
HAL Id: hal-00573047
https://hal.science/hal-00573047v1

Preprint submitted on 2 Mar 2011 (v1), last revised 30 Sep 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Captivity of mean-field systems
Julian Tugaut

To cite this version:

Julian Tugaut. Captivity of mean-field systems. 2011. �hal-00573047v1�

https://hal.science/hal-00573047v1
https://hal.archives-ouvertes.fr


Captivity of mean-field systems∗

Julian Tugaut

Fakultät für Mathematik

Universität Bielefeld

D-33615 Bielefeld

Germany

Email: jtugaut@math.uni-bielefeld.de

Abstract

We investigate the exit time of some mean-field system which is re-
lated to McKean-Vlasov diffusions under convex interaction and double-
well exterior force. In one hand, we show that the meta-potential which
intervenes in the system admits a number of wells which tends to infinity
when the number of particles tends to infinity. In the other hand, by using
the convergence of the self-stabilizing processes, the phase transitions of
the granular media equation, we show that there exist some traps such
that the diffusion in R

N can not escape when N tends to infinity. This
means that in high dimension and with fixed noise, the meta-potential is
not the function which drives the random dynamical system.
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Introduction

We are interested in the exit times - when N tends towards infinity - of a mean-
field system of the following form:
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(I)

where the N Brownian Motions
(

Bi
t

)

t∈R+
are independent. We write X i

t in-

stead of X i,N,ǫ
t for simplifying the reading. In this paper, we will make some

smoothness assumptions on the interacting potential F .

There is a huge literature about mean-field systems. Let us note some appli-
cations of this kind of system: [CDPS10] about social interactions or [CX10]
about the stochastic partial differential equations. Diffusion (I) is continuous
but discret space have also been studied, particularly the Currie-Weiss model,
see [BBI09] or [MP98] for example.

By introducing Xt :=
(

X1
t , · · · , XN

t

)

and Bt :=
(

B1
t , · · · , BN

t

)

, (I) corresponds

to a classical diffusion in R
N :

dXt =
√
ǫdBt −N ∇ΥN (Xt) dt (I)

where ΥN is called the meta-potential and is defined by:

ΥN (X ) :=
1

N

N
∑

i=1

V (Xi) +
1

2N2

∑

1≤i,j≤N

F (Xi −Xj) (II)

for all X = (X1, · · · , XN ) ∈ R
N . The motion of the process (Xt)t∈R+

is subject
to three concurrent forces. The first one is the gradient of the so-called con-
fining potential V which acts independently on each coordinate. The second
term represents the average tension of the interacting potential F between the
coordinates. The third influence is some heat process (

√
ǫBt)t∈R+

which allows

the particle to escape from the stable domains of the meta-potential ΥN . Let
us stress that ǫ is not necessary asymptotically small. The first two forces gen-
erate the meta-potential ΥN . We divided by N in (II) for the definition of ΥN

in order to stress the influence of N in the line level. Indeed, Lemma 5.3 in
[Tug10a] tells us that for all probability law µ on R absolutely continuous with
respect to the Lebesgue measure, we have:

ΥN
(

X1, · · · , XN
)

−→
∫

R

{

V (x) +
1

2
F ∗ µ(x)

}

µ(x)dx (III)
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where
(

X i
)

i∈N∗
is an iid sequence of random values with law µ. Here, ∗ denotes

the convolution.

When N tends to infinity, each particle can be seen as a diffusion in R
N which

satisfies the following non-linear stochastic differential equation:

{

Xt = X0 +
√
ǫBt −

∫ t

0
V ′ (Xs) ds−

∫ t

0
F ′ ∗ us (Xs) ds

us = L (Xs)
. (IV)

The own law of this process intervenes in the equation. Consequently, it is
non-markovian. We call it a self-stabilizing process. Let us give briefly some
of the previous works on these diffusions (IV). For the existence problem, see
[McK67, BRTV98, CGM08, Mél96, HIP08, Tug10a]. Also, in [McK67], the
author proved that the law of the solution dut admits a C∞-continuous density
ut with respect to the Lebesgue measure since t > 0 and the density satisfies
the following non-linear parabolic partial differential equation:

∂

∂t
ut(x) =

∂

∂x

{

ǫ

2

∂

∂x
ut(x) + ut(x)

(

V ′(x) + F ′ ∗ ut(x)
)

}

. (V)

This permits to study the stationary measure(s) of the process (IV). Particu-
larly, in [HT10a], it has been proved that there is non-uniqueness of the sta-
tionary measures for ǫ small enough. The exact number of stationary measures
for ǫ non necessary small has been the subject of [HT10b, HT09, Tug11]. By
knowing the exact number of stationary measures, we can study the convergence
in long-time behavior. In the convex case, see [BRV98, Mal03, Ver06, BCCP98,
CMV03, CGM08].

The long-time behavior of the law ut in the more difficult non-convex case has
been proved in [Tug10b]: ut converges weakly towards a stationary measure
under assumptions easy to verify. For doing this, the main tool is the following
free-energy:

Υǫ(u) :=

∫

R

{

ǫ

2
log(u(x)) + V (x) +

1

2
F ∗ u(x)

}

u(x)dx (VI)

for all the measures du which are absolutely continuous with respect to the
Lebesgue measure. We can note that dut - defined in (IV) - satisfies this hy-
pothesis since t > 0, see [HT10a]. We can observe that the second term of Υǫ

is linked to the meta-potential ΥN by the limit (III).

The link between the self-stabilizing processes and the mean-field system for
N tending to +∞ is called the propagation of chaos, see [Szn91] under Lip-
schitz properties ; [BRTV98] if V is a constant ; [Mal01, Mal03] when both
potentials are convex ; [BAZ99] for a more precise result ; [BGV07], [DPdH96]
or [DG87] for a sharp estimate ; [CGM08] for a uniform result in time in the
non-uniformly convex case. Also, a half-uniform propagation of chaos has been
proved in [Tug11] when we restrict to a symmetric initial measure and when V
is a double-well potential.
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Let us note also some works about the propagation of chaos with different hy-
potheses about the dynamic or the phase space: [Gra90, Gra92, Der03, JM08].

Exit-time of diffusions have already been studied when the dimension is fixed
and when the coefficient diffusion

√
ǫ tends to 0. Indeed, for classical diffu-

sions, Freidlin and Wentzell (see for example [DZ10, FW98]) proved a Kramer’s
type law theorem. In the case of the mean-field system (I), the exit time of an
open set O ⊂ R

N which contains at least one well of the meta-potential ΥN is
exponentially equivalent to exp

[

2N
ǫ H

]

with H := supx,y∈O
(

ΥN (x)−ΥN (y)
)

.
However, in this paper, we do not want ǫ to be small but N to be big and we can
not apply this method even in the small-noise asymptotic since a commutation
between the two limits is not possible.

The global method that we will use for studying the exit-time consist on using
the propagation of chaos, the convergence established in [Tug10b] and the result
about the phase transition proved in [Tug11]. Indeed, let us recall that it has
been proved in [DG87] that the empirical law of the mean-field system satisfies
a large deviations principle with a rate function which depends on the law of
Diffusion (IV). Consequently, the long-time behavior of L (Xt) provides some
consequences on the exit time for the particle system (I).

The paper is organized as follows. First, the assumptions and the notations are
presented in first section with some of the results about self-stabilizing diffusions
and two simple lemmas which will be used subsequently. The second section
deals with the potential geometry, particularly the number of wells. Propaga-
tion of chaos is proved in third section then used for obtaining the main results,
in particular the fact that even when there are 2N(1 − o(1)) wells, there are at
most o(2N ) steady states. For concluding the introduction, we write the state-
ments of the three main results:

Big number of wells If α < 2
3 , Υ

N admits 2N(1− o(1)) wells.

Small number of steady states Set X ∈ R
N and Xt the diffusion (I) starting

with X . Set κ > 0. There exists ǫ0 > 0 such that for all ǫ ∈]0; ǫ0[, there exists
Tκ ≥ 0 such that for all t > 0, we have:

lim
N→+∞

P

[

min

{

p(s); 1− p(s);

∣

∣

∣

∣

1

2
− p(s)

∣

∣

∣

∣

}

≤ κ , ∀T ≤ s ≤ T + t

]

= 1

where p(s) := 1
N

{

i ∈ J1;NK | X i
s > 0

}

.

Stability of the positive half-space Set ǫ small enough and a law µ0 such
that

∫

R
V (x)µ(x)dx + α

2Var (µ0) < −max{1−α ; 0}2

4 and E(µ0) > 0. We consider
a sequence of iid random values with law µ0:

(

X i
0

)

i∈N∗
and Xt the diffusion (I)

starting with X :=
(

X1
0 , · · · , XN

0

)

. Then, for all t ≥ 0, we have:

lim
N→+∞

P

{

N
∑

i=1

X i
t > 0 | ∀ 0 ≤ s ≤ t

}

= 1 .
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1 Preliminaries

In this paper, we take V (x) := x4

4 − x2

2 and F (x) := x2

2 . Let us recall that
the value supz∈R

−V ′′(z) plays an important role in [HT10a, HT10b, HT09].
Here, we know directly that supx∈R−V ′′(x) = 1. We could consider more
general assumptions, the same than the ones in [Tug10b] and [Tug11]. But,
all the mathematical difficulties of the present problem are present in this case.
Considering these two functions instead of general polynomial ones will permit to
avoid some technical and tedious computations, especially in the next section.
Indeed, the main results (see Section 4) only need a result of propagation of
chaos (see Section 3) and a result of convergence in long-time (see [Tug10b]).

Furthermore, by adapting Theorem 2.1 in [Tug11] to our problem, we have the
following result:

Proposition 1.1. For all α > 0, there exists ǫc(α) ∈ R+ such that:

• For all ǫ ≥ ǫc(α), Diffusion (IV) admits a unique stationary measure: u0
ǫ .

• For all ǫ < ǫc(α), Diffusion (IV) admits exactly three stationary measures:
u0
ǫ , u

+
ǫ and u−

ǫ with ±
∫

R
xu±

ǫ (x)dx > 0.

Moreover, the critical value ǫc(α) is the unique solution of the equation:

∫

R+

(

x2 − 1

2α

)

exp
[

(1− α) x2 − ǫ

2
x4
]

dx = 0 . (1.1)

We have then a simple representation of the threshold between the unique-
ness and the thirdness of the stationary measure(s) of Diffusion (IV):
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Figure 1: Critical value ǫc (α)

5



All the measure u0 which will be considered in the following satisfy the three
following hypotheses:

(AC) u0 is absolutely continuous with respect to the Lebesgue measure. We
call u0 the density for simplicity.

(FM)
∫

R
x32u0(x)dx < ∞.

(FE)
∫

R
log (u0(x)) u0(x)dx < ∞.

The assumptions (AC) and (FE) guarantee that Υǫ (u0) < ∞. The condition
(FM) simply expresses the existence of a strong solution on R+ for Equation
(IV). Indeed, by Theorem 2.12 in [HIP08], we know that there is a solution if
∫

R
x8q2u0(x)dx < ∞ where q := max

{

deg(V )
2 ; deg(F )

2

}

if V and F are polynomial

functions.

The three assumptions imply the existence of M0 > 0 such that

max
j∈J1;32K

sup
t∈R+

E

[

|Xt|j
]

≤ M0 . (1.2)

We deduce immediately that the family (ut)t∈R+
is tight. Also, we have the

convergence of ut towards a stationary measure uǫ, see [Tug10b].

Let us recall the main results of Section 2 in [HT10b] (Theorem 2.1 and Theorem
2.4), about the small-noise asymptotic of the stationary measures:

Proposition 1.2. The law u+
ǫ converges weakly towards δ1 and the law u−

ǫ

converges weakly towards δ−1.
The law u0

ǫ converges weakly towards 1
2δxα

+ 1
2δ−xα

with

xα :=

{ √
1− α if α ≤ 1

0 if α ≥ 1
.

We present first some general notations. Let us note that for each x ∈ R,
E(x) denotes here the unique integer such that x− 1 < E(x) ≤ x and Cp

n is the
binomial coefficient Cp

n := n!
p!(n−p)! .

For all the measures µ1 and µ2, W2 (µ1, µ2) is the Wasserstein distance between
µ1 and µ2:

W2 (µ1, µ2) :=

√

inf
{L(X)=µ1 ,L(Y )=µ2}

E

{

|X − Y |2
}

.

Now, we present some notations linked to the spaces R
N . By convention, we

consider that R
∞ is the set of the measures on R. In the following, X is an

arbitrary element of RN and the i-th coordinate is written Xi, when N < ∞.
Let us introduce some definitions:

Definition 1.3. 1) For all X := (X1, · · · , XN ) ∈ R
N , we consider the norm

||X ||N :=

√∑
N
i=1

X2
i

N .
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2) For all r > 0, we introduce BN
r :=

{

X ∈ R
N | ||X ||N ≤ r

}

.

3) We consider also EN
+ :=

{

X ∈ R
N | ∑N

i=1 Xi > 0
}

.

4) For each X0 ∈ R
N , we call Xt the mean-field system (I) starting by X0 and

X i
t the i-th coordinate of Xt.

We introduce now the notion of signature.

Definition 1.4. Set N ∈ N and X ∈ R
N . We say that X has the signature

(p, 1− p) with p ∈ 1
N J1;NK if # {i ∈ J1;NK | Xi > 0} = pN .

Set a sequence X ∈ R
N. We say that X has the signature (p, 1−p) with p ∈ [0; 1]

if limN→+∞
#{i∈J1;NK | Xi>0}

N = p. Obviously, if µ ∈ R
∞ is a measure, we say

that it has the signature (p, 1− p) if µ ({0}) = 0 and µ (R+) = p.

Immediately, if X is a sequence of iid random values with law µ0 abso-
lutely continuous with respect to the Lebesgue measure, X has the signature
(

∫

R+
µ0(x)dx,

∫

R−

µ0(x)dx
)

.

Definition 1.5. Set p ∈ [0; 1] and N ∈ N ∪ {+∞}. We call SNp the set of the

elements X ∈ R
N which have the signature (p, 1− p).

Remark 1.6. The particularity of the random dynamical system that we con-
sider is its invariance for each element σ ∈ SN where SN is the set of all
the permutations of the set J1;NK. Consequently, we will not work on R

N but
on R

N/SN . For simplifying the reading, we will not specify that we consider
class of equivalence instead of elements of R

N . Particularly, for X ,Y ∈ R
N ,

the expression
∑N

i=1 (Xi − Yi)
2 will be in fact a notation which corresponds to

infσ∈SN

∑N
i=1

(

Xσ(i) − Yi

)2
.

Let us stress that this last expression corresponds to the Wasserstein distance
between two measures with support containing N elements at most. Also, we
can remark that EN

+ , BN
r and SNp are invariant under the actions of any permu-

tations so we can use these three sets without paying attention on the difference
between R

N and R
N/SN .

Since we use the classes of equivalence of RN with respect to the permutations
instead of RN itself, we introduce some particular classes.

Definition 1.7. 1) Set x ∈ R, we define the vector x ∈ R
N as a pure state with

coordinates equal to x: x := (x, · · · , x).
2) Set a, b ∈ R and p ∈]0; 1[. The class of vectors (a, b, p) denotes all the bi-state
vectors with E (pN) coordinates equal to a and N −E (pN) 6= E ((1− p)N) coor-
dinates equal to b. Let us note that this class contains exactly C

E(pN)
N elements

of RN .

In order to conclude the preliminaries, we put two lemmas which will be
used in the next section. The first one is about linear algebra:
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Lemma 1.8. Let a, b ∈ R, c ∈ R−, N ≥ 1 and k ∈ J1;N − 1K. Set Ik the
identity matrix with size k and Jk the matrix whose each coordinate is equal to
1 and with size k. We define in the same way IN−k and JN−k. Finally, we
define the following matrix per blocks:

M :=

(

(a− c)Ik + cJk (c)
(c) (b− c)IN−k + cJN−k

)

.

If a+ (N − 1)c > 0 and b+ (N − 1)c > 0 then M > 0.

Proof. Let us assume a+ (N − 1)c > 0 and b+ (N − 1)c > 0. By definition of
M , for all X ∈ R

N with X 6= 0, we have:

〈X ;MX〉 =
k
∑

i=1

(a+ (N − 1)c)X2
i +

N
∑

i=k+1

(b+ (N − 1)c)X2
i

−N2c







1

N

N
∑

i=1

X2
i −

(

1

N

N
∑

i=1

Xi

)2






.

It achieves the proof since c ≤ 0.

The second result is combinatorial and is just the direct application of Ster-
ling formula:

Lemma 1.9. Set δ ∈
]

0; 1
2

[

. Then lim
N→+∞

2−N

n=( 1
2
+δ)N
∑

n=( 1
2
−δ)N

Cn
N = 1.

2 Potential geometry

This section is devoted to the geometry of the meta-potential ΥN . We note that
it is immediate that −1, 1 and 0 are critical points of ΥN . First, we will study
the geometry when α ≥ 1 that is to say in the synchronized case.

Proposition 2.1. Set N ≥ 2 and α ≥ 1. Then, the meta-potential ΥN admits
exactly three critical points: −1, 1 and 0. The first two ones are wells and if
α > 1, the point 0 is a saddle whose the signature of the Hessian is (N − 1, 1).

Proof. Step 1. Let us prove that there are exactly three critical points if α ≥ 1.
For all 1 ≤ i ≤ N , the derivative of the meta-potential with respect to xi is

∂

∂xi
ΥN (x1, · · · , xN ) =

1

N







V ′(xi) + αxi −
α

N

N
∑

j=1

xj







.

Set a critical point X . We deduce ρ(xi) = ρ(xj) for all the indexes i and j with
ρ(x) := V ′(x) +αx. By recalling ρ′(x) = V ′′(x) +α ≥ 0 for all x ∈ R according
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to the hypothesis α ≥ 1. We deduce directly xi = xj for all the indexes i and
j. Consequently, there exists x ∈ R such that X = x.
However, since the derivative with respect to x1 is equal to 0, we obtain V ′(x)+

αx− α
N

∑N
j=1 x = 0 which implies V ′(x) = 0. Then x ∈ {−1, 0, 1}.

Step 2. We compute the Hessian of ΥN on the points x:

∂2

∂x2
i

ΥN (x, · · · , x) = 1

N

{

V ′′(x) + α

(

1− 1

N

)}

and
∂2

∂xi∂xj
ΥN (x, · · · , x) = − α

N2
.

We apply Lemma 1.8 and we deduce that the Hessian is strictly positive if it
is in ±1. And, a simple algebra calculous tells us that the two eigenvalues in
0 are α − 1 > 0 associated to an eigenspace of dimension N − 1 and −1 which
achieves the proof.

Remark 2.2. We can remark that 1 and −1 are wells of the meta-potential ΥN

even if α < 1.

According to Proposition 1.3 in [Tug11], the diffusion (IV) admits an outlying
stationary measure around 0 for ǫ small enough if we have

V (x) +
α

2
x2 > 0 for all x 6= 0 . (2.1)

If α > 1, (2.1) holds which proves the existence of an outlying stationary mea-
sure near δ0 for ǫ small enough. But, 0 is never a wells of ΥN when α > 1.
This points out the importance of the entropy and ǫ since there is no correspon-
dance between the wells of ΥN and the stationary measures of (IV).

Now we will study the critical points when α ≤ 1.

Theorem 2.3. If 2
3 ≤ α < 1, the meta-potential ΥN admits exactly 2N critical

points but only two wells: 1 and −1.
If α < 2

3 , the meta-potential ΥN admits exactly 2N critical points and 2N(1 −
o(1)) of these critical points are wells of ΥN .

Let us remark that the bifurcation α = 2
3 already appeared in the proof of

Theorem 3.2 in [HT10a] since 2
3 = −V ′(c)

c where c is the unique positive real
such that V ′′(c) = 0.

Proof. In order to stress the importance of α, we will write ΥN
α instead of ΥN

in this proof.

Step 1. First, we study the number of critical points. The partial derivative
with respect to the coordinate xi is:

∂

∂xi
ΥN

α (x1, · · · , xN ) =
1

N
x3
i −

1

N
(1− α)xi − α

1

N2

N
∑

j=1

xj .

9



Since the third derivative of the application x 7→ x3 − (1 − α)x is nonnegative,
we deduce that for all X ∈ R

N such that ∇ΥN
α (X ) = 0, X has the form x or

(a1, a2, p). Let p ∈ 1
N J1;NK. We have now to solve

a31 − a32 + (1− α) (a2 − a1) = 0 (2.2)

a31 − (1− α) a1 = α (pa1 + (1− p)a2) . (2.3)

In the case where a1 = a2 = a, we find directly a ∈ {1, 0,−1} and p does not
have any importance. If a2 6= a1, we can divide (2.2) by a2 − a1 before solving

it. Then we put p :=
a2−a3

2

α(a2−a1)
which shall be in 1

N J1;NK. Dividing (2.2) by

a2 − a1, we obtain:

a22 + a1a2 + a21 = 1− α (2.4)

which implies the existence of t ∈]− π;π] such that

a2(t) = 2

√

1− α

3
cos
(

t− π

6

)

and a1(t) = −2

√

1− α

3
cos
(

t+
π

6

)

.

The equations (2.4) and (2.3) imply that a1a2 < 0. Indeed, let us assume that
a1 ≥ 0 and a2 ≥ 0. Since p ≥ 0, (2.3) provides a1 >

√
1− α and the same holds

with a2. We obtain then a21+a1a2+a22 ≥ 2(1−α) which is impossible according
to (2.4). Without loss of generality, we assume a1(t) < 0 and a2(t) > 0. We
deduce that t ∈ I :=

]

−π
3 ;

π
3

[

. After computation, we find:

p(t) =
1

2
+

tan(t)

2α
√
3

{

(3α− 2) +
8 (1− α)

3
sin2(t)

}

.

We remark that p
(

−π
3

)

= 0 and p
(

π
3

)

= 1. Also, a simple study proves that

the function t 7→ p(t) is not in [0; 1] if t ∈
]

−π
2 ;−π

3

[
⋃
]

π
3 ;

π
2

[

.

Then, for all N ∈ N∗, for all k ∈ J0;NK, there exists tk ∈ I such that
(

a1(tk) ; a2(tk) ;
k
N

)

is a critical point of the meta-potential ΥN
α . Since 1 and

−1 are also critical points of ΥN , we deduce that the meta-potential admits
exactly 2N critical points.

Step 2. Now, we study the Hessian in these critical points. We compute the
second derivatives of ΥN

α in a point
(

a1(tk) ; a2(tk) ;
k
N

)

:

∂2

∂x2
i

ΥN
α

(

a1(tk) ; a2(tk) ;
k

N

)

=
V ′′ (a1(k))

N
+

α

N
− α

N2
∀i ∈ J1; kK,

∂2

∂x2
i

ΥN
α

(

a1(tk) ; a2(tk) ;
k

N

)

=
V ′′ (a2(k))

N
+

α

N
− α

N2
∀i ∈ Jk + 1;NK

∂2

∂xi∂xj
ΥN

α

(

a1(tk) ; a2(tk) ;
k

N

)

= − α

N2
∀i, j ∈ J1;NK i 6= j .

By applying Lemma 1.8, we deduce that V ′′ (a1(tk)) > 0 and V ′′ (a2(tk)) >
0 implies the strict convexity of ΥN

α in
(

a1(tk) ; a2(tk) ;
k
N

)

. It remains then

10



to study the values t such that V ′′ (a1(t)) > 0 and V ′′ (a2(t)) > 0. This is
equivalent to

cos
(

t− π

6

)

>
1

2
√
1− α

and cos
(

t+
π

6

)

>
1

2
√
1− α

.

These two inequalities hold if and only if t ∈ Iα :=
⋂
]

π
6 − t(α); t(α) − π

6

[

with

t(α) := arccos
(

1
2
√
1−α

)

. And, π
6 < t(α) is equivalent to α < 2

3 . Let us remark

that α > 3
4 would imply 1 < 1

2
√
1−α

and then we would not be able to define

t(α). The function p in this interval is decreasing when α < 2
3 . Indeed, a

computation provides:

p′(t) = −16(1− α) sin4(t)− 24(1− α) sin2(t) + 3(2− 3α)

6α
√
3 cos2(t)

.

So p′(t) ≥ 0 if and only if

3
√
1− α−

√
3

4
√
1− α

≤ sin2(t) ≤ 3
√
1− α+

√
3

4
√
1− α

.

But, for t ∈
]

π
6 − t(α); t(α) − π

6

[

, we have

sin2(t) ≤ sin2
(

t(α)− π

6

)

=
5− 6α−

√
9− 12α

8(1− α)
.

However, the inequality 5−6α−
√
9−12α

8(1−α) ≥ 3
√
1−α−

√
3

4
√
1−α

is equivalent to α ≥ 2
3 .

Then, the function p is a bijection from Iα to
]

p(α); p(α)
[

⊂ [0; 1]. We can

observe that
]

p(α); p(α)
[

∋ p(0) = 1
2 . By applying Lemma 1.9, we deduce that

the number of wells is equivalent to 2N when N tends tends to infinity.

We recover then a result previously obtained in [BFG07]. Even if there are
2N(1−o(1)) wells when α < 2

3 and 2N(1−o(1)) critical points even if 2
3 ≤ α < 1,

we will state in the following that the number of classes of steady states for the
dynamic in the mean-field system (I) does not depend on N .

3 Exit times

We will begin to state a weak result of propagation of chaos. In other words, we
will prove on a finite interval of time [0;T ], when N tends towards infinity that
the behavior of each particle of (I) is like the one of a self-stabilizing process
(IV). We recall their definition:

X i
t = X i

0 +
√
ǫBi

t −
∫ t

0

V ′(X i
s)ds−

∫ t

0

1

N

N
∑

j=1

F ′(X i
s −Xj

s )ds (I)

and X i
t = X i

0 +
√
ǫBi

t −
∫ t

0

V ′(X i
s)ds−

∫ t

0

F ′ ∗ ui
s(X

i
s)ds , (IV)

11



where B1
t , · · · , BN

t are N independent Brownian Motions.

Proposition 3.1. Set a probability measure µ0 which satisfies the hypothesis
(FM). Set X1

0 , · · · , XN
0 N iid random values with law µ0. Set T > 0. Then,

there exists C,K > 0 such that:

max
1≤i≤N

E

{

sup
t∈[0;T ]

∣

∣

∣
X i

t −X i
t

∣

∣

∣

2
}

≤ C

N
exp [K T ] . (3.1)

Proof. We proceed like in Step 3 in the proof of Proposition 2.2 in [Tug11]
but we consider V and F instead of the small modifications of Step 2. Here

V (x) = x4

4 − x2

2 then Step 3.3 is modified and consequently, we obtain

d

dt
ζi(t) ≤ 2ζi(t) +

2C√
N

√

ζi(t)

where ζi(t) := E

[

∣

∣

∣
X i

t −X i
t

∣

∣

∣

2
]

and C depends only of the first 32 moments of

µ0. We obtain immediately d
dtζi(t) ≤ (C+2)ζi(t)+

C
N . As ζi(0) = 0, we deduce

after applying the Grönwall lemma:

ζi(t) ≤
C

N
exp [(C + 2) t] .

Taking the supremum on the interval [0;T ] achieves the proof. We can put the
supremum in the expectation by conditioning with the events {T (ω) = t} where

T is defined by the relation
∣

∣

∣
X i

T −X i
T

∣

∣

∣
= supt∈[0;T ]

∣

∣

∣
X i

t −X i
t

∣

∣

∣
.

This result is not uniform with respect to the time. Indeed, the factor
exp [(C + 2)T ] tends to infinity when T tends to infinity. We will now prove
that there is no uniform with respect to the time propagation of chaos.

Definition 3.2. There is propagation of chaos of the system (I) to the system
(IV) if there exists a positive function η which vanishes when N tends towards
+∞ such that

sup
t≥0

E

{

∣

∣

∣
X i

t −X i
t

∣

∣

∣

2
}

≤ η(N) for all 1 ≤ i ≤ N . (3.2)

This uniform propagation of chaos has been stated and used in the convex
case in [CGM08] for obtaining a convergence of the process. However, in this
non-convex case, we will see that there is no uniformity possible.

Proposition 3.3. Let us assume a uniform in time propagation of chaos then
the diffusion (IV) admits at most one stationary measure.

Proof. The proof is similar to Step 2. and Step 4. in the proof of Proposition 2.2
in [Tug11] with V and F instead of V0 and F0. Indeed, in the two majorations
(2.10) and (2.11) in [Tug11], we did not exploit the exact higher-bound but
only the fact that we have the uniform propagation of chaos with respect to the
time.

12



Remark 3.4. We proved in Theorem 2.1 in [Tug11] that for ǫ which satisfies
∫

R+

(

x2 − 1
2α

)

exp
[

(1 − α)x2 − ǫ
2x

4
]

dx > 0, the diffusion (IV) admits exactly
three stationary measures. Consequently, we can not prove a general result of
propagation of chaos if we do not take into account the diffusion coefficient

√
ǫ.

Definition 3.5. Set a continuous function f from R to R and X ∈ R
N with N ∈

N
∗. We define: f (X ) := 1

N

∑N
i=1 f (Xi). If µ is a measure absolutely continuous

with respect to the Lebesgue measure, we define f (µ) :=
∫

R
f(x)µ(x)dx.

We begin by providing a general theorem and after, we will derive three
results from it.

Theorem 3.6. Set a law u0 such that ut tends towards a measure µ where ut

is the solution of (V) starting with u0. We consider a sequence of iid random
values with law u0:

(

X i
0

)

i≥1
. Set a C∞-function f such that |f(x) − f(y)| ≤

C|x−y| (1 + |x|+ |y|) with C > 0. For all N ≥ 1, we call XN
0 :=

(

X1
0 , · · · , XN

0

)

.
We introduce XN

t the solution of the random dynamical system (I) starting with
XN

0 . Then, for all δ > 0, we have

lim
N→+∞

P
{
∣

∣f
(

XN
s

)

− f(ut)
∣

∣ < δ ; ∀ 0 ≤ s ≤ t
}

= 1 . (3.3)

Furthermore, there exists Tδ ≥ 0 such that for all t ≥ 0, we have

lim
N→+∞

P
{∣

∣f
(

XN
s

)

− f(µ)
∣

∣ < δ ; ∀Tδ ≤ s ≤ Tδ + t
}

= 1 . (3.4)

Proof. Let us prove the inequality (3.3). For all i ∈ J1;NK, set
(

X i
s

)

s∈[0;t]

the diffusion (IV) starting with X i
0. By definition, L

(

X i
s

)

= us. We have
immediately the following inequality:

P

{

∃ s ∈ [0; t]
∣

∣

∣

∣

∣f
(

XN
s

)

− f(us)
∣

∣ ≥ δ
}

= P

{

sup
s∈[0;t]

∣

∣f
(

XN
s

)

− f(us)
∣

∣ ≥ δ

}

≤P

{

1

N

N
∑

i=1

sup
s∈[0;t]

∣

∣

∣
f
(

X i
s

)

− f
(

X i
s

)
∣

∣

∣
≥ δ

2

}

+P

{

sup
s∈[0;t]

∣

∣

∣

∣

∣

1

N

N
∑

i=1

f
(

X i
s

)

− f(us)

∣

∣

∣

∣

∣

≥ δ

2

}

.

The second term tends towards 0 by applying the weak law of large numbers.
Let us focus on the first one. We take f(x) := x and we apply Cauchy-Schwarz
inequality and Proposition 3.1:

P

{

1

N

N
∑

i=1

sup
s∈[0;t]

∣

∣

∣
X i

s −X i
s

∣

∣

∣
≥ δ

2

}

≤ 2

δ
max

i∈J1;NK
E

{

sup
s∈[0;t]

∣

∣

∣
X i

s −X i
s

∣

∣

∣

}

≤ 2

δ

√

C

N
exp

[

Kt

2

]

.
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Since E
[∣

∣

∣
X i

s

∣

∣

∣

]

≤ M0 defined in (1.2) for all i ∈ J1;NK and s ≥ 0, we deduce that

the same holds for X i
s on any finite interval. Also, by using the same argument

than the one at the end of the proof of Proposition 3.1, we obtain

max
i∈J1;NK

{

E

[

sup
s∈[0;t]

∣

∣X i
s

∣

∣

]

+ E

[

sup
s∈[0;t]

∣

∣

∣
X i

s

∣

∣

∣

]}

< ∞ .

Let us take now a general f . The condition on f and C, the Cauchy-Schwarz
inequality and Proposition 3.1 imply

P

{

1

N

N
∑

i=1

sup
[0;t]

∣

∣

∣
f
(

X i
s

)

− f
(

X i
s

)∣

∣

∣
≥ δ

2

}

≤ 2

δ
max
J1;NK

E

{

sup
[0;t]

∣

∣

∣
f
(

X i
s

)

− f
(

X i
s

)∣

∣

∣

}

≤ 2

δ

√

C

N
exp

[

Kt

2

]

√

√

√

√1 + max
J1;NK

{

E

[

sup
[0;t]

|X i
s|
]

+ E

[

sup
[0;t]

∣

∣

∣
X i

s

∣

∣

∣

]}

−→ 0 .

In order to prove the second statement, it is sufficient to note that the tightness
of the family (ut)t∈R+

and the convergence of ut towards µ implies the con-

vergence of f(ut) towards f(µ) so for all δ > 0, there exists Tδ ≥ 0 such that
|f(ut)− f(µ)| ≤ δ

2 for all t ≥ Tδ then we apply the first statement with δ
2 .

The time Tδ is deterministic and linked to the rate of convergence towards
the stationary measure µ so it depends on ǫ.

With this general theorem, we will obtain three corollaries. The first one states
that the mean-field system is prisonner of a ball.

Corollary 3.7. Set ǫ ≥ ǫc(α) and a law µ0 which satisfies (AC), (FM) and
(FE). We consider a sequence of iid random values with law µ0:

(

X i
0

)

i≥1
. For

all N ≥ 1, we call XN
0 :=

(

X1
0 , · · · , XN

0

)

. We introduce XN
t the solution of the

random dynamical system (I) starting with XN
0 . Then, for all r >

√

Var (u0
ǫ),

there exists Tr ≥ 0 such that for all t ≥ 0, we have

lim
N→+∞

P
{

XN
s ∈ B

N
r

(

0
)

; ∀Tr ≤ s ≤ t+ Tr

}

= 1 .

Proof. Theorem 2.1 in [Tug10b] states that µt converges towards a stationary
measure uǫ when t tends to ∞. Since ǫ ≥ ǫc(α), we know by Theorem 2.1
in [Tug11] that (IV) admits a unique stationary measure and it is u0

ǫ so µt

converges towards u0
ǫ . We conclude by applying Theorem 3.6 (more precisely

we use the limit (3.4)) with δ := r2 −Var
(

u0
ǫ

)

and f(x) := x2.

We can not find smaller radius since f(u0
ǫ) = Var

(

u0
ǫ

)

.

Remark 3.8. We can relax the assumption ǫ ≥ ǫc(α) if µ0 is symmetric. More-
over, Theorem 3.1 in [HT09] implies that Var

(

u0
ǫ

)

= 1
4(α−1) ǫ + o(ǫ) if α > 1

and Theorem 4.5 in [HT09] implies that Var
(

u0
ǫ

)

= 1 − α − ǫ
2(1−α) + o(ǫ) if

α < 1. A simple computation provides also Var
(

u0
ǫ

)

=
Γ( 3

4 )
Γ( 1

4 )

√
ǫ if α = 1.
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The second corollary provides sufficient condition for forbiding to cross the

hyperplan
{

X ∈ R
N | ∑N

i=1 Xi = 0
}

.

Corollary 3.9. Set ǫ < ǫc(α) small enough and a law µ0 which satisfies (AC),
(FM) and (FE). Let us assume that Υǫ(µ0) < inf{u |

∫
R
xu(x)dx=0}Υǫ(u) and

E(µ0) > 0. We consider a sequence of iid random values with law µ0:
(

X i
0

)

i≥1
.

For all N ≥ 1, we call XN
0 :=

(

X1
0 , · · · , XN

0

)

. We introduce XN
t the solution

of the random dynamical system (I) starting with XN
0 . Then for all t ≥ 0, we

have:

lim
N→+∞

P
{

XN
s ∈ E

N
+ ; ∀ 0 ≤ s ≤ t

}

= 1 .

Proof. We recall that the free-energy is nonincreasing. Consequently, Υǫ (us) <
inf{u |

∫
R
xu(x)dx=0}Υǫ(u) for all s ∈ [0; t]. This implies

∫

R
xus(x)dx > 0 for all

s ∈ [0; t]. We conclude by applying Theorem 3.6, more precisely the limit (3.3)
with f(x) := x and δ := infs∈[0;t]

∫

R
xus(x)dx > 0.

Finally, the last corollary stresses the fact that the steady states do not
correspond to the wells of ΥN .

Corollary 3.10. Set p ∈]0; 1[ with p 6= 1
2 and a law µ0 which satisfies (AC),

(FM) and (FE). We assume that µ0 has the signature (p, 1 − p). We consider
a sequence of iid random values with law µ0:

(

X i
0

)

i≥1
. For all N ≥ 1, we call

XN
0 :=

(

X1
0 , · · · , XN

0

)

. We introduce XN
t the solution of the random dynamical

system (I) starting with XN
0 . Set κ > 0. There exists ǫ0 > 0 such that for all

ǫ ∈]0; ǫ0[, there exists Tκ ≥ 0 such that for all t > 0, we have:

lim
N→+∞

P

[

Xs ∈
κ
⋃

ρ=0

(

S
N
ρ ∪ S

N
1−ρ ∪ S

N
1
2
+ρ ∪ S

N
1
2
−ρ

)

, ∀Tκ ≤ s ≤ Tκ + t

]

= 1 .

Proof. The law ut converges towards u0
ǫ , u

+
ǫ or u−

ǫ according to Theorem 2.1
in [Tug10b]. Since u0

ǫ is symmetric,
∫

R
1]0;+∞[(x)u

0
ǫ (x)dx = 1

2 . Theorem 2.4 in
[HT10b] proves that u±

ǫ converges towards δ±1 when ǫ tends to 0. So, for ǫ small
enough, we have

∫

R
1]0;+∞[(x)u

+
ǫ (x)dx ≥ 1− κ

3 and
∫

R
1]0;+∞[(x)u

−
ǫ (x)dx ≤ κ

3 .
We apply Theorem 3.6, more precisely (3.4) with δ := κ

3 and with

f(x) := 1]η
3
;+∞[(x) + 1[0;η

3
](x)Z

−1

∫ x

0

exp

[

− 1

y2
− 1
(

y − κ
3

)2

]

dy

where Z :=
∫ η/3

0 exp
[

− 1
y2 − 1

(y−κ/3)2

]

dy is such that f
(

η
3

)

= 1. We take η

sufficiently small for having
∣

∣f(u0
ǫ)− 1

2

∣

∣ ≤ κ
3 , |f(u±

ǫ )− (±1)| ≤ κ
3 . The proof is

achieved by applying Theorem 3.6 with f and δ := κ
3 .

This theorem proves that the wells with signature (p, 1 − p) are not stable
and even if it is possible to have 2N (1−o(1)) wells, these points do not intervene
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in the dynamic that achieves to prove that the meta-potential is not sufficient
for understanding the behavior of the mean-field system (I).

Thanks: This paper has been motivated by the question “Why the system (IV)
can admit three stationary measures whereas (I) admits a unique one?” which
has been asked by several people. Consequently, I would like to thank all of them.
Également, un très grand merci à Manue et à Sandra pour tout.
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