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Abstract

We aim to establish results about a particular class of inhomogeneous
processes, the so-called McKean-Vlasov diffusions. Such a diffusion cor-
responds to the hydrodynamical limit of an interacting particle system,
the mean-field one. Existence and uniqueness of the invariant probability
are classical results provided that the external force corresponds to the
gradient of a convex potential. However, previous results, see [Herrmann,
Tugaut|2010], state that the non-convexity of this potential implies the
nonuniqueness of the invariant probabilities under easily checked assump-
tions. Here, we prove that there exists phase transitions, that is under
a critical value, there are exactly three invariant probabilities and over
another critical value, there is exactly one. Under simple assumptions,
these two critical values coincide and it is characterize by a simple im-
plicit equation. We exhibit other cases in which phase transitions occur.
Finally, we proceed numerical estimations of the critical values.

Key words and phrases: phase transitions ; McKean-Vlasov diffusions ;
invariant probabilities ; interacting particles systems ; free-energy.
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Introduction

The aim of this work is to study a particular class of inhomogeneous process,
the so-called McKean-Vlasov diffusion. This kind of processes are obtained by
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taking the hydrodynamic limit of an interacting particle system.
More precisely, we focus on a system of N diffusions in Rd with independent
d-dimensional Wiener processes. We add a friction term ∇V and an interaction
between each pair of particles. We assume that the interaction depends only
on the distance between two particles and the further are the particles, the
stronger is the attraction. In other words, we study the hydrodynamic limit of
the mean-field system



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The function V here is called the confining potential and F is the interacting

one. Let us remark that the diffusion
(
X1, · · · , XN

)
in
(
Rd
)N

simply is a
diffusion evolving in the potential NΥN

0 with

ΥN
0 (X1, · · · , XN ) :=

1

N

N∑

i=1

V (Xi) +
1

2N2

N∑

i=1

N∑
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F (Xi −Xj) .

By µN
t := 1

N

∑N
i=1 δXi

t
, we denote the empirical measure of the particle system.

By using Itô formula, we are able to obtain

d

dt
E

{∫

Rd

fµN
t

}
= E

{
ǫ

2

∫

Rd

∆fµN
t −

∫

Rd

〈
∇f ; ∇V +∇F ∗ µN

t

〉
µN
t

}

where f is a smooth function with compact support from Rd to R. If µN
t is a

deterministic measure, the previous equality leads to

∂

∂t
µN
t = div

{ ǫ

2
∇µN

t +
(
∇V +∇F ∗ µN

t

)
µN
t

}
,

in a distributional sense. This motivates to look at the limit as N goes to
infinity. Indeed, we can then prove that the empirical measure converges to a
deterministic measure satisfying the previous partial differential equation.

The idea of the propagation of chaos is the following. Let us assume that (X i
0)i∈N

is a sequence of independent and identically distributed random variables with
common law µ0. The law of large numbers implies that the empirical measure
at time 0, that is µN

0 := 1
N

∑N
i=1 δXi

0
, converges to µ0 as N goes to infinity. We

say that propagation of chaos holds on interval [0;T ] if
(
µN
t

)
t∈[0;T ]

converges

to (µt)t∈[0;T ] where µt is a deterministic probability measure on Rd, for all

t ∈ [0;T ]. Let us stress that such a measure, if it exists, is necessary a solution
of the partial differential equation

∂

∂t
µt = div

{ ǫ

2
∇µt + (∇V +∇F ∗ µt)µt

}
,
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the so-called granular media equation. About the propagation of chaos, we refer
the reader to [Szn91, Mél96, BGV07]. According to the equations satisfied by
µN
t and µt, we remark that µt plays the role of the expectation of µN

t for large
N . We can go further than the propagation of chaos and prove some large
deviations results, see [DG87].

The McKean-Vlasov diffusion is defined as the hydrodynamic limit of the mean-
field system. As N goes to infinity, the empirical law µN

t converges to µt and
each particle X i

t follows a law close to µt. Consequently, the McKean-Vlasov
diffusion in R consists in the solution of the inhomogeneous stochastic differential
equation

{
Xt = X0 +

√
ǫBt −

∫ t

0
V ′ (Xs) ds−

∫ t

0
F ′ ∗ µs (Xs) ds ,

µs = L (Xs) .
(I)

This kind of processes have been introduced by McKean, see [McK67]. Here, by
∗, we denote the convolution. The particularity of this process is the influence
of the law on the drift term. Let us notice that Xt and µt do depend on ǫ. We
do not write it in order to simplify.

The existence problem can be solved by two different methods. The first one
consists in the application of the propagation of chaos, see for example [Mél96].
The other method is the following. We consider a class of functions ΛT from
[0;T ]× R to R. For each b ∈ ΛT , we construct the diffusion X(b) which is the
unique solution of the stochastic differential equation

X
(b)
t = X0 +

√
ǫBt −

∫

R

V ′
(
X(b)

s

)
ds−

∫

R

b
(
s,X(b)

s

)
ds .

Then we introduce the function Γ(b)(s, x) := E

[
F ′
(
x−X

(b)
s

)]
. With suffi-

ciently good properties on the set ΛT and on the functional Γ, the application
of a fixed-point theorem provides a solution of Eq. (I) on a finite interval. We
extend to R+ by classical arguments. We refer to [BRTV98, HIP08].

Let us remark that for all T < ∞, we have

lim
N→∞

sup
0≤t≤T

E

[∣∣Xt −X1
t

∣∣2
]
= 0

if B1 = B. See [Szn91] under Lipschitz properties, [BRTV98] if V is a constant,
[Mal01, Mal03] when both potentials are convex. Under some convexity prop-
erties, this coupling (which is equivalent to the propagation of chaos) holds on
R+, see [CGM08].

Under appropriate regularity conditions, it is well-known, see [McK67] that the
law µt := L(Xt) is absolutely continuous with respect to the Lebesgue measure
for all t > 0. By ut, we denote its density. Moreover, it satisfies the granular
media equation,

∂

∂t
ut =

∂

∂x

{
ǫ

2

∂

∂x
ut + ut

(
V ′ + F ′ ∗ ut

)}
. (II)
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Thus, we can study Equation (II) by probabilistic methods involving Eq. (I)
or the associated mean-field system of particles, see [CGM08, Fun84, Mal03].
Reciprocally, Equation (II) is a useful tool to describe the invariant probabilities
and the long-time behavior, see [BRTV98, BRV98, Tam84, Tam87, Ver06]. The
partial differential equation is nonlinear. We especially remark the following
fact. If µ is not a Dirac measure, nothing ensures us that

E [f (Xµ
t )] =

∫

R

E

[
f
(
Xδx

t

)]
dµ(x) ,

where Xν is a solution of Eq. (I) with L (Xν
0 ) = ν.

When the confining potential V and the interacting potential F are both con-
vex, there is a unique invariant probability. Furthermore, it is possible to prove
by several methods (see [BRV98, CGM08, CMV03]) the convergence to this sta-
tionary measure.

However, in [HT10a], it has been proved under easily checked assumptions that
Diffusion (I) admits several invariant probabilities. Moreover, there are exactly
three ones if the diffusion coefficient is sufficiently small. The thirdness result
in the small-noise case has been established with different sets of assumptions
in [HT10b, HT09, Tug10, Tug11]. The long-time behavior of the law µt in the
non-convex case has been the subject of [Tug10]. Under simple assumptions, µt

converges weakly to an invariant probability. Furthermore, the basin of attrac-
tion of each invariant probability is not a singleton.

The purpose of the work is to provide a more complete picture about the enu-
meration of the invariant probabilities of Diffusion (I) in function of the noise
ǫ. First of all, we present the material used in this work. Then, we look at the
small-noise case when V is not even and F is not quadratic. Particularly, we
prove the existence of invariant probabilities which are not close to any Dirac
measure of a wells of the confining potential V . Then, we look at the number
of invariant probabilities when the diffusion coefficient is not small. We par-
ticularly establish, in a simple case, the existence of a critical value ǫc under
which there are three invariant probabilities and over which there is exactly one.
Finally, we provide numerical estimations of the phases transitions by different
methods.

Assumption (M): We say that the confining potential V and the interacting
potential F satisfy the set of assumptions (M) if

(M-1) V is a polynomial function with deg(V ) ≥ 4.
(M-2) V has three critical points, a1 < a2 < a3. Furthermore, V ′′(a1) > 0,
V ′′(a3) > 0 and V ′′(a2) < 0.
(M-3) The second derivative of V goes to infinity at infinity. Moreover, V ′′ is
positive outside the compact interval [a1; a3].
(M-4) F is an even polynomial function with deg(F ) =: 2n ≥ 2.
(M-5) Both functions F and F ′′ are convex.
(M-6) V (0) = F (0) = 0.
In the current work, some results require more hypotheses. Let us present these
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additional assumptions.

Assumption (E): V is even and for all k ≥ 2, V (2k)(0) ≥ 0. By a, we denote
the unique positive critical point of V . Thus, a = a3, a1 = −a and a2 = 0.
Assumption (O): There exists λ, µ, γ ∈ R and another function V̂ satisfying
(E) such that V (x) = V̂ (x− λ) + µx+ γ for all x ∈ R.
Assumption (Q): The interacting potential F is quadratic. There exists α > 0
such that F (x) := α

2 x
2 for all x ∈ R.

In the following, by Sǫ, we denote the set of the invariant probabilities of Dif-
fusion (I). In order to study the number of elements of Sǫ, we introduce the
following functional, the so-called free-energy, already used in previous works,

Υǫ(µ) :=

∫

R

{
ǫ

2
log(u(x)) + V (x) +

1

2
F ∗ u(x)

}
u(x)dx

for all the probability measures µ absolutely continuous with respect to the
Lebesgue measure, with density equal to u.

1 Invariant probabilities in the small-noise case

The aim of this section is to study the invariant probabilities with arbitrarily
small diffusion coefficient. In [HT10a], it has been proved that there is a sym-
metric invariant probability when the confining potential V is even.
Moreover, under some easily checked assumptions on F , there are also two asym-
metric invariant probabilities if ǫ is small enough.
The method used in this work consists in a parametrisation. Indeed, Lemma
2.2 in [HT10a] provides an implicit equation on each invariant probability,

µǫ(dx) =
exp

[
− 2

ǫ
(V (x) + F ∗ µǫ(x))

]
∫
R
exp

[
− 2

ǫ
(V (y) + F ∗ µǫ(y))

]
dy

dx .

To find an invariant probability is thus equivalent to solve a fixed-point prob-
lem in a space which dimension is infinity. However, F is a polynomial function.
Consequently, it is reduced to a fixed-point problem in a space which dimension
is 2n−1 =: deg(F )−1 as noticed in [HT10a]. The parity of the potential V has
not been used in the proof of Lemma 2.2 in [HT10a]. Hence, the above remark
still holds.

Let us describe the method. For all m := (m1, · · · ,m2n−1) ∈ R2n−1, we intro-
duce the potential

Wm := V +

2n−1∑

p=0

(−1)p

p!
mpF

(p) with m0 := 1 .

The potential Wm is the sum of the confining potential V and the convolution
of the interacting potential F with a measure µ satisfying

∫
xkµ(dx) = mk for
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1 ≤ k ≤ 2n − 1. Let us notice that such a measure always exists but it is not
necessary a probability measure. Then, we consider the measure

µǫ
m(dx) :=

exp
[
− 2

ǫ
Wm(x)

]
∫
R
exp

[
− 2

ǫ
Wm(y)

]
dy

dx . (1.1)

The implicit equation on the invariant probabilities yields the existence for all
vǫ ∈ Sǫ of a vector m ∈ R2n−1 such that vǫ = µǫ

m. It remains then to solve the
system of equations

mp =

∫

R

xpµǫ
m(dx) =

∫
R
xp exp

[
− 2

ǫ

(
V (x) +

∑2n−1
k=0

(−1)k

k! mkF
(k)(x)

)]
dx

∫
R
exp

[
− 2

ǫ

(
V (x) +

∑2n−1
k=0

(−1)k

k! mkF (k)(x)
)]

dx
,

for all 1 ≤ p ≤ 2n− 1.

Remark 1.1. We can use another tool for this study, the free-energy, see
[Tug11]. The main advantage is that it requires less hypotheses in the non-
quadratic interaction case. But, it is only available for invariant probabilities
which are around local minima of the confining potential V .
Moreover, in the quadratic interaction case, the method presented here requires
less hypotheses.

Let us notice that the results of current section hold even if V has more than
three critical points.

1.1 Quadratic interaction

Here, we assume (Q), that is F (x) := α
2 x

2 with α > 0. The research of an
invariant probability is reduced in fine to a parametrisation problem on R.
Indeed, according to the previous remarks, vǫ is an invariant probability if and
only if there exists m ∈ R such that vǫ = µǫ

m and m =
∫
R
xµǫ

m(dx). In other
words, m is a zero of the function (already used in [HT10a]),

χǫ(m) :=

∫
R
x exp

[
− 2

ǫ

(
V (x) + α

2 x
2 − αmx

)]
dx∫

R
exp

[
− 2

ǫ

(
V (x) + α

2 x
2 − αmx

)]
dx

−m.

We now are able to prove the existence of an invariant probability around each
critical point, under some assumptions.

Proposition 1.2. We assume that the confining potential V and the interacting
potential F satisfy Assumptions (M) and (Q). Let a0 be a critical point of V
such that α+ V ′′(a0) > 0 and

α > 2 sup
x 6=a0

V (a0)− V (x)

(a0 − x)
2 . (1.2)

Then, for all δ ∈]0 ; 1[, there exists ǫ0 > 0 such that for all ǫ ≤ ǫ0, Diffusion (I)
admits an invariant probability µǫ verifying

∣∣∣∣
∫

R

xµǫ(dx) − a0 +
V (3)(a0)

4V ′′(a0) (α+ V ′′(a0))
ǫ

∣∣∣∣ ≤ δ ǫ .
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Proof. The idea consists in proving the existence of a zero mǫ of χǫ such that

∣∣∣∣mǫ − a0 +
V (3)(a0)

4V ′′(a0) (α+ V ′′(a0))
ǫ

∣∣∣∣ ≤ δ ǫ .

By τ0, we denote the expression V (3)(a0)
4V ′′(a0)(α+V ′′(a0))

. We approximate the quantity

χǫ (a0 − τ0(1± δ)ǫ). Applying Lemma A.3 in [HT10a] to f(x) := −2ατ0(1±δ)x,
n := 1, U(x) := V (x) + α

2 x
2 − αa0x and µ := 0 yields

χǫ

(
a0 − τ0(1± δ)ǫ

)
= ±δ

V ′′(a0)

α+ V ′′(a0)
τ0ǫ+ o(ǫ) .

We deduce that the product χǫ (a0 − τ0(1− δ)ǫ)χǫ (a0 − τ0(1 + δ)ǫ) is negative
for sufficiently small ǫ. Since χǫ is a continuous function, the intermediate
value theorem yields that the function χǫ admits a zero, non necessary unique,
mǫ in the interval [a0 − τ0(1 + δ)ǫ ; a0 − τ0(1− δ)ǫ]. The proof is achieved by
considering the associated measure,

µǫ
mǫ

(dx) =
exp

[
− 2

ǫ

(
V (x) + αx2

2 − αmǫx
)]

∫
R
exp

[
− 2

ǫ

(
V (y) + αy2

2 − αmǫy
)]

dy
dx .

Let us notice that Proposition 1.2 holds also for critical point in which the
confining potential does not admit a global minimum. Indeed, Hypothesis (1.2)
is immediately satisfied if a0 is an argument of the global minimum but it can be
satisfied if it corresponds to a local and non global minimum or if it corresponds
to a global maximum.

For example, let us take V (x) := x4

4 + x3

3 − x2

2 . The points a2 := 0 and

a3 :=
√
5−1
2 respectively correspond to a local maximum and to a local but non

global minimum. However, Inequality (1.2) with a2 is equivalent to α > 11
9 and

Inequality (1.2) with a3 is equivalent to α > 3
√
5+1
18 .

The particularity of the proposition is the following. We have to guess the
small-noise limit of the measure before being able to prove its existence.
Moreover, we need this limit to be a Dirac measure around a critical point a0.
Consequently, we talk about invariant probability around a0. However, it has
been proved in [HT10b] that a measure of the form pδx1 +(1− p)δx2 can be the
small-noise limit of a family of invariant probabilities. The previous proposition
is not adapted to this situation. Furthermore, if a0 is a critical point of V such
that α+ V ′′(a0) < 0, we cannot apply Proposition 1.2.

Next proposition aims to prove the existence of invariant probabilities which
cannot be detected by Proposition 1.2. It is written in the case where V has
exactly three critical points but we can prove it with any number of critical
points.
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Proposition 1.3. We assume that the confining potential V and the interacting
potential F satisfy the hypotheses (M) and (Q). Let us take

α > 2 max

{
sup
x 6=a1

V (a1)− V (x)

(a1 − x)
2 ; sup

x 6=a3

V (a3)− V (x)

(a3 − x)
2

}
.

Then, there exists δ0 > 0 and ǫ0 > 0 such that for all ǫ ≤ ǫ0, there exists an
invariant probability µǫ satisfying

a1 + δ0 <

∫

R

xµǫ(dx) < a3 − δ0 .

Proof. Outline of the proof. We again consider the potential Wm(x) =
V (x) + α

2 x
2 − αmx. We then study Aδ, the set of the points in which Wa1+δ

reaches its global minimum.
In Step 1, we prove #Aδ = 1 for sufficiently small δ (positive or negative). We
denote x(δ) the unique point in Aδ.
In Step 2.1, we prove that x(δ)− (a1 + δ) < 0 and x(−δ)− (a1 − δ) > 0 if δ > 0
is small enough. In Step 2.2, Lemma A.3 in [HT10a] yields χǫ(a1 + δ) < 0 and
χǫ(a1 − δ) > 0 for ǫ > 0 and δ > 0 sufficiently small.
The same holds with a3 instead of a1. Step 3 consists in the application of
intermediate value theorem to χǫ on the interval [a1 + δ ; a3 − δ].

Step 1. We again consider the potential

Wm(x) = V (x) +
α

2
x2 − αmx ,

for all m > 0. We notice that Wm(x) = Wa1(x) − α (m− a1)x. According to
the hypotheses, Eq. (1.2) holds for a1. Consequently, the function Wa1 reaches
its global minimum in a unique point and it is a1. We prove in this step that
for |δ| sufficiently small, the function Wa1+δ reaches its global minimum in a
unique point.
Step 1.1. By Aδ, we denote the set of the points in which the potential Wa1+δ

reaches its global minimum. Hypotheses (M-3) and (M-5) imply that ±∞ /∈ Aδ.
Let us take xδ ∈ Aδ for all δ ∈ [−1; 1]. It is a critical point of Wa1+δ so
W ′

a1+δ (xδ) = 0. This implies W ′
a1

(xδ) = αδ. Consequently, for all δ ∈ [−1; 1],∣∣W ′
a1
(xδ)

∣∣ ≤ α. We deduce the existence of a constant C > 0 such that

sup
−1≤δ≤1

sup
xδ∈Aδ

|xδ| ≤ C .

Step 1.2 Let xδ be an element of Aδ. By definition of Aδ, Wa1+δ(xδ) ≤
Wa1+δ(x) for all x ∈ R. Particularly, with x = a1, we obtain Wa1+δ (xδ) ≤
Wa1(a1)+αδ (xδ − a1). However, Wa1(a1) is the global minimum of Wa1 . Con-
sequently, we have

Wa1(a1) ≤ Wa1 (xδ) ≤ Wa1(a1) + αδ (xδ − a1) .

8



This implies |Wa1 (xδ)−Wa1(a1)| ≤ (C + |a1|)δ where the constant C > 0 has
been introduced in Step 1.1. We deduce the convergence of Wa1 (xδ) to Wa1(a1).
The continuity of Wa1 yields

lim
|δ|→0

sup
xδ∈Aδ

|xδ − a1| = 0 .

Step 1.3. As W ′′
a1
(a1) = α + V ′′(a1) > 0, there exists ρ > 0 such that for all

x ∈ [a1− ρ; a1+ ρ], W ′′
a1
(x) > 0. According to Step 1.2, there exists δ1 > 0 such

that xδ ∈ [a1 − ρ; a1 + ρ] for all xδ ∈ Aδ and for all δ ∈ [−δ1 ; δ1]. However,
Wa1 is convex on [a1 − ρ; a1 + ρ] by construction of ρ > 0. This implies that
Wa1+δ reaches its minimum on [a1 − ρ; a1+ ρ] in a unique point. Consequently,
Aδ contains a unique point if |δ| < δ1. By x(δ), we denote this unique element.

Step 2. We now prove the two inequalities χǫ(a1 + δ) < 0 and χǫ(a1 − δ) > 0
for 0 < δ < δ1 and ǫ small enough.
Step 2.1. The equality W ′

a1+δ(x(δ)) = 0 provides W ′
a1
(x(δ)) = αδ. Since

W ′′
a1
(a1) > 0, we obtain the first order approximation,

x(δ) = a1 +
α

W ′′
a1
(a1)

δ + o(δ) .

Consequently,

x(δ) − (a1 + δ) = − V ′′(a1)

α+ V ′′(a1)
δ + o(δ) .

By recalling that V ′′(a1) > 0, we deduce the existence of δ2 < δ1 such that
± (x(±δ) − (a1 ± δ)) < 0 for all 0 < δ < δ2.
Step 2.2. By applying Lemma A.3 in [HT10a] to f := 0, n := 1, U := Wa1 ,
G := x 7→ −αx and µ := ±δ, we get

χǫ(a1 + δ) = x(δ) − (a1 + δ) + o(1)

and χǫ(a1 − δ) = x(−δ)− (a1 − δ) + o(1) .

Thus, there exists ǫ1(δ) > 0 such that for all 0 < ǫ < ǫ1(δ), χǫ(a1 + δ) < 0 and
χǫ(a1 − δ) > 0.

Step 3. By proceeding exactly like in Step 1 and Step 2, there exists δ3 > 0
such that for all δ ∈]0; δ3[ and 0 < ǫ < ǫ2(δ), χǫ(a3 + δ) < 0 and χǫ(a3 − δ) > 0.
We take δ0 < min

{
δ2; δ3;

a3−a1

2

}
and ǫ0 := min {ǫ1(δ0) ; ǫ2(δ0)}. Thus, for all

0 < ǫ < ǫ0, we have

χǫ(a1 + δ0) < 0 < χǫ(a3 − δ0) and a1 + δ0 < a3 − δ0 .

Then, by using the intermediate value theorem, we deduce the existence of
mǫ ∈ [a1+δ0; a3−δ0] such that χǫ(mǫ) = 0. We achieve the proof by considering
the associated measure,

µǫ
mǫ

(dx) =
exp

[
− 2

ǫ

(
V (x) + α

2 x
2 − αmǫx

)]
∫
R
exp

[
− 2

ǫ

(
V (y) + α

2 y
2 − αmǫy

)]
dy

dx .

9



Let us remark that this intermediate invariant probability is not necessary
unique. Propositions 1.2 and 1.3 yield immediately the following statement (the
proof is left to the reader).

Corollary 1.4. With the same hypotheses than the ones of Proposition 1.3,
Diffusion (I) admits at least three invariant probabilities if ǫ is sufficiently small.

Particularly, Corollary 1.4 can be applied in the synchronized case, that is
α ≥ sup

x∈R

−V ′′(x). Let us point out that these results hold even if the number of

critical points is not three.

Indeed, for α large enough and ǫ small enough, the number of invariant proba-
bilities is at least the number of critical points of V .

1.2 Nonquadratic interacting potential

The main advantage of Hypothesis (Q) is the equivalence between the existence
problem of an invariant probability and a fixed-point problem in dimension one.
In the general case, we make a parametrisation in R2n−1 with deg(F ) = 2n. We
cannot use anymore the intermediate value theorem. Let us notice the following
statement (see Corollary 2.2 in [Tug11] for a proof).

Proposition 1.5. We assume that the confining potential V and the interacting
potential F satisfy the set of hypotheses (M).
Then, for all ǫ > 0, there exists at least one invariant probability.

We now present the extension of Theorem 4.8 in [HT10a].

Theorem 1.6. We assume that the confining potential V and the interacting
potential F satisfy the set of hypotheses (M). Let a0 be a localization of a local
minimum of V such that

V (x) + F (x − a0) > V (a0) for all x 6= a0

and
2n−2∑

p=0

∣∣F (p+2)(a0)
∣∣

p!
|a0|p < α+ V ′′(a0) .

Then, for any η > 0, there exists ǫ0(η) such that for all 0 < ǫ < ǫ0(η), Diffusion
(I) admits an invariant probability µǫ satisfying

∣∣∣∣
∫

R

xkµǫ(dx) − ak0 + τ0k ǫ

∣∣∣∣ ≤ ηǫ for all 1 ≤ k ≤ 2n− 1

with τ0k := kak−1
0

a0V
(3)(a0)− (k − 1)V ′′(a0)

4a0V ′′(a0) (α+ V ′′(a0)))
.

The proof is similar to the one of Theorem 4.8 in [HT10a]. We introduce
the application Φ from R2n−1 to R2n−1 defined by

Φk (m1, · · · ,m2n−1) =

∫
R
xk exp

[
− 2

ǫ

(
V (x) +

∑2n−1
p=0

(−1)p

p! mpF
(p)(x)

)]
dx

∫
R
exp

[
− 2

ǫ
V (x) +

∑2n−1
p=0

(−1)p

p! mpF (p)(x)
]
dx

.

10



Then, we apply the Schauder fixed-point theorem to Φ on a parallelepiped of
the form

C(ǫ) :=
2n−1∏

p=1

[
ap0 − τ0p ǫ − λδǫ ; ap0 − τ0p ǫ+ λδǫ

]

where λ > 0 is a constant. This result requires more hypotheses than Theorem
2.3 in [Tug11] but it is more precise since we have the first order approximation
of the moments.

Let us stress that the second assumption of Theorem 1.6 is not intuitive and is
only related to the method used in the proof.

2 Uniqueness and Thirdness

The previous section deals with the invariant probabilities for self-stabilizing
processes in the small-noise case. Particularly, there is nonuniqueness of the
invariant probabilities under easily checked assumptions. With Hypotheses (M),
(E) and (Q), we know that there are exactly three invariant probabilities as ǫ
is small enough (see Theorem 3.2 in [HT10a]). However, what happens in the
large-noise case has not yet been investigated. In this section, we show that
under Assumptions (M), (E) and (Q), there is a phase transition. If ǫ is larger
or equal to a critical value ǫc, Diffusion (I) admits a unique invariant probability
and if ǫ is strictly smaller than ǫc, it admits exactly three ones. Then, this result
of transition between the uniqueness and the thirdness is partially extended in
two directions, when V is not even and when F is not quadratic.

2.1 With quadratic interaction

In this paragraph, we assume that the interacting potential satisfies (Q). In
other words, F (x) := α

2 x
2 with α > 0. Thus, as noticed in the previous section,

there is a bijection between Sǫ, the set of the invariant probabilities of Diffusion
(I) and the set of the zeros of the function χǫ defined by

χǫ(m) =

∫
R
x exp

[
− 2

ǫ

(
V (x) + α

2 x
2 − αmx

)]
dx∫

R
exp

[
− 2

ǫ

(
V (x) + α

2 x
2 − αmx

)]
dx

−m.

However, if this function can easily be used in the small-noise limit thanks to
the Laplace method, it is harder to provide a precise study for general ǫ > 0.
Consequently, we look at another function from R to itself,

ξǫ(m) :=

∫

R

(x−m) exp

[
−2

ǫ

(
V (x) +

α

2
x2 − αmx

)]
dx . (2.1)

This function ξǫ admits the same zeros than χǫ since ξǫ consists in the product
of χǫ with the positive partition function,

Zǫ(m) :=

∫

R

exp

[
−2

ǫ

(
V (x) +

α

2
x2 − αmx

)]
dx . (2.2)

The method used in this paragraph is the study of the two functions ξǫ and Zǫ.
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2.1.1 With even confinment

We add another hypothesis in this paragraph. The confining potential V now
satisfies Assumption (E). Consequently, we can write

V (x) = −|V ′′(0)|
2

x2 +

q∑

p=2

∣∣V (2p)(0)
∣∣

(2p)!
x2p with deg(V ) =: 2q . (2.3)

We recall that the unique positive critical point is a and the unique negative
one is −a. Since V is even, ξǫ is odd and 0 is an obvious zero. The study thus
is reduced to the research of the number of zeros of ξǫ on R∗

+ := ]0;+∞[.

Theorem 2.1. We assume that the confining potential V and the interacting
potential F satisfy the hypotheses (M), (E) and (Q).
Thus, there exists ǫc > 0 such that:

• For all ǫ ≥ ǫc, Diffusion (I) admits a unique invariant probability, µǫ
0.

And, µǫ
0 is symmetric.

• For all ǫ < ǫc, Diffusion (I) admits exactly three invariant probabilities.
One is symmetric, µǫ

0 and the two other measures µǫ
+ and µǫ

− satisfy
±
∫
R
xµǫ

±(dx) > 0.

Moreover, the equation

∫

R+

(
x2 − 1

2α

)
exp

[
(|V ′′(0)| − α) x2 −

q∑

p=2

2ǫp−1
∣∣V (2p)(0)

∣∣
(2p)!

x2p

]
dx = 0 (2.4)

admits a unique solution, that is the critical value ǫc.

Proof. Outline of the proof. In Step 1, we proceed a series expansion of the
function ξǫ. We prove in Step 2 the existence of a critical integer nǫ such that

for all n ≥ nǫ, ξ
(2n+1)
ǫ (0) ≤ 0 and for all n < nǫ, ξ

(2n+1)
ǫ (0) > 0. We can then

write

ξǫ(m) =

nǫ−1∑

n=0

∣∣∣ξ(2n+1)
ǫ (0)

∣∣∣
(2n+ 1)!

m2n+1 −
+∞∑

n=nǫ

∣∣∣ξ(2n+1)
ǫ (0)

∣∣∣
(2n+ 1)!

m2n+1 .

By using it, we show in Step 3 that Diffusion (I) admits exactly one or three
invariant probabilities. Moreover, if there is a unique measure µǫ

0, it is a sym-
metric one. And, if there are three invariant probabilities, one is symmetric
(µǫ

0), one has a positive moment and one has a negative moment.
In Step 4, we establish that uniqueness is equivalent to the inequality ξ′ǫ(0) ≤ 0.
We finally prove in Step 5 the existence of a unique critical value ǫc such that
ξ′ǫc(0) = 0. Moreover, the equation ξ′ǫ(0) = 0 is equivalent to Eq. (2.4).

Step 1. We rewrite the function ξǫ (defined in Eq. (2.1)),

ξǫ(m) =

∫

R

(x−m) exp

[
2αmx

ǫ

]
exp

[
−2

ǫ

(
V (x) +

α

2
x2
)]

dx .
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We proceed a series expansion of the function m 7→ exp
[
2αmx

ǫ

]
. Due to Hy-

pothesis (E), we obtain

ξǫ(m) = 2

∞∑

n=0

Iǫ(2n)

(2n)!

(
2αm

ǫ

)2n+1 [
Iǫ(2n+ 2)

(2n+ 1)Iǫ(2n)
− ǫ

2α

]
, (2.5)

with Iǫ(z) :=

∫

R+

xz exp

[
−2

ǫ

(
V (x) +

α

2
x2
)]

dx . (2.6)

Step 2. We prove in this step the existence of a critical integer nǫ such that for
all n ≥ nǫ, ξ

(2n+1)
ǫ (0) ≤ 0 and for all n ≤ nǫ − 1, ξ(2n+1)

ǫ (0) > 0.
Step 2.1. For all n ∈ N, we introduce the quantity

γn(ǫ) :=
Iǫ(2n+ 2)

(2n+ 1)Iǫ(2n)
− ǫ

2α
. (2.7)

An integration by parts provides

(2n+ 1)Iǫ(2n) =
2

ǫ

∫

R

(V ′(x) + αx) x2n+1 exp

[
−2

ǫ

(
V (x) +

α

2
x2
)]

dx

=
2

ǫ

{
(α− |V ′′(0)|) Iǫ(2n+ 2) +

q∑

p=2

∣∣V (2p)(0)
∣∣

(2p− 1)!
Iǫ(2n+ 2p)

}

after using Eq. (2.3). Consequently, the term γn(ǫ) becomes

γǫ(n) =
ǫ

2

{
α− |V ′′(0)|+

q∑

p=2

∣∣V (2p)(0)
∣∣

(2p− 1)!

Iǫ(2n+ 2p)

Iǫ(2n+ 2)

}−1

− ǫ

2α
.

Step 2.2. The aim here is to prove that for all ǫ > 0, the sequence (γn(ǫ))n∈N

is nonincreasing.

It is sufficient to prove that the sequences
(

Iǫ(2n+2p)
Iǫ(2n+2)

)
n∈N

are nondecreasing for

all p ∈ J2; qK. In a more general way, we state that the function Ξz := x 7→
Iǫ(x+z)
Iǫ(x)

is nondecreasing for all z > 0. We proceed the derivation of Ξz ,

Ξ′
z(x) = Ξz(x)

(
I ′ǫ(x+ z)

Iǫ(x+ z)
− I ′ǫ(x)

Iǫ(x)

)
.

Since Ξz(x) ≥ 0 for all x ∈ R+ and z ∈ R+, it now remains to prove that the

application ζ :=
I′

ǫ

Iǫ
is nondecreasing. We apply the derivation.

ζ′(y) =
I ′′ǫ (y)

Iǫ(y)
−
(
I ′ǫ(y)

Iǫ(y)

)2

=

∫
R+

xy (log(x))
2
exp

[
− 2

ǫ

(
V (x) + α

2 x
2
)]

dx
∫
R+

xy exp
[
− 2

ǫ

(
V (x) + α

2 x
2
)]

dx

−
(∫

R+
xy (log(x)) exp

[
− 2

ǫ

(
V (x) + α

2 x
2
)]

dx
∫
R+

xy exp
[
− 2

ǫ

(
V (x) + α

2 x
2
)]

dx

)2

.
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By applying the Cauchy-Schwarz inequality, we obtain ζ′(y) ≥ 0 for all y > 0.
Then, the claim holds, that is the sequence (γn(ǫ))n∈N

is nonincreasing for all
ǫ > 0.

Step 2.3. We here prove that γn(ǫ) < 0 for n large enough. For doing this, it
is sufficient to find a real x0 such that ξǫ(x0) < 0. We compute ξǫ(a).

ξǫ(a) = e
αa2

ǫ

∫

R

(x − a) exp

[
−2

ǫ

(
V (x) +

α

2
(x− a)

2
)]

dx

= e
αa2

ǫ

∫ +∞

0

ye−
α
ǫ
y2

{
exp

[
−2

ǫ
V (y + a)

]
− exp

[
−2

ǫ
V (y − a)

]}
dy .

By using Assumption (E), we easily prove that V (y + a)− V (y − a) > 0 for all
y > 0. Consequently, ξǫ(a) < 0. We deduce the existence of n ∈ N such that

γn(ǫ) < 0. We put nǫ := min
{
n
∣∣∣ γn(ǫ) ≤ 0

}
. Since γn(ǫ) and ξ

(2n+1)
ǫ (0) have

the same sign, we deduce that for all n ≥ nǫ, ξ
(2n+1)
ǫ (0) is nonpositive and for

all n < nǫ, ξ
(2n+1)
ǫ (0) is positive.

Step 3. Consequently, we can write

ξǫ(m) =

nǫ−1∑

n=0

∣∣∣ξ(2n+1)
ǫ (0)

∣∣∣
(2n+ 1)!

m2n+1 −
+∞∑

n=nǫ

∣∣∣ξ(2n+1)
ǫ (0)

∣∣∣
(2n+ 1)!

m2n+1 . (2.8)

By making factorization with m2nǫ+1, we obtain

ξǫ(m) = m2nǫ+1





nǫ−1∑

n=0

∣∣∣ξ(2n+1)
ǫ (0)

∣∣∣
(2n+ 1)!

m2n−2nǫ −
+∞∑

n=nǫ

∣∣∣ξ(2n+1)
ǫ (0)

∣∣∣
(2n+ 1)!

m2n−2nǫ



 .

Since the functions m 7→ m2n−2nǫ (resp. m 7→ −m2n−2nǫ) are decreasing for
all n ≤ nǫ − 1 (resp. n ≥ nǫ), we deduce that ξǫ admits at most one positive
zero. The function ξǫ is odd so its admits exactly one or three zeros on R. This
means that Diffusion (I) admits exactly one or three invariant probabilities.

Step 4. We here prove that the uniqueness of the invariant probability directly
is related to the sign of ξ′ǫ(0). We take the derivative of Eq. (2.8) then we make
a factorization by m2nǫ .

ξ′ǫ(m) = m2nǫ





nǫ−1∑

n=0

∣∣∣ξ(2n+1)
ǫ (0)

∣∣∣
(2n)!

m2n−2nǫ −
+∞∑

n=nǫ

∣∣∣ξ(2n+1)
ǫ (0)

∣∣∣
(2n)!

m2n−2nǫ



 .

By the same argument than the one in previous step, we deduce that ξ′ǫ vanishes
at most one time on the set of the positive reals. As it tends to −∞ when m
goes to infinity, this means that ξ′ǫ is either always nonpositive either positive
then nonpositive. Consequently, the behavior of the function ξǫ is related to the
sign of ξ′ǫ(0).
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• If ξ′ǫ(0) ≤ 0, the function ξǫ is nonincreasing on R+. Since ξǫ(0) = 0,
the function ξǫ does not vanish on R∗

+ so Diffusion (I) admits a unique
invariant probability and this measure is symmetric.

• If ξ′ǫ(0) > 0, the function ξǫ is first increasing then nonincreasing. Since,
ξǫ(0) = 0, it implies the existence of mǫ > 0 such that ξǫ(mǫ) = 0. There
is thus an invariant probability µǫ

+ associated to mǫ and since mǫ is the
moment of µǫ

+, we have
∫
R
xµǫ

+(dx) > 0. Furthermore, the measure µǫ
−

associated to −mǫ satisfies
∫
R
xµǫ

−(dx) < 0.

Step 5. We now investigate on the sign of ξ′ǫ(0). By Eq. (2.5), ξ′ǫ(0) and γ0(ǫ)
have the same sign. We recall that

γ0(ǫ) =
Iǫ(2)

Iǫ(0)
− ǫ

2α
=

∫
R+

x2 exp
[
− 2

ǫ

(
V (x) + α

2 x
2
)]

dx
∫
R+

exp
[
− 2

ǫ

(
V (x) + α

2 x
2
)]

dx
− ǫ

2α
.

The change of variable x :=
√
ǫy yields

γ0(ǫ) = ǫ





∫

R+

y2 exp

[
(|V ′′(0)| − α) y2 −

q∑

p=2

2ǫp−1
∣∣V (2p)(0)

∣∣
(2p)!

y2p

]
dy

∫

R+

exp

[
(|V ′′(0)| − α) y2 −

q∑

p=2

2ǫp−1
∣∣V (2p)(0)

∣∣
(2p)!

y2p

]
dy

− 1

2α





=: ǫTα,V (ǫ) .

By using the Jensen inequality, we prove that the function ǫ 7→ Tα,V (ǫ) is de-
creasing. Consequently, there exists a unique ǫc such that γ0(ǫc) = 0. Moreover,
for all ǫ ≥ ǫc, we have γ0(ǫ) ≤ 0 which implies the uniqueness of the invariant
probability. And, for all ǫ < ǫc, we have γ0(ǫ) > 0 which implies the thirdness
of the invariant probabilities.
Finally, we remark that the sign of Tα,V (ǫ) is the same than the one of

∫

R+

(
x2 − 1

2α

)
exp

[
(|V ′′(0)| − α)x2 −

q∑

p=2

2ǫp−1
∣∣V (2p)(0)

∣∣
(2p)!

x2p

]
dx ,

which achieves the proof.

Let us remark that the function |V ′′(0)| 7→ Tα,V (ǫ) is nondecreasing and
that the functions V (2p)(0) 7→ Tα,V (ǫ) are nonincreasing for all 2 ≤ p ≤ q. We
immediately deduce that the function V ′′(0) 7→ ǫc is nondecreasing and that the
functions

∣∣V (2p)(0)
∣∣ 7→ ǫc are nonincreasing for all 2 ≤ p ≤ q.

We do not know anything about the monotonicity of the function α 7→ ǫc. How-
ever, in the following, numerical estimations in a simple example establish that
this function seems to be nondecreasing, see Figure 1, page 23.
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2.1.2 With asymmetric confinment

We now look at the asymmetric case. We assume that the confining potential
V admits properties similar to (E), that is Hypothesis (O). Here, there exist V̂
satisfying (E) and three constants λ, µ and γ such that

V (x) = V̂ (x− λ) + µx+ γ .

Let us remark that all the non-convex polynomial functions with degree equal to
4 satisfy (E) or (O).
According to Section 1, we already know that Diffusion (I) admits several in-
variant probabilities if α := F ′′(0) is large enough and if ǫ is sufficiently small.
The aim of this paragraph is to prove that it admits a unique invariant proba-
bility if the diffusion coefficient is large enough. In other words, we show that
the dynamic of the diffusion is dominated by the heat process if the noise

√
ǫ is

sufficiently large.

The method consists in using the results from the above paragraph. We recall
the existence of a bijection between Sǫ and the set of zeros of the function χǫ

defined by

χǫ(m) =

∫
R
x exp

[
− 2

ǫ

(
V (x) + α

2 x
2 − αmx

)]
dx∫

R
exp

[
− 2

ǫ

(
V (x) + α

2 x
2 − αmx

)]
dx

−m.

We apply the change of variable x := y + λ and we obtain

χǫ(m) = χ̂ǫ(m̂)− µ

α

with m̂ := m− λ− µ
α
∈ R. The function χ̂ǫ here is the function defined by

χ̂ǫ(m) :=

∫
R
y exp

[
− 2

ǫ

(
V̂ (y) + α

2 y
2 − αmy

)]
dy

∫
R
exp

[
− 2

ǫ

(
V̂ (y) + α

2 y
2 − αmy

)]
dy

−m. (2.9)

We also introduce

ξ̂ǫ(m) :=

∫

R

(y −m) exp

[
−2

ǫ

(
V̂ (y) +

α

2
y2 − αmy

)]
dy (2.10)

and Ẑǫ(m) :=

∫

R

exp

[
−2

ǫ

(
V̂ (y) +

α

2
y2 − αmy

)]
dy . (2.11)

Before giving the main statement of the paragraph, let us give some technical
results.

Definition 2.2. For all k ∈ N, by Îǫ(2k) and γ̂k(ǫ), we denote the quantities

Îǫ(2k) :=

∫

R+

x2k exp

[
−2

ǫ

(
V̂ (x) +

α

2
x2
)]

dx

and γ̂k(ǫ) :=
Îǫ(2k + 2)

(2k + 1)Îǫ(2k)
− ǫ

2α
.
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The next statement is just computational. We do not write the proof.

Lemma 2.3. We assume that the confining potential V and the interacting
potential F satisfy the hypotheses (M), (O) and (Q). For all k ∈ N, we have

ξ̂ǫ
(2k+1)

(0) = 2Îǫ(2k)

(
2α

ǫ

)2k+1

(2k + 1)γ̂k(ǫ) (2.12)

and Ẑǫ

(2k)
(0) = 2Îǫ(2k)

(
2α

ǫ

)2k

. (2.13)

We now give the main result of the paragraph.

Proposition 2.4. We assume that the confining potential V and the interacting
potential F satisfy the hypotheses (M), (O) and (Q).
Thus, for all α ≥ 0, there exists a critical value ǫ0(α) such that for all ǫ > ǫ0(α),
Diffusion (I) admits a unique invariant probability.

Proof. Since there is a bijection between Sǫ and the set of the roots of the
function χǫ, the proof is based on an analytical study of χǫ. However, χǫ(m) =
χ̂ǫ(m̂) − C1 with m̂ := m − C2 ∈ R where C1 and C2 are constants and χ̂ǫ

has been defined in Eq. (2.9). Consequently, it is sufficient to prove that χ̂ǫ is
decreasing for ǫ large enough.

Step 1. We first compute the derivative of χ̂ǫ,

d

dm
χ̂ǫ(m) =

τǫ(m)

Ẑǫ(m)2
,

with τǫ(m) := ξ̂ǫ
′
(m)Ẑǫ(m)− ξ̂ǫ(m)Ẑǫ

′
(m). The function τǫ is even and analytic

so it is sufficient to prove that τ
(2n)
ǫ (0) is nonnegative for all n ∈ N.

Step 2. We here compute the derivatives of τǫ,

τ (2n)ǫ (0) =
2n∑

k=0

Ck
2nξ̂ǫ

(k+1)
(0)Ẑǫ

(2n−k)
(0)−

2n∑

k=0

Ck
2nξ̂ǫ

(k)
(0)Ẑǫ

(2n+1−k)
(0)

=ξ̂ǫ
(2n+1)

(0)Ẑǫ(0)− 2nξ̂ǫ
′
(0)Ẑǫ

(2n)
(0) (2.14)

+

n−1∑

k=1

(
C2k

2n − C2k+1
2n

)
ξ̂ǫ

(2k+1)
(0)Ẑǫ

(2n−2k)
(0) .

By applying Lemma 2.3, we obtain

τ (2n)ǫ (0) =4

(
2α

ǫ

)2n+1 {
Îǫ(2n)Îǫ(0) [(2n+ 1)γ̂n(ǫ)− 2nγ̂0(ǫ)]

+

n−1∑

k=1

C2k
2n(4k + 2− 2n)Îǫ(2k)Îǫ(2n− 2k)γ̂k(ǫ)

}
.
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Step 3. As proved in Step 5 of the proof of Theorem 2.1, there exists ǫc such
that for all ǫ ≥ ǫc, we have γ̂0(ǫ) < 0. From now on, we take ǫ > ǫc. It has been
proved in Step 2 of the proof of Theorem 2.1 that the sequence (γ̂n(ǫ))n∈N

is
nonincreasing. Consequently, (|γ̂n(ǫ)|)n∈N

is nondecreasing.
Step 4. We notice that if k > n

2 , we have 2k ≥ n + 1 then 4k ≥ 2n+ 2. This
implies |4k+2− 2n| − |2n+2− 4k| = 4k+2− 2n− (4k− 2− 2n) = 4 > 0. We
then remark (4k + 2− 2n)γ̂k(ǫ) + (2n+ 2− 4k)γ̂n−k(ǫ) = |4k + 2− 2n| γ̂k(ǫ)−
|2n+ 2− 4k| γ̂n−k(ǫ). This quantity is negative due to the monotonicity of the
sequence (γ̂n(ǫ))n∈N

. And, if k = n
2 , we have (4k + 2 − 2n)γ̂k(ǫ) = 2γ̂k(ǫ) < 0.

This implies τ
(2n)
ǫ (0) ≤ 0 for all n ≥ 0.

Step 5. The function χ̂ǫ
′
(m) is then nonpositive. We deduce that χ̂ǫ is nonin-

creasing. Moreover, χ̂ǫ is not a constant function since it is odd and χ̂ǫ(â) < 0

where â is the unique positive critical point of V̂ . Thus, at least one of the

τ
(2n)
ǫ (0) is negative. Hence, χ̂ǫ is decreasing on R.

Proposition 1.2 tells us that Diffusion (I) admits several invariant probabili-
ties if α is large enough and ǫ sufficiently small. However, Proposition 2.4 shows
that the self-stabilizing diffusion admits a unique invariant probability if the
noise ǫ is large enough. It means that there exists a phase transition between
the uniqueness and the nonuniqueness. However, the uniqueness (or not) of this
phase transition is still an open question.
Indeed, we do not have a complete picture like in the even case. The difficulty

here is the fact that the function ξǫ is not odd so the knowledge of ξ
(2n)
ǫ (0) for

all n ∈ N is not sufficient. And, the series expansions of the functions χǫ and
χ̂ǫ are not immediate.

2.2 With nonquadratic interaction

This paragraph deals with the thirdness of the invariant probabilities for Diffu-
sion (I) in the small-noise case when the interacting potential is not quadratic
and when the confining potential is even. It has been proved in [HT10a] (The-
orem 3.2) that there are exactly three invariant probabilities if F is quadratic
and if V is even and such that V (4) ≥ 0 for ǫ sufficiently small. This statement
has been extended in [Tug10] (Theorem 1.11). There are exactly three invariant
probabilities if the degree of the confining potentiel V is strictly more than the
one of the interacting potential F and if V ′′(0) + F ′′(0) > 0. We aim to extend
to the cases deg(V ) = deg(F ) and V ′′(0) + F ′′(0) = 0.

The difficulty which occurs in the synchronized but non-strictly synchronized
case, that is V ′′(0)+F ′′(0) = 0, is related to the symmetric invariant probability.
The method which has been used in [HT10b, HT09, Tug10] in order to obtain
the uniqueness of the symmetric invariant probability consists in providing the
first order approximations of the first deg(F ) − 1 moments of any symmetric
invariant probability in order to confine these moments in a parallelepiped Kǫ

with ridges dominated by ǫ. Then, we construct a function which acts on these
moments, which is equal to 0 if and only if the moments characterize an invari-
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ant probability and which is a bijection from Kǫ to its image. However, if the
quantity V ′′(0) + F ′′(0) is equal to 0, we cannot confine the moments in such
a parallelepiped, see Theorem 1.4 in [HT09]. Here, in order to solve the case
V ′′(0) + F ′′(0) = 0, we transfer the excedent of convexity from F to V then we
apply Theorem 2.4 in [CMV03]. Let us notice that we can also use a coupling
method.

The difficulty related to the assumption deg(V ) = deg(F ) is linked to an initial
and sufficient condition which is used in [HT10b, Tug10] for proving the conver-
gence in the small-noise limit of any sequence of invariant probabilities (µǫk)k
where (ǫk)k is a decreasing sequence which converges to 0 as k goes to infinity.
Let us recall this initial condition.

(H)
The family

{∫
R
x2nµǫ(dx), ǫ > 0

}
is bounded for any family of invariant

probabilities {µǫ ; ǫ > 0}, with 2n := deg(F ).

Condition (H) is satisfied if deg(V ) > deg(F ), see Step 3.2 in the proof of The-
orem 1.11 in [Tug10]. We extend it to deg(V ) = deg(F ).

Let us first prove the uniqueness of the symmetric invariant probability for
sufficiently small ǫ.

Proposition 2.5. We assume that the confining potential V and the interacting
potential F satisfy the hypotheses (M) and (E).
Thus, for ǫ small enough, Diffusion (I) admits a unique symmetric invariant
probability.

Proof. Step 1. Let us first notice that the uniqueness of the symmetric invariant
probability has already been pointed out in [HT10a] if F is quadratic. From
now on, we assume that it is not quadratic. Consequently, F ′′(x) > F ′′(0) for
all x 6= 0.

Step 2. We now define the two potentials V0(x) := V (x)+ F ′′(0)
2 x2 and F0(x) :=

F (x) − F ′′(0)
2 x2. Since the initial law µ0 is symmetric, the law µt is symmetric

for all t ≥ 0. Consequently, the first moment
∫
R
xµt(dx) is equal to 0 for all

t ≥ 0. This implies that Diffusion (I) is the solution of the stochastic differential
equation

{
Yt = X0 +

√
ǫBt −

∫ t

0
V ′
0 (Ys) ds−

∫ t

0
F ′
0 ∗ νs (Ys) ds ,

νs = L (Ys) .
(2.15)

Step 3. By construction, V0 and F0 are convex. Moreover, V ′′
0 (x) > 0 and

F ′′
0 (x) > 0 if x 6= 0. We apply Theorem 2.4 in [CMV03] and we obtain the

uniqueness of the invariant probability for Diffusion (2.15) which means that
there is a unique symmetric invariant probability for Diffusion (I).

We now extend Theorem 3.2 in [HT10a] by proving the thirdness of the
invariant probabilities for ǫ small enough. Before it, we need to show that
Condition (H) holds.

Proposition 2.6. We assume that the confining potential V and the interacting
potential F satisfy the hypotheses (M) and (E). If deg(V ) ≥ deg(F ) =: 2n,
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Condition (H) is satisfied, that is the family
{∫

R
x2nµǫ(dx) ; ǫ > 0

}
is bounded

for any family of invariant probabilities {µǫ ; ǫ > 0}.

Proof. It has already been proved when deg(V ) > deg(F ). It remains then to
prove it when deg(V ) = deg(F ) = 2n. We proceed a reductio ad absurdum by
assuming the existence of a decreasing sequence (ǫk)k∈N which converges to 0
and of a family of invariant probability measures {µǫk ; k ∈ N} such that the
sequence µ2n(k) :=

∫
R
x2nµǫk(dx) tends to infinity as k goes to infinity.

Step 1. Since F and V are two polynomial functions, we can write the lth
moment of µǫ in the following form:

µl(k) =

∫
R
xl exp

[
− 2

ǫk

(∑2n
r=1Mr(k)x

r
)]

dx

∫
R
exp

[
− 2

ǫk

(∑2n
r=1 Mr(k)xr

)]
dx

,

with Mr(k) :=
1

r!



V (r)(0) +

2n−r∑

j=0

(−1)j

j!
F (j+r)(0)µj(k)





for all 1 ≤ l ≤ 2n. Let us notice that the highest moment which intervenes in
Mr(k) is the one of degree 2n− r.
Step 2. We prove in this step the existence of an index r such that |Mr(k)|
tends to infinity. Indeed, if such an index does not exist, we can extract a
subsequence of (ǫk)k (we continue to write it (ǫk)k for simplifying) such that
each Ml(k) converges, for 1 ≤ l ≤ 2n. Then, due to the positivity of M2n(k) =
V (2n)(0)+F (2n)(0)

(2n)! , the application of Lemma A.4 in [Tug10] provides the existence

of a subsequence of µ2n(k) which converges to a real as k goes to infinity. This
is impossible, since (µ2n(k)) goes to infinity as k goes to infinity.
Step 3. We now introduce the sequences

ηr(k) := Mr(k) (µ2n(k))
−(1− r

2n) ,

for all 1 ≤ r ≤ 2n. The change of variable x := (µ2n(k))
1
2n y provides

µl(k)

µ2n(k)
l

2n

=

∫
R
yl exp

[
− 2µ2n(k)

ǫk

(∑2n
r=1 ηr(k)y

r
)]

dy

∫
R
exp

[
− 2µ2n(k)

ǫk

(∑2n
r=1 ηr(k)y

r

)]
dy

.

Step 4. By recalling that the highest moment which intervenes in Mr(k) is
the one of degree 2n− r, the Jensen inequality implies the existence of C > 0
such that

|Mr(k)| ≤ Cµ2n(k)
2n−r
2n ,

for all 1 ≤ r ≤ 2n. We obtain the higher-bound |ηr(k)| ≤ C. By considering
a subsequence of (ǫk)k (we continue to write it ǫk for simplifying), we get the
convergence of ηr(k) to some ηr, for all 1 ≤ r ≤ 2n.

Step 5. Besides, the quantity µl(k)µ2n(k)
− l+1

2n tends to 0 as k goes to infinity,
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for all 1 ≤ l ≤ 2n. Indeed, µl(k)µ2n(k)
− l

2n is bounded and µ2n(k)
1
2n goes to

infinity as k goes to infinity. This implies the convergence to 0 as k goes to
infinity of

1

r!



V (r)(0) +

2n−r−1∑

j=0

(−1)j

j!
F (j+r)(0)µj(k)



 (µ2n(k))

−(1− r
2n) ,

for all 1 ≤ r ≤ 2n− 1. Consequently, we have the limit

(−1)2n−l

(2n− l)!
F (2n)(0) lim

k→+∞

µl(k)

µ2n(k)
l

2n

= ηl , (2.16)

for each 1 ≤ l ≤ 2n− 1. Moreover, η2n = V (2n)(0)+F (2n)(0)
(2n)! .

Step 6. According to Lemma A.4 in [Tug10], we can extract a subsequence (we
continue to write it (ǫk)k for simplifying) such that

lim
k→+∞

∫
R
yl exp

[
− 2µ2n(k)

ǫk

(∑2n
r=1 ηr(k)y

r
)]

dy

∫
R
exp

[
− 2µ2n(k)

ǫk

(∑2n
r=1 ηr(k)y

r

)]
dy

=

q∑

s=1

psA
l
s ,

where A1 < · · · < Aq are the localizations of the global minimum of the poly-

nomial function U0(x) :=
∑2n

j=1 ηjx
j and p1 + · · · + pq = 1 with pi ≥ 0 for all

1 ≤ i ≤ q. Hence, we obtain

lim
k→+∞

µl(k)

µ2n(k)
l

2n

=

q∑

s=1

psA
l
s . (2.17)

Step 7. By combining Eq. (2.16) and Eq. (2.17), we obtain

ηl =
(−1)2n−l

(2n− l)!
F (2n)(0)

q∑

s=1

psA
l
s ,

for all 1 ≤ l ≤ 2n− 1. Thus, for all x ∈ R, we have

U0(x) =
F (2n)(0)

(2n)!

q∑

s=1

ps(x−As)
2n +

V (2n)(0)

(2n)
x2n .

Step 8. By definition, U ′
0(Aq) = 0. If q ≥ 2, since Aq − Ai is positive for all

1 ≤ i ≤ q − 1, it implies Aq < 0. By the same argument, we have A1 > 0. This
is impossible.
If q = 1, the equality U ′

0(A1) = 0 implies

F (2n)(0)

(2n− 1)!
(A1 −A1)

2n−1 +
V (2n)(0)

(2n− 1)
A2n−1

1 = 0 ,

so A1 = 0. By using Eq. (2.17) with l := 2n, we obtain limk→∞ 1 = 0. This is
absurd.
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Let us remark that we cannot extend this method to the case deg(V ) <
deg(F ). Indeed, we can proceed similarly from Step 1 to Step 7 but in Step 8,

we need V (2n)(0)
(2n)! to be present in order to obtain A1 = 0. However, if deg(V ) <

deg(F ), in Step 5, this term disappears by taking the limit k → +∞. Then, it
is impossible to conclude immediately to an absurdity.

We now give the claimed thirdness result.

Theorem 2.7. We assume that the confining potential V and the interacting
potential F satisfy the hypotheses (M) and (E). If deg(V ) ≥ deg(F ) =: 2n and
if V ′′(0) + F ′′(0) ≥ 0, Diffusion (I) admits exactly three invariant probabilities
for ǫ small enough.

Proof. Step 1. According to Proposition 2.6, Condition (H) is satisfied. We
apply Lemma 3.2 and Proposition 3.3 in [HT10b] thus each family {µǫ ; ǫ > 0}
of invariant probabilities of Diffusion (I) admits an adherence value. Further-
more, since F ′′(0) + V ′′(0) ≥ 0, Proposition 3.7 and Remark 3.8 in [HT10b]
imply that there are exactly three possible adherence values, δ0, δa and δ−a.
Step 2. According to Theorem 4.5 in [HT10a], Diffusion (I) admits a symmet-
ric invariant probability. Theorem 2.5 implies the uniqueness of this symmetric
invariant probability for ǫ small enough.
Step 3. Corollary 1.9 in [Tug10] provides the existence of at least two asym-
metric invariant probabilities. It now remains to prove that there are exactly
two asymmetric invariant probabilities for ǫ small enough. We know by Step 1
that the possible adherence values of these asymmetric invariant probabilities
are δa and δ−a. We proceed exactly like in Theorem 1.11 in [Tug10] by using
the rate of convergence method from [HT09] (Theorem 1.5) and we obtain the
thirdness of the invariant probabilities for ǫ small enough.

3 Numerical estimations of the phase transitions

It has been proved in previous section that under easily checked hypotheses,
there exist several phases, one where Diffusion (I) admits a unique invariant
probability and one where it admits several ones.
We have a more complete picture if the confining potential V and the interacting
potential F satisfy the hypotheses (M), (E) and (Q).
In this section, we aim to provide simulations of the critical values of ǫ which
separate the different phases. Let us begin with the simplest case, an example
which illustrates Theorem 2.1.

3.1 With quadratic interaction and even confinment

Let us choose V (x) := x4

4 − x2

2 and F (x) := α
2 x

2 with α > 0. By ǫc(α), we
denote the critical value pointed out in Theorem 2.1 and which corresponds to
the phase transition. For all α > 0, ǫc(α) is defined as the solution of Eq. (2.4),
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that here is
∫

R+

{
x2 − 1

2α

}
exp

[
(1− α) x2 − ǫ

2
x4
]
dx = 0 .

By making the change of variable z :=
√

1
2α x, we obtain

E

{
Λ (ǫc(α), α,X)

}
= 0 with Λ (x, y, z) :=

(
z2 − 1

)
exp

[
z2

2y
− x

8y2
z4
]

and L (X) = N (0, 1). In order to approximate ǫc(α), we choose r > 0 and
N ∈ N∗. We take N independent and identically distributed random variables
with common law N (0, 1), (Xi)1≤i≤N . The Monte-Carlo method gives the
following estimation of ǫc(α):

ǫr,Nc (α) := r min

{
p ∈ N∗

∣∣∣
N∑

i=1

Λ (pr, α,Xi) < 0

}
.

After using the weak law of the large numbers, we get the inequalities

lim
N→+∞

ǫr,Nc (α) − r ≤ ǫc(α) ≤ lim
N→+∞

ǫr,Nc (α) .

We take N := 2× 105 and r := 10−4 thus we obtain the following curve.

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

α

ǫ

Figure 1: Critical value, ǫc(α).
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We remark that it is increasing. And, it seems to be almost linear sufficiently
far from 0. In fact, simple computations provide

lim
α→+∞

ǫc(α)

α
=

2

3
and lim

α→0

ǫc(α)

α
= 2 .

Let us notice that this estimation is easy since it only requires the knowledge of
the second derivative of the function ξǫ at the point 0.

3.2 With nonquadratic interaction and even confinment

We now deal with a nonquadratic interacting potential F . There exists a sym-
metric invariant probability. Hence, the study consists in finding the critical
value ǫc such that Diffusion (I) admits another invariant probability if ǫ < ǫc.

In order to simplify, we restrict ourselves to the simplest case. From now on,
we take

V (x) :=
x4

4
− x2

2
and F (x) :=

β

4
x4 with β > 0 .

By Subsection 4.2 in [HT10a], there is a unique symmetric invariant probability
µǫ
0 for all ǫ > 0 and

µǫ
0(dx) = Z−1 exp

[
−2

ǫ

(
1 + β

4
x4 +

3βm2 − 1

2
x2

)]
dx ,

where m2 =

∫
R
x2 exp

[
− 2

ǫ

(
1+β
4 x4 + 3βm2−1

2 x2
)]

dx

∫
R
exp

[
− 2

ǫ

(
1+β
4 x4 + 3βm2−1

2 x2
)]

dx

is unique. A simple computation provides

Υǫ (µ
ǫ
0) = − ǫ

2
log

{∫

R

exp

[
−2

ǫ

(
Uβ(x) +

3β

2
m2x

2

)]
dx

}
− 3β

4
m2

2 ,

with Uβ(x) :=
1+β
4 x4 − x2

2 .

Let us recall that we did not prove that there is a unique phase transition. How-
ever, in the following, when we use the expression “critical value”, we implicitly
refer to

ǫc(β) := min {ǫ0 | ∀ 0 < ǫ < ǫ0, #Sǫ > 1} ,

the smallest critical value.

3.2.1 Low-energy method

We know that the free-energy is nonincreasing along the trajectory (µt)t so if
there exists a probability measure with free-energy less than the one of µǫ

0, we
immediately deduce that there is another invariant probability. We can use this
method in order to minorate the critical value.
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Proposition 3.1. We assume that the confining potential V and the interacting
potential F satisfy the hypotheses (M) and (E). We have the following lower-
bound of the critical value:

ǫc(β) ≥ sup
{
ǫ0 > 0 | ∀ ǫ ∈]0; ǫ0[ , inf

µ∈M8q2

Υǫ (µ) < Υǫ (µ
ǫ
0)
}

(3.1)

where M8q2 is the set of the probability measures µ absolutely continuous with
respect to the Lebesgue measure with density u such that

∫
R
x8q2u(x)dx < +∞.

This result may seem hard to apply since the question still consists in study-
ing an application in a space which dimension is infinity. However, there is
an obvious candidate to test. It has been used in Corollary 1.9 in [Tug10]
for proving the existence of asymmetric invariant probabilities. We define the
probability measure

νǫa(dx) := Z−1
ǫ exp

[
−2

ǫ
(V (x) + F (x− a))

]
dx

where a ∈ R+ is the localization of the global minimum of V . Indeed, νǫa is
close to δa in the small-noise limit. By using a method similar to the one of
Corollary 1.9 in [Tug10], we get the existence of ǫ̂0 > 0 such that for all ǫ ∈]0; ǫ̂0[,
Υǫ (ν

ǫ
a) < Υǫ (µ

ǫ
0).

Example 3.2. We take V (x) := x4

4 − x2

2 and F (x) := β
4x

4 with β > 0. By
ǫ1c (β), we denote the critical value which corresponds to the transition between
{Υǫ (µ

ǫ
0) < Υǫ (ν

ǫ
1)} and {Υǫ (µ

ǫ
0) > Υǫ (ν

ǫ
1)}. We recall

Υǫ (µ
ǫ
0) = − ǫ

2
log

{∫

R

exp

[
−2

ǫ

(
Uβ(x) +

3β

2
m2x

2

)]
dx

}
− 3β

4
m2

2 ,

with Uβ(x) :=
1+β
4 x4 − x2

2 . In the other hand, a simple computation leads to

Υǫ (ν
ǫ
1) =− ǫ

2
log

{∫

R

e−
2
ǫ
(V (x)+F (x−1)−F (1))dx

}
+ βn1 −

3β

2
n2

+ βn3 − βn1n3 +
3β

4
n2
2 ,

with nk :=

∫
R
xk exp

[
− 2

ǫ
(V (x) + F (x− 1))

]
dx∫

R
exp

[
− 2

ǫ
(V (x) + F (x− 1))

]
dx

.

We proceed a simulation similar to the one of Subsection 3.1 with N := 2 ×
105 and we obtain Figure 2, see page 28 (the points which correspond to ǫ1c(β)
described in this method are the circles).

Let us remark that we can do the same with F (x) := β
4x

4 + α
2 x

2.
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3.2.2 Convexity of the free-energy method

Now, we point out the particular link between the function ξǫ (defined in
Eq. (2.1)) and the free-energy of the measures µǫ

m (defined in Eq. (1.1)). Let us
temporarily look at the quadratic interaction case.

Lemma 3.3. We assume that the confining potential V and the interacting
potential F satisfy the hypotheses (M), (E) and (Q).
Thus for all ǫ > 0 and m ∈ R, the following equality holds.

d

dm
Υǫ(µ

ǫ
m) = −F ′′(0) ξǫ(m)

Zǫ(m)
Var (µǫ

m) , (3.2)

with µǫ
m(dx) =

exp
[
− 2

ǫ

(
V (x) + F ′′(0)

2 x2 − F ′′(0)mx
)]

∫
R
exp

[
− 2

ǫ

(
V (y) + F ′′(0)

2 y2 − F ′′(0)my
)]

dy
dx .

Proof. We remark that µǫ
m is absolutely continuous with respect to the Lebesgue

measure. By uǫ
m, we denote its density. Thus, we have

Υǫ (µ
ǫ
m) =

∫

R

(
ǫ

2
log (uǫ

m(x)) + V (x) +
1

2
F ∗ uǫ

m(x)

)
uǫ
m(x)dx

= − ǫ

2
log (Zǫ(m)) + F ′′(0)m

∫

R

xuǫ
m(x)dx − F ′′(0)

2

(∫

R

xuǫ
m(x)dx

)2

.

By noting that
∫
R
xuǫ

m(x)dx = ξǫ(m)+m

Zǫ(m) , we get

Υǫ (µ
ǫ
m) = − ǫ

2
log
[
Zǫ(m)e−

F ′′(0)
ǫ

m2
]
− F ′′(0)

2

ξǫ(m)2

Zǫ(m)2
.

The derivation of this equality provides the result.

Consequently, ξǫ(m) d
dm

Υǫ (µ
ǫ
m) = −F ′′(0)Var(µǫ

m)
Zǫ(m) ξǫ(m)2 ≤ 0. We deduce

that the behavior of the function m 7→ Υǫ (µ
ǫ
m) is directly linked to the sign of

ξǫ. We now provide a link between the critical value and the second derivative
of the function m 7→ Υǫ (µ

ǫ
m) in m = 0.

Proposition 3.4. We assume that the confining potential V and the interacting
potential F satisfy the hypotheses (M), (E) and (Q).

Thus, the critical value ǫc is the only zero of the function ǫ 7→ d2

dm2Υǫ (µ
ǫ
m)
∣∣∣
m=0

.

Furthermore, for all ǫ < ǫc, we have Υǫ

(
µǫ
+

)
= Υǫ

(
µǫ
−
)
< Υǫ (µ

ǫ
0) where µǫ

±
are the two asymmetric invariant probabilities.

Proof. By taking the derivative in Eq. (3.2), we get

d2

dm2
Υǫ (µ

ǫ
m) = −αVar (µǫ

m)

Zǫ(m)
ξ′ǫ(m)− ξǫ(m)

d

dm

[
αVar (µǫ

m)

Zǫ(m)

]
.
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As ξǫ(0) = 0, we obtain

d2

dm2
Υǫ (µ

ǫ
m)
∣∣∣
m=0

= −αVar (µǫ
0)

Zǫ(0)
ξ′ǫ(0) .

We recall that ξ′ǫ(0) = γ0(ǫ) (defined in the proof of Theorem 2.1). According
to Theorem 2.1, the critical value of ǫc is the only solution of γ0(ǫ) = 0. Con-

sequently there is only one value of ǫ such that d2

dm2Υǫ (µ
ǫ
m)
∣∣∣
m=0

= 0 and this

value is ǫc.

When ǫ < ǫc, there are exactly three invariant probabilities, µǫ
+, µǫ

− and µǫ
0.

The symmetry directly implies Υǫ

(
µǫ
+

)
= Υǫ

(
µǫ
−
)
.

By definition of the two asymmetric invariant probabilities,
∫
R
xµǫ

+(dx) is the
only positive zero of the function ξǫ and consequently the only positive critical
point of the function m 7→ Υǫ (µ

ǫ
m) according to Lemma 3.3. Since ǫ < ǫc,

d2

dm2Υǫ (µ
ǫ
m)
∣∣∣
m=0

< 0 which implies that the function m 7→ Υǫ (µ
ǫ
m) reaches its

global minimum in
∫
R
xµǫ

+(dx) and in
∫
R
xµǫ

−(dx). Also, m 7→ Υǫ (µ
ǫ
m) reaches a

local maximum in 0 =
∫
R
xµǫ

0(dx). Immediately, we get Υǫ

(
µǫ
±
)
< Υǫ (µ

ǫ
0).

We now return to the nonquadratic interaction case.

Example 3.5. We take V (x) := x4

4 − x2

2 and F (x) := β
4x

4 with β > 0. Accord-
ing to Eq. (3.1), we get this new lower-bound on the critical value:

ǫc(β) ≥ sup
{
ǫ0 > 0 | ∀ ǫ ∈]0; ǫ0[ , min Sp

(
Jǫ(m

0)
)
< 0
}
,

where Jǫ(m) is the Hessian matrix of the function m := (m1,m2,m3) 7→ Υǫ (µ
ǫ
m)

and m0 := (0,m0
2, 0) is the only point in R3 such that µǫ

m0 is the unique sym-
metric invariant probability. Here, we defined µǫ

m by

µǫ
m(dx) =

exp
[
− 2

ǫ

(
V (x) + β

4x
4 − βm1x

3 + 3β
2 m2x

2 − βm3x
)]

∫
R
exp

[
− 2

ǫ

(
V (y) + β

4 y
4 − βm1y3 +

3β
2 m2y2 − βm3y

)]
dy

dx .

For all k ≥ 0, by m2k we denote the 2kth order moment of µǫ
m0 . After tedious

computations, we find the three eigenvalues of the matrix Jǫ(m
0). The first one

is

λ1(ǫ) :=
9β2

4ǫ

(
m4 −m2

2

)(
1 +

3β

ǫ

(
m4 −m2

2

))

which is positive for all ǫ > 0. The two other eigenvalues λ2(ǫ) and λ3(ǫ) are
the two solutions of the equation

X2 − (m2 +m6)

(
1− 4β

ǫ
m4

)
X + C(ǫ) = 0 ,

with C(ǫ) := m2m6

(
1− 4β

ǫ
m4

)2

−
(
m4 −

2β

ǫ
m2m6 −

2β

ǫ
m2

4

)2

.
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One of the eigenvalue λ2(ǫ) or λ3(ǫ) is negative if and only if one of the two
quantities 1 − 4β

ǫ
m4 or C(ǫ) is negative. Consequently, we can characterize

the critical value ǫc by looking only at the second derivative of the function
m := (m1,m2,m3) 7→ Υǫ (u

m
ǫ ) in (0,m2, 0). This local method thus provides

ǫc(β) ≥ ǫ2c(β) := min

{
ǫ0 > 0 | ∀ 0 < ǫ < ǫ0, min

{
C(ǫ) ; 1− 4β

ǫ
m4

}
< 0

}
.

We proceed a simulation similar to the one of Subsection 3.1 with N := 2× 105

and we obtain the following curve.

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2

β

ǫ

Figure 2: Critical values, ǫ1
c
(β) and ǫ2

c
(β).

The points corresponding to the method described in this paragraph are the
diamonds. The circles denote the points of the previous method.
Let us compare these two simulations. Both are based on the same observation.
If there are several invariant probabilities, the symmetric one is not a minimizer
of the free-energy functional, for sufficiently small ǫ.
The second method, based on the Hessian of this free-energy functional, is local.
Hence, it is more precise. However, the computations are tedious, even in the
simplest example, F (x) := β

4x
4.

3.3 With asymmetric confinment

In this paragraph, the confining potential V does not satisfy (E). However,
we provide the numerical estimations with a quadratic interacting potential,
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F (x) := α
2 x

2 with α > 0.

It remains to study the number of roots of the function χǫ, defined by

χǫ(m) =

∫
R
x exp

[
− 2

ǫ

(
V (x) + α

2 x
2 − αmx

)]
dx∫

R
exp

[
− 2

ǫ

(
V (x) + α

2 x
2 − αmx

)]
dx

−m.

However, it is not as simple as if V is even. Indeed, when the confining potential
V is even, there is an obvious solution, that is 0, then the number of invariant
probabilities directly is linked to the second derivative in this obvious solution.
Here, there is not any obvious solution so we need to know the whole trajectory
of the function.
The simulation is the following. We compute χǫ

(
a1 +

k
M
(a3 − a1)

)
for all 0 ≤

k ≤ M by using the Monte Carlo method. Then, we count the number of
changes of sign. If there is a unique change of sign, we conclude that we are
over the critical value because there is uniqueness of the invariant probability
measure. If there are several changes of sign, we deduce that we are under the
critical value.

We apply this approximation to V (x) := x4

4 + x3

3 − x2

2 and F (x) := α
2 x

2 for
α := j × 0.01 with 1 ≤ j ≤ 120 and ǫ := i × 0.005 with 1 ≤ i ≤ 60. We here
take M := 250. We proceed a simulation similar to the one of Subsection 3.1
with N := 2× 105 and we obtain the following curve.

0

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1 1.2

α

ǫ

Figure 3: Critical value, ǫc(α).

Let us remark that there is uniqueness of the invariant probability if the
interaction is sufficiently small. Indeed, a simple study of the small-noise limit
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of the function χǫ implies that χǫ admits a unique zero if α and ǫ are small
enough.
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