the electrical field FeE can be expressed in terms of the
gradients of fluid pressure FE and ionic concentrations Fd

lE, namely

FeE = −ke

σe
FE − 1

σe

∑
l∈Eions

kd
el

v̂l
v̂l Fd

lE , (7.8)

Then, using the constitutive equations (5.11),(6.9), the flux of water becomes

JwE = −kD FE +
ke

σe

∑
l∈Eions

kd
el

v̂l
v̂l Fd

lE , (7.9)

while, with (A.1), the ionic fluxes relative to the solid JkE can be recast in the format
JkE

v̂k
= −k0

kE FE −
∑

l∈Eions

k0
klE v̂l Fd

lE , (7.10)

with coefficients :⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̂k k0
kE = −ke

σe
kd

ke + kD
nkE

nwE
,

v̂k v̂l k
0
klE = kd

kl −
kd

kek
d
el

σe
− ke

σe

nkE

nwE
kd

el, l ∈ Eions .

(7.11)
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7.3 The reflection coefficient as a filtration indicator

First let us note that an experiment with open circuit, involving in addition uniform concen-
trations of ions and PG’s, can be checked to be feasible. Moreover, the pressure gradient FE

generates a fluid flux JwE = −kD FE .
Since the electrical current density vanishes in the extrafibrillar phase, eqn (2.19), then, the

fluxes of water (7.9) and ions (7.10) satisfy the relations :

ζk
JkE

v̂k
=

JClE

v̂Cl

= ζk
k0

kE

kD
JwE =

k0
ClE

kD
JwE . (7.12)

Similarly in the fictitious bath,

ζk
JkB

v̂k
=

JClB

v̂Cl

= ζk
ckB

nwB
JwB =

cClB

nwB
JwB . (7.13)

In a one directional flow context, the reflection coefficient is defined as the relative difference
between the cationic or anionic fluxes in the extrafibrillar and bath compartments, namely
JkE = (1 − ω)JkB and JClE = (1 − ω)JClB , at identical fluid fluxes in the bath and cartilage,
JwB = JwE. Using (6.10) and (7.11)-(7.13), the reflection coefficient ω results as

ω = 1 − cClE

cClB

ζk ckE (uk + uCl)
ζk ckE uk + cClE uCl

, k = Na, Ca . (7.14)

Assumption (T ) has been used to eliminate the tortuosity factor, as well as the fact that cwB

and cwE are quite close.
To interpret this coefficient, we view the bath composition as given, and deduce the chemical

content of the cartilage as indicated by (7.5), or (7.6). As the cationic, or anionic, concentration
in the bath increases from zero, the extrafibrillar chloride content varies much slower than in
the bath, as indicated by (7.2), (7.3) and (7.7) : thus the reflection coefficient for a fresh bath
water is one, as expected.

For infinitesimal fixed charge, the bath and extrafibrillar concentrations are equal and ζk ckE

is equal to cClE . Then ω decreases quickly to 0 as soon as the ionic strength of the bath increases.
The situation is similar when the ionic content tends to overweigh the fixed charge. Indeed, the
filtration properties depend crucially of the fixed charge content.

Figure 5 shows the variations of the reflection coefficient as a function of the bath anionic
strength, for the two electrolytes NaCl and CaCl2. The effects of the CEC and volume fraction
of the fluid are highlighted. Some comments are in order :

- the reflection coefficient decreases quickly from 1 to 0 as the ionic strength of the bath
increases;

- at given fluid volume fraction and at small ionic strength, the higher the CEC, the stronger
the filtration effect of the fixed charge, and the higher the reflection coefficient. The trend
is opposite at large ionic strength;

- at given CEC, the higher the fluid volume fraction, the lower the reflection coefficient
at small ionic strength. Indeed, a large fluid volume fraction reduces the fixed charge
density, and compacted materials are known to be more efficient ion screens. The trend
is again opposite at large ionic strength;

- the calcium chloride electrolyte is endowed with a smaller reflection coefficient than the
sodium chloride electrolyte.

These features agree with the data reported on Ca2+-soil system by Kemper and
Quirk (1972).
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7.4 Negative osmosis

A negative “anomalous” value of the reflection coefficient is reported in the experimental data
of Kemper and Quirk (1972) on kaolinites, bentonites and illites, and analyzed in Olsen et
al. (1990) for soil systems, and in Gu et al. (1997) for articular cartilages.

In the above experimental conditions, JkE = (1−ω)JkB . Consequently, a negative osmosis
implies a larger ionic flux in the cartilage than in the bath.

Using (7.3) and (7.7), an extremum of ω in terms of the bath concentration is defined by

cmin
ClB =

ePG

α − β

(
α (1 − β)

)β (
(1 − α)β

)1−β
, ωmin = 1 −

(β

α

)β (1 − β

1 − α

)1−β
, (7.15)

where
α =

uk

uk + uCl

, β =
ζk

ζk + 1
. (7.16)

Clearly, while the extremum concentration is proportional to the fixed charge density, the min-
imum reflection coefficient depends only on α and β, that is, on the relative ionic mobilities
and on the valence of the counterion. It is encouraging to observe that the experimental curves
obtained for Ca2+-soil systems by Kemper and Quirk (1972) and reported in Bresler (1973)
and Mitchell (1993) show precisely the trends produced by the model and displayed on Fig. 5.
Moreover, the experimental negative osmosis is more marked for illites and kaolinites whose
fixed charge is much smaller than in montmorillonites : the experiments and simulations for
bentonites in Leroy (2005) do not show negative osmosis. The experimental negative osmosis
is more marked as well for Ca2+-soils than for Na+-soils. These two additional features are
displayed by the model. The actual minimum reflection coefficient is -0.022 for the NaCl elec-
trolyte and -0.111 for the CaCl2 electrolyte, irrespective of CEC and volume fraction. However,
the experimental minima increase, in algebraic value, as the fixed charge increases. We may
just speculate that calcium-binding to the fixed charge, a phenomenon not accounted for here,
might be a reason for this increase of the minima.

For a negative fixed charge, the condition of existence of this extremum is α < β, that is

uCl >
uk

ζk
. (7.17)

This condition is verified for the two electrolytes of interest. The above results on negative
osmosis complete and generalize the analysis of Gu et al. (1997) which addresses only a sodium
chloride electrolyte.

The condition α < β ensures the minimum of ω to be negative, and thus, ensures the
existence of a concentration c0

ClB at which ω vanishes, e.g. for the sodium chloride electrolyte,

c0
ClB = ePG

α (1 − α)
2α − 1

, (7.18)

which blatantly is proportional to the fixed charge density and depends on the ratio of ionic
mobilities. The algebraic expression for calcium chloride can be obtained as well as a solution
of a quadratic equation.

It might be worth to recall that the curves shown on Fig. 5 can not be used directly to
follow a chemical experimental where the bath composition is varied, since then the fluid volume
fractions changes as well, due to chemo-mechanical coupling. Still, as the ionic strength of the
bath is increased, the reflection coefficient will necessarily go through its minimum.
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7.5 Another point of view: the diffusion-osmosis phenomenon

Another derivation is proposed now, which features a coefficient that can be termed ‘osmotic
coefficient’.

The pressure gradient FE, which is essentially equal to ∇pwE, is obtained via (7.4), namely

FE = ∇pwE = ∇pB + RT ∇ePG + RT (1 + ζk) (∇ ckE −∇ ckB) . (7.19)

The fluid flux is considered to be driven by an osmotic gradient in the underlying baths, namely

JwE = −kD

(
∇pB − ω RT (1 + ζk)∇ ckB

)
. (7.20)

Assuming a uniform fluid pressure, ∇pB = 0, and a uniform distribution of PG’s, ∇ePG = 0, we
recover the standard presentation of the osmotic coefficient, viewed as moderating the influence
of a chemical gradient on the flow. The algebraic expression (7.14) is retrieved by equating the
two expressions of the fluid flux, provided on one hand by (7.9) where FE is given by (7.19),
and on the other hand by (7.20), with help of (6.11) and (7.3). If ω is negative, relation (7.20)
indicates that water flows against, and not along, the chemical gradient, which has led the
phenomenon to be coined “anomalous osmosis”.

Remark 6. The difference in electrical fields in actual setups
Experiments to explore the osmosis effect typically consist in maintaining the specimen

between a lower bath and an upper bath, with identical pressures, but distinct concentrations.
The difference between the upper and lower electrical fields is observed to change sign for an
average concentration slightly larger than the one that marks negative osmosis. It would be
worth to check this aspect by the model.

Remark 7. Fixed charge: in the solid or fluid phases ?
As mentioned in the introduction, the definition of phases in articular cartilages is not

unambiguous. The fixed charge is of primary concern here. According to a kinematic criterion,
it would be part of the solid phase. On the other hand, its mechanical effects are related to its
concentration with respect to the volume of extrafibrillar water. Some key differences between
the two options are listed below:

1. Fixed charge in the solid phase.

This is the option taken in the modeling of expansive clays in Loret et al. (2004).

Let us first consider the chemo-mechanical equilibrium of a clay with an external reser-
voir: pore pressure, concentration and electrical potential are continuous at the boundary
between the water phase and the reservoir. Moreover, the electrical conductivity vanishes
when the external reservoir is quasi-distilled water.

In addition, the electro-osmotic coefficient ke and the osmotic coefficient ω are not con-
strained by compatibility conditions. Thus they have to be provided by additional con-
stitutive equations.

2. Fixed charge in the fluid phase.

The presence of the fixed charge in the extrafibrillar phase has two main consequences.
First, pore pressure, concentrations and electrical potential undergo a jump across the
interface that separates the cartilage and a bath, even at equilibrium. This observation
is of importance in a finite element context. Indeed, they strongly guide the choice of the
primary variables.
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Second, the electro-osmotic coefficient ke and the osmotic coefficient ω are constrained
by compatibility conditions : in fact, they are provided by the formulation, in explicit or
implicit form.

8 Experimental diffusion coefficients

Typical experimental setups provide information on the diffusion coefficients : the results are
naturally recorded as function of the chemical composition of the bath. The interpretation
requires caution. Indeed, the presence of the proteoglycans in the extrafibrillar water implies
the cartilage specimen to be surrounded by a fictitious membrane across which a number of
entities are discontinuous. Now, the constitutive equations are phrased in terms of intra- or
extrafibrillar entities. The experimental data should be re-plotted in terms of these entities to
provide the intrinsic material functions.

8.1 Open circuit and no net fluid flux

Let us consider a cartilage layer with open electrical circuit, IeE = 0, and no net fluid flux,
JwE = 0. Then, with help of (6.11), the pressure gradient FE and electrical field FeE can be
calculated in terms of the concentration gradients Fd

lE as

FeE = −kEE

ke
FE = − 1

σion
e

∑
l∈Eions

kd
el

v̂l
v̂l Fd

lE . (8.1)

Upon backsubstitution, the diffusive fluxes become,

−Jd
kE

v̂k
=

∑
l∈Eions

k∗
klE v̂l Fd

lE , (8.2)

where

k∗
klE =

kd
kl

v̂k v̂l
− 1

σion
e

kd
ke

v̂k

kd
el

v̂l
, l ∈ Eions . (8.3)

The two binary electrolytes NaCl and CaCl2 are considered in turn.
Using (5.15) with IeE = 0 and JwE = 0 implies the diffusive fluxes of the ion and cation to

be parallel:

−ζk
Jd

kE

v̂k
= −Jd

ClE

v̂Cl

=

= ζk

∑
l∈Eions

k∗
klE v̂l Fd

lE =
∑

l∈Eions

k∗
CllE v̂l Fd

lE .
(8.4)

Assuming a spatially uniform distribution of PG’s, electroneutrality yields ζk ∇xkE = ∇xClE .
Substituting this relation in (8.4), and using the definition (5.11) of the driving gradients Fd

lE,
l = k,Cl, the diffusive fluxes [unit: m−2 sec−1] of the cation, k=Na or Ca, and of the chlorine
ion can be cast in the format :

−ζk
Jd

kE

v̂k
= ζk Dk ∇ckE = −Jd

ClE

v̂Cl

= DCl ∇cClE . (8.5)

The diffusion coefficients [unit: m2 sec−1] Dk and DCl are equal,

Dk = RT
(k∗

kkE

ckE
+ ζk

k∗
kClE

cClE

)
= DCl = RT

( 1
ζk

k∗
Cl kE

ckE
+

k∗
Cl ClE

cClE

)
, (8.6)
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and denoted D,

D =
RT

F
nE

ζk

(ζ2
k ckE + cClE)u∗

Cl u
∗
k

ζk ckEu∗
k + cClEu∗

Cl

, k = Na, Ca . (8.7)

The following limits hold :
- the limit value of the diffusion coefficient D at infinitely small ionic strength of the bath,

the cartilage is in equilibrium with, is

lim
cClB=ζk ckB→0

D =
RT

F
nE u∗

Cl ; (8.8)

- the limit value of the diffusion coefficient D of a cartilage in absence of fixed charge (yPG = 0
or ePG = 0) is independent of the ionic strength of the bath, and

lim
yPG→0

D =
RT

F
nE 1 + ζk

ζk

u∗
Cl u

∗
k

u∗
Cl + u∗

k

, ∀ cClB = ζk ckB , k = Na or Ca . (8.9)

8.2 Application to a cartilage layer maintained between two baths

As an application, a cartilage layer of thickness h is placed between two baths of controlled
chemical content: a slight concentration difference is imposed between the two baths. The
experiment is realized at no fluid flow and open circuit. The diffusion coefficient associated
to this experiment, denoted by Dexp

B [unit: m2 sec−1], is defined as (∇ denotes the difference
between the two baths divided by the thickness h)

D∇ckE = Dexp
B ∇ckB, k = Na or Ca . (8.10)

Hence, with help of (7.3) and Assumption (T ),

Dexp
B =

RT

F
nE (1 + ζk) τ

cClE

cClB

ckE uCl uk

ζk ckE uk + cClE uCl

, k = Na or Ca . (8.11)

Figure 6 displays the effects of the ionic strength of the bath, of the fluid volume fraction
and of the fixed charge density, on the experimental diffusion coefficient Dexp

B divided by the
tortuosity factor τ . The experimental coefficient Dexp

B can be observed to increase with the ionic
strength of the baths, starting from a null value, and reaching a plateau at larger ionic strength,
two features observed in the experiments of Malusis and Shackelford (2002) on a bentonite, a
geological material with fixed charge. The latter plays a crucial role here: indeed in absence of
fixed charge, the experimental diffusion coefficient Dexp

B assumes the constant value given by
(8.9).

Further details may be worth of interest :
- for the values of ionic mobilities used, there always exists an ionic strength at which the

experimental diffusion coefficient presents a maximum. The existence and position of this
maximum have been investigated in relation with the osmotic coefficient;

- at given fluid volume fraction nE, the higher the CEC, the smaller the experimental
diffusion coefficient at small ionic strength; the trend is opposite at large ionic strength;

- at given CEC, the higher the fluid volume fraction, the higher the experimental diffusion
coefficient;

- the Ca2+-electrolyte is endowed with an experimental diffusion coefficient that is slightly
larger, at small ionic strength, than the monovalent electrolyte; the trend is opposite at
large ionic strength.

29



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

It is worthwhile to observe that the above experimental diffusion coefficient, eqn (8.11), can
be expressed in terms of the transmission coefficient 1 − ω, eqn (7.14), namely

Dexp
B =

RT

F
nE 1 + ζk

ζk

uk uCl

uk + uCl

τ (1 − ω), k = Na or Ca . (8.12)

A relation of this type has been suggested in the geomechanical literature on the grounds that
Dexp

B and 1 − ω both vanish at infinitesimal ionic strength of the baths. The present analysis
shows that such a relation does not need to be postulated as a basic constitutive equation :
indeed it results from the constitutive equations of diffusion.

9 Concluding remarks

The framework for this analysis of articular cartilages is purely macroscopic, in the sense that
the actual details of the geometry and microstructure at the nanoscale are wiped out. On the
other hand, the implicit averaging process has kept track of the features that are thought to
govern the chemo-mechanical behavior, e.g.

- the presence of fixed charge on the proteoglycans which influences mechanics through
electrical shielding, swelling and shrinking, and transport via the osmotic effect;

- the existence of two types of water, inside the collagen fibrils, and around the proteogly-
cans, of different chemical compositions. This feature endows both the mechanical and
transport properties with instantaneous and delayed responses.

Indeed, even if the mechanical behaviors of the individual pieces are time independent (non-
viscous), the overall behavior of the cartilage is indeed time-dependent and it displays several
characteristic times, namely a time associated to seepage, times associated to the diffusion of
ions, and times associated to mass transfers between the intra- and extrafibrillar compartments.

In Loret and Simões (2004)(2005)a, simulations of a succession of equilibria were performed
in order to test the chemo-mechanical constitutive equations only, and mechanical and chemical
equilibria were assumed to hold between the two water phases and between the extrafibrillar
phase and the bath. The framework described here endows the material behavior with intrinsic
times. It allows to simulate laboratory experiments with characteristic loading times which may
be smaller, of the same order or larger than the various material time scales. The transient
response depends strongly on the relative positions of these characteristic times. The issue is
addressed and illustrated in a companion paper via the finite element method.

Note that the effect of pH on the electrical conductivity and electro-osmotic coefficient might
be considered to be accounted for due to the explicit presence of the negative fixed charge.
However, to be complete, the model should be enriched by constitutive equations that provide
the evolution of this fixed charge as the pH of the surrounding, which is a priori different from
the extrafibrillar pH, varies. In fact, both the mechanical and transport properties of materials
endowed with a fixed electric charge are strongly modified by alkaline and acid environments,
e.g. Gajo and Loret (2007) for a brief review. Preliminary data indicate that pH changes affect
substantially the diffusion coefficients of artificial joints, Kitano et al. (2001).
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Appendix A: Relations between fluxes

Notice the relations between the fluxes defined in Sect. 2.4.1,

JkE = Jd
kE + nkE (vwE − vS) = Jd

kE +
nkE

nwE
JwE , k ∈ Emo. (A.1)

Let
nE
∗ ≡

∑
k∈Emo

nkE 	= nE
mo ≡

∑
k∈Emo

nkE
mo, (A.2)

and
ρE
∗ ≡

∑
k∈Emo

nkE ρk 	= ρE
mo ≡

∑
k∈Emo

nkE
mo ρk. (A.3)

Then
JE =

∑
k∈Emo

Jd
kE +

nE
∗

nwE
JwE =

∑
k∈E

Jd
kE +

nE

nwE
JwE , (A.4)

and
JwE

nwE
=

1
nkE

(JkE − Jd
kE) =

1
nE
∗

∑
l∈Emo

JlE − Jd
lE , k ∈ E(mo) , (A.5)

as well as ∑
k∈Emo

MkE =
∑

k∈Emo

ρk JkE =
ρE
∗

nE
∗

JE +
∑

k∈Emo

(ρk − ρE
∗

nE
∗

)Jd
kE . (A.6)

Appendix B: Structure of diffusion matrices

The relations (5.1),(5.2) link the fluxes, relative to the solid, of water J and ions Ji, i ∈ [1, 3], to
the gradients of the electrochemical potentials of the associated species M and ions Mi, i ∈ [1, 3]. They
may be rewritten in the simplified format (the matrix below plays the role of the matrix κ in (6.12) ):⎡

⎢⎢⎢⎢⎢⎣

J

J1

J2

J3

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 n1 n2 n3

n1 c11 c12 c13

n2 c21 c22 c23

n3 c31 c32 c33

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

M

M1

M2

M3

⎤
⎥⎥⎥⎥⎥⎦ . (B.1)

The electrochemical potentials may be expressed in terms of the diffusive fluxes as⎡
⎢⎢⎣

M1

M2

M3

⎤
⎥⎥⎦ = B

⎡
⎢⎢⎣

J1 − n1 J

J2 − n2 J

J3 − n3 J

⎤
⎥⎥⎦ , M = J −

∑
j=1,3

nj Mj . (B.2)

With C the matrix of components cij , (i, j) ∈ [1, 3]2, the matrix B above is defined as

B = (C − n⊗ n)−1 . (B.3)

The matrix form of the complete inverse relation is⎡
⎢⎢⎢⎢⎢⎣

M

M1

M2

M3

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 −
∑

j,k Bjk −
∑

j Bj1 −
∑

j Bj2 −
∑

j Bj3

−
∑

j B1j B11 B12 B13

−
∑

j B2j B21 B22 B23
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∑

j B3j B31 B32 B33
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⎥⎥⎥⎥⎥⎦
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⎢⎢⎢⎢⎢⎣
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J1
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J3

⎤
⎥⎥⎥⎥⎥⎦ . (B.4)

The above matrix is proportional to the matrix A in Gu et al. (1998), their eqn 17. They require the
lower major to be diagonal. This restriction implies the inverse of our matrix C − n ⊗ n, and thus
C−n⊗n, to be diagonal. Equivalently our matrix C has to be the sum of a diagonal part, plus a dyadic
part, as indeed can be checked on (6.12). Now, the matrix C represents the submatrix of κ given by
(6.8)2, and the matrix C−n⊗n represents the central part of the diffusive matrix noted kd

kl, k, l ∈ Eions,
and given by (6.7)5 for α1 = α2 = 0, α3 = kEE .
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Figure 1 Articular cartilage is partitioned in three phases, one solid phase and two fluid phases, Loret
and Simões (2005)a. Each fluid phase contains several species. Some of these species are mobile,
at least partially: water and ions can enter and leave the intrafibrillar space defined by collagen
fibrils. Proteoglycans which are macromolecules are too large to be admitted into that space.
Water and ions can also be exchanged between the extrafibrillar phase and the exterior.
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Figure 2 Exponential transfer laws dm/dt = (exp(−εAμ)−1) ε, with A > 0, behave differently depend-
ing on the sign of ε, but, close to equilibrium, they are tangent to the linear law dm/dt = −Aμ.
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Figure 3 Effects of ionic strength of the bath, of fluid volume fraction n and of CEC on the electrical
conductivity of articular cartilages.

The parameters used are as follows: ionic mobilities [unit :10−9 m2/sec/Volt] : uNa = 51.75,
uCa = 61.75, uCl = 79.0; constant tortuosity factor =0.4; constant hydraulic permeability kEE =
10−15m3×sec/kg, and fluid volume fractions and CEC as indicated on the curves.
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Figure 4 Effects of ionic strength of the bath, of fluid volume fraction n and of CEC on the coefficient
of streaming potential of articular cartilages. Same parameters as in Fig. 3.
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Figure 5 Reflection, or osmotic, coefficient ω for articular cartilages in contact with a bath containing
either a sodium chloride electrolyte or a calcium chloride electrolyte. The parameters used are :
ionic mobilities as defined on Fig. 3, dry density ρdry = 1800kg/m3, fluid volume fraction n and
CEC as indicated on the curves.
For the values of ionic mobilities used, there always exists an ionic strength given by (7.18) above
which the osmotic coefficient is negative. The negative minimum value of the osmotic coefficient
is defined by (7.15).
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Figure 6 Experimental diffusion coefficient Dexp
B divided by the tortuosity factor τ as a function of

the ionic strength of the bath. Same parameters as on Fig. 5.


