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Abstract

We prove under simple assumptions that there exist several phases
for the self-stabilizing processes in a non-convex landscape. When the
coefficient of diffusion is small, there are at least three stationary measures
and when it is sufficiently large, there is a unique one. The non-uniqueness
in small noise has already been proved in [Herrmann, Tugaut|2010] when
the landscape is symmetric. Here, we will extend it in two directions:
when the confining potential V is not symmetric and when the interacting
potential F is not quadratic. The critical value will also be studied.
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Introduction

We investigate the phase transitions of the McKean-Vlasov diffusion

{
Xt = X0 +

√
ǫBt −

∫ t
0
V ′ (Xs) ds−

∫ t
0
F ′ ∗ us (Xs) ds

us = L (Xs)
. (I)

Here, ∗ denotes the convolution. The particularity of this model is the fact that
the own law of the process intervenes in the equation. Consequently, it is non-
markovian since the past influences the drift through the law ut. We remark
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especially Eµ [f (Xt)] 6=
∫
R
Ex [f (Xt)] dµ(x). We note that Xt and ut depend

on ǫ. We do not write ǫ for simplifying the reading.

The motion of the process is subject to three concurrent forces. The first one is
the gradient of the so-called confining potential V . The second influence is a heat
process (

√
ǫBt)t∈R+

which allows the particle to escape from the stable domains
of V . The third term represents the average tension between two processes of
law ut: F

′ ∗ us (Xs(ω0)) =
∫
Ω
F ′ (Xs(ω0)− Ys(ω)) dP(ω) where (Xt)t and (Yt)t

verify (I) and (Ω,F ,P) is the underlying measurable space.

This kind of processes were introduced by McKean, see [McK67, McK66].

The diffusion Xt in (I) can be seen as one particle in a continuous mean-field
system of an infinite number of particles. The mean-field system that we will
consider is the continuous random dynamical system




X1
t = X1

0 +
√
ǫB1

t −
∫ t
0
V ′
(
X1
s

)
ds− 1

N

∑N
j=1

∫ t
0
F ′
(
X1
s −Xj

s

)
ds

...

X i
t = X i

0 +
√
ǫBit −

∫ t
0
V ′
(
X i
s

)
ds− 1

N

∑N
j=1

∫ t
0
F ′
(
X i
s −Xj

s

)
ds

...

XN
t = XN

0 +
√
ǫBNt −

∫ t
0 V

′
(
XN
s

)
ds− 1

N

∑N
j=1

∫ t
0 F

′
(
XN
s −Xj

s

)
ds

(II)

where the N brownian motions
(
Bit
)
t∈R+

are independents and the N random

values X1
0 , · · · , XN

0 are iid and with law L (X0).
The link between the self-stabilizing process and the mean-field system for N
going to infinity is called the propagation of chaos, see [Szn91] under Lipschitz
properties ; [BRTV98] if V is a constant ; [Mal01] or [Mal03] when both poten-
tials are convex ; [BGV07, DPdH96, DG87] for a sharp estimate ; [CGM08] for
a propagation of chaos uniform with respect to the time in the non-uniformly
strictly convex case.

As proved in [DG87], the empirical law of the mean-field system satisfies a large
deviations principle with a rate function which depends on the law of Diffusion
(I). Consequently, the long-time behavior of L (Xt) provides some consequences
on the exit time for the particle system (II). But, according to [HT10a] and
[Tug10b], if V is even, there are exactly three stationary measures for ǫ small
enough, L (Xt) converges weakly towards a stationary measure and the domain
of attraction of each limiting value is not reduced to a point. The study does
depend on ǫ so we can imagine that there is a phase transition between an area
where Diffusion (I) admits exactly three stationary measures and an other one
where it admits only one invariant probability.

Let us stress that the previous results about the non-uniqueness of the station-
ary measures and its consequences ([HT10a, HT10b, HT09, Tug10b]) deal only
with the symmetric case. However, if we want to consider a potential which
oscillates slowly on the time, we need to study the asymmetrical case.

Let us recall briefly some of the previous results on diffusions like (I). The exis-
tence problem can be solved by two different ways. The first one consists in the
application of a fixed point theorem, see [BRTV98, HIP08]. The other consists
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in a propagation of chaos of a mean-field system, see for example [Mél96].

In [McK67], the author proved that the law of the solution ut admits a C∞-
continuous density ut with respect to the Lebesgue measure for all t > 0. More-
over, he provided the following non-linear parabolic partial differential equation:

∂

∂t
ut =

∂

∂x

{
ǫ

2

∂

∂x
ut + ut

(
V ′ + F ′ ∗ ut

)}
. (III)

Then we can study Equation (III) by probabilistic methods involving (I) or (II),
see [CGM08, Fun84, Mal03]. Reciprocally, equation (III) is a useful tool for de-
scribing the stationary measure(s) and the long-time behavior, see [BRTV98,
BRV98, Tam84, Tam87, Ver06]. In [HT10a], when V is symmetric and non-
convex, by using (III), it has been proved that Diffusion (I) admits at least
three stationary measures under assumptions easy to verify: one is symmetric
and the two others are asymmetric. Moreover, Theorem 3.2 in the same article
states the thirdness of the stationary measures for ǫ small enough if V ′′ is convex
and F ′′ is constant.
The estimates of the small-noise asymptotic of these three stationary measures
are provided in [HT10b, HT09].
In the convex case (including the non-uniformly strictly convex case), Catti-
aux, Guillin and Malrieu proceeded a uniform propagation of chaos in [CGM08]
and obtained the uniqueness of the stationary measure and the convergence.
Nevertheless, according to Proposition 5.17 and Remark 5.18 in [Tug10a], it
is impossible to find a general result of uniform propagation of chaos. In the
non-convex case and under two restrictions (the center of mass is fixed and
V ′′(0) + F ′′(0) > 0), Carrillo, McCann and Villani provided the convergence,
see [CMV03].
The long-time behavior of the law ut in the more difficult non-convex case has
been the subject of [Tug10b]: ut converges weakly towards a stationary mea-
sure if the initial entropy is finite. Furthermore, as written before, the basin of
attraction of each limiting value is not reduced to a point.

In order to detect the type of regime in which Diffusion (I) is that is to say the
uniqueness or the non-uniqueness of the stationary measures, we shall introduce
the following free-energy, already used in [Tug10b]:

Υǫ(u) :=

∫

R

{
ǫ

2
log(u(x)) + V (x) +

1

2
F ∗ u(x)

}
u(x)dx

for all the probability measures u which are absolutely continuous with respect
to the Lebesgue measure ; with a density also denoted by u. We can note that
ut := L (Xt) satisfies this hypothesis for all t > 0.

The paper is organized as follows. After giving the assumptions, we provide
some results about the existence of stationary measures for self-stabilizing pro-
cesses even when V is not symmetric. Particularly, we prove that there is at least
one outlying stationary measure around each wells when ǫ (resp. α) is small
(resp. large) enough, with F (x) := α

2 x
2. Also, we state that there is at least
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one intermediate stationary measure between each pair of outlying stationary
measures. Subsequently, we show that there exists exactly two phases separated
by a particular value of ǫ (characterized as the zero of a Bessel function): one
with a unique stationary measure and one with exactly three ones. Then, we
state the uniqueness of the symmetric stationary measure if V is symmetric by
using a uniform propagation of chaos with respect to the time. This permits
to extend Theorem 1.11 in [Tug10b] to the case deg(V ) = deg(F ) and to the
asymmetric case. Then, we show the uniqueness of the stationary measure if
deg(F ) = 2 if ǫ is large enough which implies the existence of a phase transi-
tion. Finally, we study several methods for finding the critical value of ǫ which
separates the uniqueness phase and the non-uniqueness phase.

Assumptions

We assume the following properties on the confining potential V :

(V-1) V is a polynomial function with deg(V ) ≥ 4.

(V-2) V has exactly 3 critical points: a1, a2, a3. Furthermore, V ′′(ai) 6= 0 for
all 1 ≤ i ≤ 3.

(V-3) V (x) ≥ C4x
4 − C2x

2 for all x ∈ R with C2, C4 > 0.

(V-4) lim
x→±∞

V ′′(x) = +∞ and V ′′(x) > 0 for all x /∈ [a1; a3].

(V-5) Initialization: V (0) = 0.

Moreover, from mow, we assume one of the two following hypotheses:

(V-6) V is even and for all k ≥ 2, V (2k)(0) ≥ 0. We put a := a3. Then a1 = −a
and a2 = 0.

(V-7) There exists a, b, c ∈ R and V̂ which satisfies (V-1)–(V-6) such that

V (x) = V̂ (x− c) + ax+ b for all x ∈ R.

Under (V-6), we know by [HT10a] that (I) admits at least one symmetric sta-
tionary measure. We note also that V ′′(a1) > 0, V ′′(a3) > 0 and V ′′(a2) < 0.

Let us present now the properties under the interaction potential F :

(F-1) F is an even polynomial function and deg(F ) =: 2n ≥ 2.

(F-2) F and F ′′ are convex.

(F-3) Initialization: F (0) = 0.

Sometimes, we will assume this additional hypothesis:

(LIN) F ′ is linear.
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For concluding the introduction, we write the statements of the two main results:

Phase transition: Let V which satisfies (V-1)–(V-6). We can write: V (x) :=

−ϑ1

2 x
2 +

∑q
p=2

ϑp

(2p)!x
2p with ϑp ≥ 0 for all 1 ≤ p ≤ q and ϑ1ϑq > 0. By taking

F (x) := α
2 x

2 with α > 0, there exists ǫc ∈ R such that:

• For all ǫ ≥ ǫc, Diffusion (I) admits a unique stationary measure.

• For all ǫ < ǫc, Diffusion (I) admits exactly three stationary measures.

Moreover, the critical value ǫc is the unique solution of the equation:

∫

R+

(
x2 − 1

2α

)
exp

[
(ϑ1 − α) x2 −

q∑

p=2

2ǫp−1ϑp
(2p)!

x2p

]
dx = 0 .

Thirdness in the small-noise: Let V and F two potentials which satisfy (V-
1)–(V-6) and (F-1)–(F-3). Then, if V ′′(0) + F ′′(0) ≥ 0 and deg(V ) ≥ deg(F ),
Diffusion (I) admits exactly three stationary measures for ǫ small enough.

Uniqueness in the large-noise: Let V satisfying (V-1)–(V-5) and (V-7) and
F (x) := α

2 x
2 with α > 0. There is a unique stationary measure for ǫ large

enough.

1 Existence problem of the stationary measures

The aim of this section is to extend the results of [HT10a]. Particularly, the
existence of stationary measure(s) for Diffusion (I) is examinated when V is not
symmetric. Let us not that all the results in this section are available when V
has more than two wells. The method that we will use is similar to the one in
[HT10a].

1.1 Linear case

Here, we assume (LIN) that is to say F (x) := α
2 x

2 for all x ∈ R with α > 0. The
research of a stationary measure remains in fine to a parametrization problem
on R. Indeed, as noted in Lemma 2.2 in [HT10a], uǫ is invariant if and only if
it verifies

uǫ(x) =
exp

[
− 2
ǫ

(
V (x) + αx

2

2 − αmx
)]

∫
R
exp

[
− 2
ǫ

(
V (y) + αy

2

2 − αmy
)]
dy

and m =

∫

R

xuǫ(x)dx . (1.1)

We introduce three particular functions which will be used in the following:
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Definition 1.1. For all m ∈ R and ǫ > 0, let us define

Zǫ(m) :=

∫

R

exp

[
−2

ǫ

(
V (x) + α

x2

2
− αmx

)]
dx ,

Ψǫ(m) :=

∫

R

(x−m) exp

[
−2

ǫ

(
V (x) + α

x2

2
− αmx

)]
dx (1.2)

and χǫ(m) :=
Ψǫ(m)

Zǫ(m)
.

This function χǫ is exactly the same than the one in [HT10a] but we insist
on the fact that the function Ψǫ defined in [HT10a] is not the one that we defined
here.
Finding a stationary measure to the self-stabilizing diffusion (I) remains to find
a zero to the functions Ψǫ and χǫ.
Let us recall that - according to the assumption (V-2) - the potential V has
exactly three critical points: a1, a2, a3. In the following, when we will deal with
one of these points, we will use the general notation a0 without precising if it is
a wells or not.

Proposition 1.2. Let V verifying the assumptions (V-1)–(V-5) and a0 one of
its critical points such that α+ V ′′(a0) > 0. We assume:

α > 2 sup
x 6=a0

V (a0)− V (x)

(a0 − x)
2 . (1.3)

Then, for all δ ∈]0 ; 1[, there exists ǫ0 > 0 such that for all ǫ ≤ ǫ0, (I) admits a
stationary measure uǫ satisfying

∣∣∣∣
∫

R

xuǫ(x)dx − a0 +
V (3)(a0)

4V ′′(a0) (α+ V ′′(a0))
ǫ

∣∣∣∣ ≤ δ ǫ .

Proof. The proof is exactly the same than the one of Proposition 3.1 in [HT10a].
Consequently, we will just sketch it. Let τ > 0. Inequality (1.3) allows us to
apply Lemma A.3 in [HT10a] to f(x) := −2ατx, n := 1, U(x) := V (x) + α

2 x
2 −

αa0x and µ := 0. By putting τ0 := V (3)(a0)
4V ′′(a0)(α+V ′′(a0))

, for all δ ∈]0; 1[, we get

the following first order approximation:

χǫ
(
a0 − τ0(1± δ)ǫ

)
= ±δ V ′′(a0)

α+ V ′′(a0)
τ0ǫ+ o(ǫ) .

Since χǫ is continuous, we deduce that for ǫ small enough, there exists m satis-
fying χǫ(m) = 0 and

∣∣∣∣m− a0 +
V (3)(a0)

4V ′′(a0) (α+ V ′′(a0))
ǫ

∣∣∣∣ ≤ δ ǫ .
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The proof is achieved by considering the measure

uǫ(x) =
exp

[
− 2
ǫ

(
V (x) + αx

2

2 − αmx
)]

∫
R
exp

[
− 2
ǫ

(
V (y) + αy

2

2 − αmy
)]
dy

.

Definition 1.3. The measure exhibited in the proof of Proposition 1.2 is called
“outlying” around a0. We write it ua0ǫ . However, we do not forget that it is
possible a priori that there are severals outlying stationary measures around a0.

Now, we can investigate the existence of other stationary measures (which
would not be outlying around a wells). Under Conditions (1.3) for a2 and
α+V ′′(a2) > 0, we already know that there exists a stationary measure around
a2. However, we will see that (1.3) is not necessary for getting the existence of
a stationary measure between the wells a1 and a3.

Proposition 1.4. We assume that V satisfies (1.3) for a1 and a3. Then, there
exists δ0 > 0 and ǫ0 > 0 such that for all ǫ ≤ ǫ0, there exists a stationary
measure ua1,a3ǫ defined by m(ǫ) ∈ [a1 + δ0; a3 − δ0] in (1.1).

Proof. We introduce the potential Wm(x) := V (x) + α
2 x

2 − αmx for all m > 0.
We note that for all x ∈ R, Wm(x) = Wa1(x) − α (m− a1)x with Wa1(x) :=

V (x) + α
2 (x− a1)

2 − α
2 a

2
1. Since a1 satisfies (1.3), the function Wa1 reaches its

global minimum in a unique point: a1. Let us show now that for |δ| sufficiently
small, the function Wa1+δ verifies the same property.
Step 1. Let us prove that each family of points where Wa1+δ reaches its
global minimum converges towards a1 for δ converging towards 0. For all
δ ∈ [−1; 1] \ {0}, we consider x(δ) one point where Wa1+δ reaches its global
minimum. So x(δ) is a critical point of Wa1+δ which implies W ′

a1+δ
(x(δ)) = 0

so W ′
a1
(x(δ)) = αδ. Consequently, for all δ ∈ [−1; 1] \ {0},

∣∣W ′
a1
(x(δ))

∣∣ ≤ α
then the family (x(δ))δ∈[−1;;1]\{0} is bounded. Moreover, by definition, for

all x ∈ R, Wa1+δ(x(δ)) ≤ Wa1+δ(x). Particularly, for x = a1, this implies
Wa1(x(δ)) ≤ Wa1+δ(a1) + αδ(x(δ) − a1) which tends towards Wa1(a1). Hence,
we get the convergence of x(δ) towards a1 for δ converging towards 0.
Step 2. Let us prove that the point x(δ) is unique for δ small enough. As
W ′′
a1
(a1) > 0 according to the assumption (1.3), there exists ρ > 0 such that

for all x ∈ [a1 − ρ; a1 + ρ], W ′′
a1
(x) > 0. For δ small enough, we have x(δ) ∈

[a1 − ρ; a1 + ρ]. Consequently, there exists δ1 > 0 such that for all δ ∈ [−δ1; δ1],
all the points where Wa1+δ reaches its global minimum are in the interval
[a1 − ρ; a1 + ρ]. And, as W ′′

a1+δ
(x) =W ′′

a1
(x) > 0 for all x ∈ [a1 − ρ; a1 + ρ], we

deduce that the potential Wa1+δ reaches its global minimum in a unique point.
We call x(δ) this unique point. Moreover, for δ small enough, W ′′

a1+δ
(x(δ)) > 0.

Step 3. Let us show the two inequalities χǫ(a1 + δ) < 0 and χǫ(a1 − δ) > 0 for
δ > 0 and ǫ > 0 small enough. As W ′

a1+δ
(x(δ)) = 0, we have W ′

a1
(x(δ)) = αδ.
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According to W ′′
a1
(a1) > 0, we obtain the following first order approximation:

x(δ) = a1 +
α

W ′′
a1
(a1)

δ + o(δ) .

Consequently:

x(δ) − (a1 + δ) = − V ′′(a1)

α+ V ′′(a1)
δ + o(δ) .

By recalling that W ′′
a1+δ

(x(δ)) > 0 for δ small enough, we deduce that there
exists δ2 < δ1 such that for all δ ∈]0; δ2[, we have x(δ) − (a1 + δ) < 0 and
x(−δ)− (a1 − δ) > 0. By using Lemme A.3 in [HT10a], we get

χǫ(a1 + δ) = x(δ) − (a1 + δ) + o(1)

and χǫ(a1 − δ) = x(−δ)− (a1 − δ) + o(1) .

Then, there exists ǫ1 > 0 such that for all 0 < ǫ < ǫ1, we have χǫ(a1 + δ) < 0
and χǫ(a1 − δ) > 0.
Step 4. In the same way, there exists δ3 > 0 such that for all δ ∈]0; δ3[, there
exists ǫ2 > 0 such that for all 0 < ǫ < ǫ2, we have χǫ(a3 + δ) < 0 and χǫ(a3 −
δ) > 0. Taking δ0 < min

{
δ2; δ3;

a3−a1
2

}
and ǫ0 := min {ǫ1; ǫ2} is sufficient for

achieving the proof. Indeed, for ǫ ≤ ǫ0, we have χǫ(a1 + δ0) < 0 < χǫ(a3 − δ0)
and a1 + δ0 < a3 − δ0. Then, by using the theorem of intermediate values, we
deduce that there exists m(ǫ) ∈ [a1 + δ0; a3 − δ0] such that χǫ(m(ǫ)) = 0.

Definition 1.5. The measure ua1,a3ǫ - non necessary unique - is called inter-
mediate between ua1ǫ and ua3ǫ .

We obtain immediately the following corollary:

Corollary 1.6. Let V which verifies (V-1)–(V-5). We assume:

α > 2max

{
sup
y 6=a1

V (a1)− V (y)

(a1 − y)2
; sup
y 6=a3

V (a3)− V (y)

(a3 − y)2

}
. (1.4)

For ǫ small enough, Diffusion (I) admits at least three stationary measures.

Proof. Inequality (1.4) implies that each a1 and a3 satisfy (1.3). Then, we can
apply Proposition 1.4 with a1 and a3. We obtain the existence of δ1 > 0 and
ǫ1 > 0 such that for all 0 < δ < δ1 and ǫ < ǫ1, the function χǫ vanishes at
m1,3(ǫ) ∈ [a1 + δ; a3 − δ].
Then, we can apply Proposition 1.2 and we know that the system admits one
outlying stationary measure u1ǫ around a1 and another one around a3 with means
verifying m1(ǫ),m3(ǫ) /∈ [a1 + δ; a3 − δ].
Consequently, we have at least three stationary measures: one is intermediate
and two are outlying around the wells.

Particularly, Corollary 1.6 can be applied in the synchronized case that is
to say if α ≥ supx∈R−V ′′(x). Let us remark that these results hold even if the
number of critical points is not three.
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1.2 Nonlinear case

The principal advantage of the linear case is the equivalence of the existence
problem of a stationary measure remains and a parametrization problem in
dimension 1. In the general case, we can make a parametrization in R

2n−1 with
deg(F ) = 2n. Then, we can not use anymore the intermediate values theorem.
Let us note the following result:

Proposition 1.7. Let us assume that V satisfies (V-1)–(V-5) and F verifies
(F-1)–(F-3). Then, for all ǫ > 0, there exists at least one stationary measure.

Proof. The idea consists in proceeding exactly like in Theorem 1.6 in [Tug10b].
By using the fact that the free-energy is nonincreasing and minorated, we prove
that a subsequence of the family (ut)t∈R+ converges towards a stationary mea-
sure which means that there is always at least one stationary measure, even if
deg(F ) ≥ 4. Indeed, Theorem 1.6 in [Tug10b] does not need any symmetric
property on V . Proposition 1.2 in [Tug10b] corresponds to Proposition 2.1 in
[CMV03] (which does not require the symmetry) ; Lemma 1.3 just needs the
lower-bound V (x) ≥ C4x

4 − C2x
2 and Lemma 1.4 and 1.5 are simple conse-

quences of Proposition 1.2 and Lemma 1.3. Furthermore, the proof of Theorem
1.6 in [Tug10b] only uses the growth property of the two potentials and the fact
that they are polynomials.

We present now the extension of Theorem 4.6 in [HT10a].

Theorem 1.8. Let V which verifies the assumptions (V-1)–(V-5) and F which
verifies the assumptions (F-1)–(F-3). We assume also

V (x) + F (x − a0) > V (a0) for all x 6= a0

and
2n−2∑

p=0

∣∣F (p+2)(a0)
∣∣

p!
|a0|p < α+ V ′′(a0) .

where a0 is a wells of V . Then, for ǫ > 0 small enough, the self-stabilizing
equation (I) admits at least one outlying stationary measure around a0.

The proof is similar to the one of Theorem 4.6 in [HT10a]. It consists in
applying Schauder’s fixed point theorem to the system of equations

mk =

∫
R
xk exp

[
− 2
ǫ
Wm(x)

]
dx∫

R
exp

[
− 2
ǫ
Wm(x)

]
dx

with Wm(x) := V (x) + F (x− a0) +

2n−1∑

p=0

(−1)p

p!
(mp − ap0)F

(p)(x) .

2 Uniqueness and Thirdness

In the previous section, we studied the number of stationary measures for self-
stabilizing processes in the small noise. Particularly, we prove that for ǫ small
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enough, there is non-uniqueness of the stationary measures under easy to verify
assumptions. But, we did not study the behavior in the large-noise. Here,
we will show that under the assumptions (V-6) and (LIN), there is a phase
transition: over a critical value of noise, there is a unique stationary measure
and under the same value, there are exactly three ones. Then, we will show
the uniqueness of the stationary measure for ǫ large enough if V satisfies (V-7)
and F satisfies (LIN). Then, in the nonlinear case, we will generalize the results
about the thirdness problem already studied in [HT10a, HT10b, HT09, Tug10b].

2.1 Linear case

In this subsection, we consider: F (x) := α
2 x

2 with α > 0.

2.1.1 If V is even

We assume (V-6). Consequently, the potential V has the form

V (x) := −ϑ1
2
x2 +

q∑

p=2

ϑp
(2p)!

x2p with ϑp ≥ 0 for all 1 ≤ p ≤ q and ϑ1ϑq > 0 .

With the two potentials V and F , we have the following phase transition result:

Theorem 2.1. There exists ǫc ∈ R such that:

• For all ǫ ≥ ǫc, Diffusion (I) admits a unique stationary measure: u0ǫ .

• For all ǫ < ǫc, Diffusion (I) admits exactly three stationary measures:
u0ǫ , u

+
ǫ , u

−
ǫ and ±

∫
R
xu±ǫ (x)dx > 0.

Moreover, the critical value ǫc is the unique solution of the equation:

∫

R+

(
x2 − 1

2α

)
exp

[
(ϑ1 − α) x2 −

q∑

p=2

2ǫp−1ϑp
(2p)!

x2p

]
dx = 0 . (2.1)

Proof. Step 1. We note that the expression of the function F implies:

ψǫ(m) =

∫

R

(x−m) exp

[
2αmx

ǫ

]
exp

[
−2

ǫ

(
V (x) +

α

2
x2
)]
dx

where ψǫ is defined in (1.2). We proceed a series expansion of the function
m 7→ exp

[
2αmx
ǫ

]
and we get - after using the fact that V is even:

ψǫ(m) = 2

∞∑

n=0

Iǫ(2n)

(2n)!

(
2αm

ǫ

)2n+1 [
Iǫ(2n+ 2)

(2n+ 1)Iǫ(2n)
− ǫ

2α

]

with Iǫ(z) :=

∫

R+

xz exp

[
−2

ǫ

(
V (x) +

α

2
x2
)]
dx . (2.2)

10



Step 2. For all n ∈ N, we introduce

γn(ǫ) :=
Iǫ(2n+ 2)

(2n+ 1)Iǫ(2n)
− ǫ

2α
. (2.3)

An integration by parts provides

(2n+ 1)Iǫ(2n) =
2

ǫ

∫

R

(V ′(x) + αx) x2n+1 exp

[
−2

ǫ

(
V (x) +

α

2
x2
)]
dx

=
2

ǫ

{
(α− ϑ1) Iǫ(2n+ 2) +

q∑

p=2

ϑp
(2p− 1)!

Iǫ(2n+ 2p)

}

after using the particular expression of V . Consequently, the expression γn(ǫ)
becomes

γǫ(n) =
ǫ

2

{
α− ϑ1 +

q∑

p=2

ϑp
(2p− 1)!

Iǫ(2n+ 2p)

Iǫ(2n+ 2)

}−1

− ǫ

2α
.

Step 3. We will prove that the sequence (γn(ǫ))n∈N
is nonincreasing for all ǫ >

0. It is sufficient to prove that the sequences
(
Iǫ(2n+2p)
Iǫ(2n+2)

)
n∈N

are nondecreasing

for all p ∈ J2; qK. In a more general way, we will prove that for all z > 0,

the function Ξz defined by Ξz(x) = Iǫ(x+z)
Iǫ(x)

is nondecreasing. The derivation

provides:

Ξ′
z(x) = Ξz(x)

(
I ′ǫ(x+ z)

Iǫ(x+ z)
− I ′ǫ(x)

Iǫ(x)

)
.

Since Ξz(x) ≥ 0 for all x ∈ R+ and z ∈ R+, it remains now to prove that the

application ζ(y) :=
I′ǫ(y)
Iǫ(y)

is nondecreasing. We apply the derivation:

ζ′(y) =
I ′′ǫ (y)

Iǫ(y)
−
(
I ′ǫ(y)

Iǫ(y)

)2

=

∫
R+
xy (log(x))2 exp

[
− 2
ǫ

(
V (x) + α

2 x
2
)]
dx

∫
R+
xy exp

[
− 2
ǫ

(
V (x) + α

2 x
2
)]
dx

−
(∫

R+
xy (log(x)) exp

[
− 2
ǫ

(
V (x) + α

2 x
2
)]
dx

∫
R+
xy exp

[
− 2
ǫ

(
V (x) + α

2 x
2
)]
dx

)2

.

By applying the Cauchy-Schwarz inequality, we obtain ζ′(y) ≥ 0 for all y >
0. Then, we get the previous claim that is to say the sequence (γn(ǫ))n∈N

is
nonincreasing for all ǫ > 0.

Step 4: In order to prove that γn(ǫ) < 0 for n large enough, we compute ψǫ(a):

ψǫ(a) = e
αa2

ǫ

∫

R

(x− a) exp

[
−2

ǫ

(
V (x) +

α

2
(x− a)2

)]
dx

= e
αa2

ǫ

∫

R

y exp

[
−2

ǫ

(
V (y + a) +

α

2
y2
)]
dy

= e
αa2

ǫ

∫

R+

ye−
α
ǫ
y2
{
exp

[
−2

ǫ
V (y + a)

]
− exp

[
−2

ǫ
V (y − a)

]}
dy .

11



By using the particular expression of V , we get:

V (y + a)− V (y − a) = 2

q∑

p=1

V (2p)(0)

(2p)!

p−1∑

k=0

C2k+1
2p y2k+1a2p−2k−1

= 2

q∑

p=2

V (2p)(0)

(2p)!

p−1∑

k=1

C2k+1
2p y2k+1a2p−2k−1 + 2

q∑

p=1

V (2p)(0)

(2p)!
(2p− 1)ya2p−1 .

The last term is equal to V ′(a) = 0. Since V (2p)(0) ≥ 0 for all 2 ≤ p ≤ q, we
deduce that V (y + a) ≥ V (y − a) for all y ≥ 0. Furthermore, since deg(V ) > 2,
we get the inequality V (y + a) > V (y − a) excepting a finite number of points.
Consequently, ψǫ(a) < 0. We deduce there exists n ∈ N such that γn(ǫ) < 0.

Step 5. We put nǫ := min
{
n
∣∣∣ γn(ǫ) ≤ 0

}
. By Step 3, we know that for all

n ≥ nǫ, we have γn(ǫ) ≤ 0 and for all n < nǫ (if nǫ = 0, {n ∈ N | n < nǫ} = ∅),
we have γn(ǫ) > 0. Consequently, we can write:

ψǫ(m) =

nǫ−1∑

n=0

Cn(ǫ)m
2n+1 −

+∞∑

n=nǫ

Cn(ǫ)m
2n+1 (2.4)

with Cn(ǫ) := 2 Iǫ(2n)(2n)!

(
2α
ǫ

)2n+1 |γn(ǫ)| ≥ 0. We take the derivative then we

divide by m2nǫ :

ψ′
ǫ(m)

m2nǫ
=

{
nǫ−1∑

n=0

(2n+ 1)Cn(ǫ)m
2n−2nǫ −

+∞∑

n=nǫ

(2n+ 1)Cn(ǫ)m
2n−2nǫ

}
(2.5)

Since the functions m 7→ m2n−2nǫ (resp. m 7→ −m2n−2nǫ) are decreasing for all
n ≤ nǫ − 1 (resp. n ≥ nǫ), we deduce that ψ′

ǫ vanishes at most one time on R+

and the same holds for ψǫ (by dividing (2.4) by m2nǫ+1).

Step 6. By (2.4) and (2.5), we deduce that the behavior of the function m 7→
ψǫ(m) depends directly of ψ′

ǫ(0):

• If ψ′
ǫ(0) > 0 that is to say if γ0(ǫ) > 0, then there exists xǫ such that

ψ′
ǫ(x) ≥ 0 on [0;xǫ] and ψ′

ǫ(x) ≤ 0 on [xǫ; +∞[. Since ψǫ(0) = 0 by
symmetry of the potential V , we deduce that the function ψǫ is increasing
on [0;xǫ] then decreasing on [xǫ; +∞[. We deduce that there exists mǫ > 0
such that ψǫ(mǫ) = 0 and it is unique on R

∗
+. This implies the existence

of the two asymmetric stationary measures.

• If ψ′
ǫ(0) ≤ 0 that is to say if γ0(ǫ) ≤ 0, then γn(ǫ) ≤ 0 for all n ∈ N. We

deduce that the function ψǫ is decreasing on R that implies the uniqueness
of the zero for the function ψǫ and consequently the uniqueness of the
stationary measure for the self-stabilizing diffusion (I).
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Step 7. Now, we will investigate on the sign of γ0(ǫ):

γ0(ǫ) :=
Iǫ(2)

Iǫ(0)
− ǫ

2α

= ǫ

{∫
R+
y2 exp

[
− 2
ǫ

(
V (

√
ǫy) + αǫ

2 y
2
)]
dy

∫
R+

exp
[
− 2
ǫ

(
V (

√
ǫy) + αǫ

2 y
2
)]
dy

− 1

2α

}

by making the change of variable x :=
√
ǫy. The computation yields

γ0(ǫ) = ǫ





∫

R+

x2 exp

[
(ϑ1 − α)x2 −

q∑

p=2

2ǫp−1ϑp
(2p)!

x2p

]
dx

∫

R+

exp

[
(ϑ1 − α) x2 −

q∑

p=2

2ǫp−1ϑp
(2p)!

x2p

]
dx

− 1

2α





=: ǫTV,F (ǫ) .

Since ϑp ≥ 0 for all 1 ≤ p ≤ q, we deduce - after using the Jensen’s inequality
- that the application TV,F is decreasing. Consequently, there exists a unique
ǫc which depends only on the parameters of V and F such that γ0(ǫ) = 0.
Moreover, for all ǫ ≥ ǫc, we have γ0(ǫ) ≤ 0 which implies the uniqueness of the
stationary measure. And, for all ǫ < ǫc, we have γ0(ǫ) > 0 which implies the
thirdness of the stationary measures.

An immediate consequence is the convergence towards the unique stationary
measure if the initial free-energy is finite for all ǫ ≥ ǫc(α) according to Theorem
1.6 in [Tug10b].

2.2 If V is asymmetric

Now, we will show that there is a phase transition even if V is asymmetric.
Indeed, if α is large enough, we know that there is non-uniqueness of the sta-
tionary measures in the small-noise case. We will consider the large-noise one
and we will see that the competition between the three different forces in (I) is
dominated by the heat process if the coefficient diffusion

√
ǫ is sufficiently large.

Proposition 2.2. We assume that V satisfies (V-1)–(V-5) and (V-7). For all
α ≥ 0, there exists a critical value ǫ0(α) such that for all ǫ > ǫ0(α), Diffusion
(I) admits a unique stationary measure.

Proof. We recall that the number of stationary measures for Diffusion (I) is the
number of roots of the function χǫ:

χǫ(m) =

∫
R
x exp

[
− 2
ǫ

(
V (x) + α

2 x
2 − αmx

)]
dx∫

R
exp

[
− 2
ǫ

(
V (x) + α

2 x
2 − αmx

)]
dx

−m.

According to the hypothesis (V-7), there exists V̂ which satisfies (V-1)–(V-6)

such that V (x) = V̂ (x − c) + ax + b with a, b, c ∈ R. We apply the change of
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variable x := y+ c and we obtain χǫ(m) = χ̂ǫ(m̂)− a
α

with m̂ := m− c− a
α
∈ R

and χ̂ǫ is the function defined by

χ̂ǫ(m) :=

∫
R
y exp

[
− 2
ǫ

(
V̂ (y) + α

2 y
2 − αmy

)]
dy

∫
R
exp

[
− 2
ǫ

(
V̂ (y) + α

2 y
2 − αmy

)]
dy

−m.

In the same way, we define

ψ̂ǫ(m) :=

∫

R

(y −m) exp

[
−2

ǫ

(
V̂ (y) +

α

2
y2 − αmy

)]
dy

and Ẑǫ(m) :=

∫

R

exp

[
−2

ǫ

(
V̂ (y) +

α

2
y2 − αmy

)]
dy .

We deduce d
dm
χ̂ǫ(m) = ξǫ(m)

Ẑǫ(m)2
with ξǫ(m) := ψ̂′

ǫ(m)Ẑǫ(m)− ψ̂ǫ(m)Ẑ ′
ǫ(m). The

function ξǫ is even and analytic so it is sufficient to prove that ξ
(2n)
ǫ (0) ≤ 0 for

all n ∈ N and that at least one of the ξ
(2n)
ǫ is negative. Indeed, this would imply

that χ̂ǫ (then χǫ) is decreasing which means that there is a unique stationary
measure. The derivation provides:

ξ(2n)ǫ (0) =

2n∑

k=0

Ck2nψ̂
(k+1)
ǫ (0)Ẑ(2n−k)

ǫ (0)−
2n∑

k=0

Ck2nψ̂
(k)
ǫ (0)Ẑ(2n+1−k)

ǫ (0)

=ψ̂(2n+1)
ǫ (0)Ẑǫ(0) + (1− 2n)ψ̂′

ǫ(0)Ẑ
(2n)
ǫ (0) (2.6)

+
n−1∑

k=1

(
C2k

2n − C2k+1
2n

)
ψ̂(2k+1)
ǫ (0)Ẑ(2n−2k)

ǫ (0) .

As seen in the proof of Theorem 2.1, for all α ∈ R+ and k ∈ N, we have

ψ̂(2k)
ǫ (0) = 2Iǫ(2k)

(
2α

ǫ

)2k+1

(2k + 1)γk(ǫ) (2.7)

where Iǫ(2k) and γk(ǫ) are defined respectively in (2.2) and (2.3). A simple
computation provides

Ẑ(2k)
ǫ (0) = 2Iǫ(2k)

(
2α

ǫ

)2k

. (2.8)

By combining (2.6), (2.7) and (2.8), we obtain

ξ(2n)ǫ (0) =4

(
2α

ǫ

)2n+1 {
Iǫ(2n)Iǫ(0) [(2n+ 1)γn(ǫ)− (2n− 1)γ0(ǫ)]

+

n−1∑

k=1

C2k
2n(4k + 1− 2n)Iǫ(2k)Iǫ(2n− 2k)γk(ǫ)

}
.
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As proved in Theorem 2.1, there exists ǫc such that for all α ≥ αc, we have
γ0(ǫ) ≤ 0. As the sequence (γn(ǫ))n∈N

is nonincreasing, we deduce that the se-
quence (|γn(ǫ)|)n∈N

is nondecreasing. We note that for all k > n
2 , |4k+1−2n| >

|2n + 1 − 4k|. Consequently, for all k > n
2 , (4k + 1 − 2n)γk(ǫ) + (2n + 1 −

4k)γn−k(ǫ) < 0. Also, if k = n
2 , we have (4k + 1 − 2n)γk(ǫ) = γk(ǫ) < 0. This

implies ξ
(2n)
ǫ (0) ≤ 0.

The function χ̂′
ǫ(m) is then nonpositive. We deduce that the function χ̂ǫ is non-

increasing. Moreover, if ξ
(2n)
ǫ (0) = 0 for all n ∈ N, then χ̂ǫ would be a constant

which is impossible since limm→±∞ χ̂ǫ(m) = ∓∞. Then, χ̂ǫ is decreasing on R.
Consequently, the equation χ̂ǫ(m)−C has at more one solution for all C ∈ R. It
yields that χǫ has one root or no root. There is at least one stationary measure
for all ǫ > 0 so there exists a critical value ǫ0(α) such that for all ǫ > ǫ0(α),
Diffusion (I) admits exactly one stationary measure.

Remark 2.3. By using a method similar to the one of [Tug10b], we could prove
the convergence towards this unique stationary measure.

Proposition 2.2 implies that there is a phase transition since there is exactly
one stationary measure for ǫ large enough and several ones for ǫ sufficiently
small.

2.3 Nonlinear case

We assume on this paragraph that deg(F ) ≥ 4 and that V satisfies the as-
sumptions (V-1)–(V-6). We will extend Theorem 3.2 in [HT10a]. One of the
difficulty will be the behavior of the symmetric stationary measure(s) in the
threshold between the synchronized case and the non-synchronized one that is
to say when V ′′(0) + F ′′(0) = 0. For doing this, we will use a particles method
involving a propagation of chaos.

Proposition 2.4. Let V and F two potentials which satisfy (V-1)–(V-6) and
(F-1)–(F-3).Then, for ǫ small enough, Diffusion (I) admits a unique symmetric
stationary measure.

Proof. Step 1. Since the potential V is symmetric and verifies V (4) ≥ 0, the
inequality V ′′(0) + F ′′(0) 6= 0 implies the uniqueness of the stationary measure
for ǫ small enough according to Theorem 1.2 and Theorem 1.3 in [HT09].

Step 2. We consider now the case V ′′(0) + F ′′(0) = 0. Let V0(x) := V (x) +
F ′′(0)

2 x2 and F0(x) := F (x) − F ′′(0)
2 x2. If the initial law u0 is symmetric, then

using V0 (resp. F0) instead of V (resp. F ) in (I) does not change anything.

Let u
(1)
ǫ and u

(2)
ǫ two symmetric stationary measures of Diffusion (I). We con-
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sider the two mean-field systems:

X i
t = X i

0 +
√
ǫBit −

∫ t

0

V ′
0 (X

i
s)ds−

∫ t

0

1

N

N∑

j=1

F ′
0(X

i
s −Xj

s )ds

and Y it = Y i0 +
√
ǫBit −

∫ t

0

V ′
0(Y

i
s )ds−

∫ t

0

1

N

N∑

j=1

F ′
0(Y

i
s − Y js )ds

where the 2N initial random values are independents. Furthermore, we assume

L(X i
0) = u

(1)
ǫ and L(Y i0 ) = u

(2)
ǫ . Also, the N brownian motions are indepen-

dents. We define also the self-stabilizing processes which are classical since the
two initial laws are invariant probabilities of (I):

X i
t = X i

0 +
√
ǫBit −

∫ t

0

V ′
0 (X

i
s)ds−

∫ t

0

F ′
0 ∗ u(1)ǫ (X i

s)ds

and Y ǫ,it = Y i0 +
√
ǫBit −

∫ t

0

V ′
0(Y

i
s )ds−

∫ t

0

F ′
0 ∗ u(2)ǫ (Y is )ds .

The triangular inequality provides

E

{∣∣∣Y it −X i
t

∣∣∣
2
}

≤ 3E

{∣∣∣Y it − Y it

∣∣∣
2
}
+ 3E

{∣∣∣X i
t −X i

t

∣∣∣
2
}

+ 3E
{∣∣Y it −X i

t

∣∣2
}
.

Step 3. A propagation of chaos uniform with respect to the time holds by using
the same method than the one in [CGM08]. Consequently, it yields:

E

{∣∣∣X i
t −X i

t

∣∣∣
2
}

≤M N−ρ and E

{∣∣∣Y it − Y it

∣∣∣
2
}

≤M N−ρ

with ρ ∈]0; 1[ and M > 0.

Step 4. The results in [BBCG08] permit to obtain the Poincaré inequality in
(II) which implies

lim
t−→+∞

E





1

N

N∑

j=1

∣∣X i
t − Y it

∣∣2


 = 0 .

Step 5. By definition of the Wasserstein distance, we have W2

(
u
(1)
ǫ ;u

(2)
ǫ

)2
≤

E

{∣∣∣Y it −X i
t

∣∣∣
2
}

for all t ∈ R+ and for all 1 ≤ i ≤ N . It yields

W2

(
u(1)ǫ ;u(2)ǫ

)2
≤ 6MN−ρ + 3E





1

N

N∑

j=1

∣∣X i
t − Y it

∣∣2


 .

By taking the limits of t going to infinity then of N tending to infinity, we

deduce immediatly W2

(
u
(1)
ǫ ;u

(2)
ǫ

)2
= 0 which implies u

(1)
ǫ = u

(2)
ǫ .
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We will now extend Theorem 3.2 in [HT10a] by proving the thirdness of the
stationary measures for ǫ small enough.

Theorem 2.5. Let V and F two potentials which satisfy (V-1)–(V-6) and (F-
1)–(F-3). If deg(V ) ≥ deg(F ) and V ′′(0) + F ′′(0) ≥ 0, Diffusion (I) admits
exactly three stationary measures for ǫ small enough.

Proof. If V ′′(0) + F ′′(0) > 0 and deg(V ) > deg(F ), it is a consequence of The-
orem 1.11 in [Tug10b].

Step 1. If deg(V ) > deg(F ), each family of stationary measures (uǫ)ǫ>0 sat-
isfies the condition (H) introduced in [HT10b] which means that the family(∫

R
x2nuǫ(x)dx

)
ǫ>0

is bounded where 2n := deg(F ). We will prove that it is

true even if deg(V ) = 2n. We will proceed a reducto ad absurdum by assuming
the existence of a decreasing sequence (ǫk)k∈N which converges towards 0 such
that the sequence µ2n(k) :=

∫
R
x2nuǫk(x)dx tends towards +∞.

Step 1.1. Since F and V are two polynomials functions, we can write the l-th
moment of uǫ in the following form:

µl(k) =

∫
R
xl exp

[
− 2
ǫk

(∑2n
r=1Mr(k)x

r
)]
dx

∫
R
exp

[
− 2
ǫk

(∑2n
r=1 Mr(k)xr

)]
dx

,

with Mr(k) :=
1

r!



V

(r)(0) +

2n−r∑

j=0

(−1)j

j!
F (j+r)(0)µj(k)





for all 1 ≤ l ≤ 2n. The highest moment which intervenes in Mr(k) is the one
of degree 2n− r.
Step 1.2. Let us recall that µ2n(k) tends towards +∞. If all the Mr(k)
were bounded then - since the coefficient M2n(k) is positive - µ2l(k) would be
bounded for all l ∈ N. We deduce that there exists an index r such that Mr(k)
tends towards +∞ or −∞. We introduce the sequence

ηr(k) := Mr(k) (µ2n(k))
−(1− r

2n )

for all 1 ≤ r ≤ 2n. The change of variable x := (µ2n(k))
1
2n y provides

µl(k)

µ2n(k)
l

2n

=

∫
R
yl exp

[
− 2µ2n(k)

ǫk

(∑2n
r=1 ηr(k)y

r
)]
dy

∫
R
exp

[
− 2µ2n(k)

ǫk

(∑2n
r=1 ηr(k)y

r

)]
dy

.

Step 1.3. The Jensen inequality implies the existence of C > 0 such that
|Mr(k)| ≤ Cµ2n(k)

2n−r
2n for all 1 ≤ r ≤ 2n− 1. We obtain the following higher-

bound: |ηr(k)| ≤ C. By considering a subsequence of (ǫk)k (we continue to
write it ǫk for simplicity), we get the convergence of ηr(k) towards ηr. Besides,

the quantity µl(k)

µ2n(k)
l+1
2n

tends towards 0 for all 1 ≤ l ≤ 2n. Consequently, we
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have the following limit:

(−1)2n−l

(2n− l)!
F (2n)(0) lim

k→+∞

µl(k)

µ2n(k)
l

2n

= ηl (2.9)

for all 1 ≤ l ≤ 2n.
Step 1.4. According to Lemma A.4 in [Tug10b], we can extract a subsequence
(we continue to write it ǫk for simplicity) such that

lim
k→+∞

∫
R
yl exp

[
− 2µ2n(k)

ǫk

(∑2n
r=1 ηr(k)y

r
)]
dy

∫
R
exp

[
− 2µ2n(k)

ǫk

(∑2n
r=1 ηr(k)y

r

)]
dy

=

q∑

s=1

psA
l
s

where A1 < · · · < Aq are the locations of the global minimum of the polynomial

function U0(x) :=
∑2n

j=1 ηjx
j + V (2n)(0)

(2n) x2n and p1+ · · ·+ pq = 1 with pi ≥ 0 for

all 1 ≤ i ≤ q. By using (2.9), we obtain:

ηl =
(−1)2n−l

(2n− l)!
F (2n)(0)

q∑

s=1

psA
l
s .

Step 1.5. Then, we have U0(x) =
F (2n)(0)
(2n)!

∑q
s=1 ps(x−As)2n+

V (2n)(0)
(2n) x2n. By

definition, U ′
0(Aq) = 0. If q ≥ 2, since Aq−Ai > 0 for all 1 ≤ i ≤ q− 1, it yields

Aq < 0. By the same way, we have A1 > 0. This is impossible. If q = 1, we
have immediately A1 = 0 then η2n = 0 which implies F (2n)(0) = 0. This is also
impossible.
Step 1.6. We deduce that each family of stationary measures satisfies the con-
dition (H). According to Lemma 3.2 and Proposition 3.3 in [HT10b], this implies
that each family of stationary measures admits an adherence value in the small-
noise limit. Furthermore, since F ′′(0)+V ′′(0) ≥ 0, Proposition 3.7 and Remark
3.8 in [HT10b] imply that there are exactly three possible adherence values: δ0,
δa and δ−a with −a = a1.

Step 2. According to Theorem 4.5 in [HT10a], Diffusion (I) admits at least
one symmetric stationary measure. Theorem 2.4 implies the uniqueness of the
symmetric stationary measure for ǫ small enough. Corollary 1.9 in [Tug10b]
provides the existence of at least two asymmetric stationary measures. It re-
mains now to prove that there are exactly two asymmetric stationary measures
for ǫ small enough. We proceed exactly like in Theorem 1.11 in [Tug10b] by
using the rate of convergence method from [HT09] (Theorem 1.5) and we obtain
the thirdness of the stationary measures for ǫ small enough.

3 Simulations of the phase transitions

We saw in Theorem 2.1 that there exists a continuous transition between two
phases (uniqueness and thirdness of the stationary measures) when V satisfies
(V-1)–(V-6) and F (x) := α

2 x
2 with α > 0. Before studying the general case, we

provide some example with the potential V (x) := x4

4 − x2

2 .
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Example 3.1. Let us choose V (x) := x4

4 − x2

2 and F (x) := α
2 x

2. We will call
ǫc(α) the critical value which corresponds to the phase transition. According to
Theorem 2.1, for all α > 0, ǫc(α) is defined as the solution of (2.1) which is
equivalent to

∫

R+

{
x2 − 1

2α

}
exp

[
(1− α) x2 − ǫ

2
x4
]
dx = 0 .

By making the change of variable z :=
√

1
2α x, we get:

E

{
ξ (ǫc(α), α,X)

}
= 0 with ξ (x, y, z) :=

(
z2 − 1

)
exp

[
z2

2y
− x

8y2
z4
]

and L (X) = N (0, 1). In order to simulate ǫc(α), we choose r > 0 and N ∈ N
∗.

We want N large and r small. We take N random variables independents and
identically distributed by the law N (0, 1): (Xi)1≤i≤N . The Monte-Carlo method
provides the following estimation of ǫc(α):

ǫr,Nc (α) := r min

{
p ∈ N

∗
∣∣∣

N∑

i=1

ξ (pr, α,Xi) < 0

}
.

We get this inequality after using the weak law of the large numbers:

lim
N→+∞

ǫr,Nc (α) − r ≤ ǫc(α) ≤ lim
N→+∞

ǫr,Nc (α) .

We take N := 2× 105 and r := 10−4 then we obtain the following curve of the
critical value:

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1

Figure 1: Critical value ǫc (α)

We remark that it is increasing. And, it seems to be almost linear sufficiently
far from 0. In fact, simple computations provide:

lim
α→+∞

ǫc(α)

α
=

2

3
and lim

α→0

ǫc(α)

α
= 2 .
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3.1 Under hypothesis (V-6) in the non-linear case

In the previous results about the non-uniqueness of the stationary measures, we
assumed that ǫ is small enough. We can wonder if there exists a threshold over
which there is uniqueness of the invariant probability.

In the simple case with deg(V ) = 4 and deg(F ) = 2, we just see that we can,
as predicted by Theorem 2.1. We will now deal with a non-linear interaction
function F ′. As there is always a symmetric stationary measure, the study
remains to find the critical value ǫc such that Diffusion (I) admits at least two
stationary measures if ǫ < ǫc.

3.1.1 Low-energy method

We know by Proposition 2.4 that there is a unique symmetric stationary measure

for ǫ small enough. We introduce ǫ
(0)
c the largest value (maybe equal to +∞)

such that there is a unique symmetric stationary measure under this value. For

ǫ < ǫ
(0)
c , let u0ǫ this unique symmetric stationary measure.

Proposition 3.2. Let a potential V which verifies (V-1)–(V-6) and a potential
F which verifies (F-1)–(F-3). We have the following lower-bound of the critical
value:

ǫc ≥ sup
{
ǫ0 ∈]0, ǫ(0)c [ | ∀ ǫ ∈]0; ǫ0[ , inf

u∈M8q2

Υǫ (u) < Υǫ
(
u0ǫ
)}

(3.1)

where M8q2 is the set of all the measures u which admits a C∞-continuous

density u such that
∫
R
x8q

2

u(x)dx < +∞, with 2q := max {deg(V ), deg(F )}.

Proof. Let ǫ0 ∈]0; ǫ(0)c [ such that inf
u∈M8q2

Υǫ (u) < Υǫ
(
u0ǫ
)

for all ǫ ∈]0; ǫ0[.
We use then the same argument than the one in the proof of Corollary 1.9 in
[Tug10b]. Let ǫ ∈]0; ǫ0[. Since inf

u∈M8q2

Υǫ (u) < Υǫ
(
u0ǫ
)
, there exists vǫ ∈ M8q2

such that Υǫ (vǫ) < Υǫ
(
u0ǫ
)

and vǫ 6= u0ǫ . We consider now the self-stabilizing
process (Xt)t∈R+

starting with X0 which has the law vǫ. We call ut the law of

Xt for all t ∈ R+. By Theorem 1.6 in [Tug10b], we know that a subsequence
of ut converges towards a stationary measure u∞ when t tends to +∞. Propo-
sition 2.5 in [Tug10b] implies Υǫ (u∞) ≤ lim inf

t→+∞
Υǫ (ut) ≤ Υǫ (vǫ) < Υǫ

(
u0ǫ
)
.

Since Υǫ (u∞) < Υǫ
(
u0ǫ
)
, we deduce that the stationary measure u∞ is not the

symmetric one. Consequently, for all ǫ < ǫ0, Diffusion (I) admits at least two
stationary measures. We deduce that ǫ0 ≤ ǫc.

This result may seem hard to apply since the question still remains to the
study of an application in a space different from R. There is in fact an obvious
candidate for vǫ. It is the one used in Corollary 1.9 in [Tug10b] for proving the
existence of asymmetric stationary measures:

vaǫ (x) := Z−1 exp

[
−2

ǫ
(V (x) + F (x− a))

]
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where a ∈ R+ satisfies V (a) = infx∈R V (x). Indeed, vaǫ is closed to the outlying
stationary measure uaǫ since the two measures converge towards δa in the small-
noise limit. By using a method similar to the one of Corollary 1.9 in [Tug10b],
we get the existence of ǫ̂0 > 0 such that for all ǫ ∈]0; ǫ̂0[, Υǫ (vaǫ ) < Υǫ

(
u0ǫ
)
.

We consider the following example:

Example 3.3. Let V (x) := x4

4 − x2

2 and F (x) := β
4x

4 + α
2 x

2 with β > 0 and
α ≥ 0. We call ǫc (α, β) the critical value which corresponds to the transition
between

{
Υǫ
(
u0ǫ
)
< Υǫ

(
v1ǫ
)}

and
{
Υǫ
(
u0ǫ
)
> Υǫ

(
v1ǫ
)}

. By Subsection 4.2 in
[HT10a], there is a unique symmetric stationary measure u0ǫ for all ǫ > 0:

u0ǫ(x) = Z−1 exp

[
−2

ǫ

(
1 + β

4
x4 +

α+ 3βm2 − 1

2
x2
)]

where m2 =

∫
R
x2 exp

[
− 2
ǫ

(
1+β
4 x4 + α+3βm2−1

2 x2
)]
dx

∫
R
exp

[
− 2
ǫ

(
1+β
4 x4 + α+3βm2−1

2 x2
)]
dx

is unique. A simple computation provides then

Υǫ
(
u0ǫ
)
= − ǫ

2
log

{∫

R

exp

[
−2

ǫ

(
Uα,β(x) +

3β

2
m2x

2

)]
dx

}
− 3β

4
m2

2

with Uα,β(x) :=
1+β
4 x4 + α−1

2 x2. In the other hand, we have:

Υǫ
(
v1ǫ
)
= − ǫ

2
log

{∫

R

e−
ǫ
2 (V (x)+F (x−1)−F (1))dx

}
+ (α+ β)n1 −

3β

2
n2

+ βn3 −
α

2
n2
1 − βn1n3 +

3β

4
n2
2

with nk :=

∫
R
xk exp

[
− 2
ǫ
(V (x) + F (x− 1))

]
dx∫

R
exp

[
− 2
ǫ
(V (x) + F (x− 1))

]
dx

.

We take N := 2× 105 and we obtain the following surface:

0.2 0.4 0.6 0.8 1 1.2 1.4

0.20.40.60.811.21.4
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1.4

αβ

ǫ

Figure 2: Critical value ǫc (α, β)
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Remark 3.4. Both simulations of Figure 2, Figure 3 and Figure 4 are saturated
by the hyperplan (ǫ = 1.5) in order to compare the different methods.

We remark on Figure 2 that the provided value is increasing in the two
variables and seems linear sufficiently far from (0, 0).

3.1.2 Convexity of the free-energy method

Now, we will point out the particular link between the function ψǫ and the free-
energy of the system.

If the function F ′ is linear, we know that any stationary measure of Diffusion
(I) has the following form:

u(m)
ǫ = Z−1 exp

[
−2

ǫ

(
V (x) +

α

2
x2 − αmx

)]
.

For all ǫ > 0, we introduce the function τǫ(m) := Υǫ(u
(m)
ǫ ) for all m ∈ R.

Lemma 3.5. For all ǫ > 0 and m ∈ R, the following equality holds:

τ ′ǫ(m) = −αψǫ(m)

Zǫ(m)
Var

(
u(m)
ǫ

)
. (3.2)

Proof. By definition, we have:

τǫ(m) =

∫

R

(
ǫ

2
log
(
u(m)
ǫ (x)

)
+ V (x) +

1

2
F ∗ u(m)

ǫ (x)

)
u(m)
ǫ (x)dx

= − ǫ

2
log (Zǫ(m)) + αm

∫

R

xu(m)
ǫ (x)dx − α

2

(∫

R

xu(m)
ǫ (x)dx

)2

.

By remarking that
∫
R
xu

(m)
ǫ (x)dx = ψǫ(m)+m

Zǫ(m) , we get:

τǫ(m) = − ǫ

2
log
[
Zǫ(m)e−

α
ǫ
m2
]
− α

2

ψǫ(m)2

Zǫ(m)2
.

The derivation of this equality provides

τ ′ǫ(m) = −αψǫ(m)

Zǫ(m)

(
1 +

ψ′
ǫ(m)

Zǫ(m)
− ψǫ(m)Z ′

ǫ(m)

Zǫ(m)2

)
= −αψǫ(m)

Zǫ(m)
Var

(
u(m)
ǫ

)
.

Consequently, τ ′ǫ(m)ψǫ(m) = −αVar(u(m)
ǫ )

Zǫ(m) ψǫ(m) ≤ 0. We deduce that the

behavior of the function τǫ is directly linked to the sign of ψǫ.

Proposition 3.6. Let a confining potential V which verifies (V-1)–(V-6) and
an interacting potential F (x) := α

2 x
2 with α > 0. The critical value ǫc is the

only zero of the function ǫ 7→ d2

dm2Υǫ (u
m
ǫ )
∣∣∣
m=0

.

Furthermore, for all ǫ < ǫc, we have Υǫ (u
+
ǫ ) = Υǫ (u

−
ǫ ) < Υǫ

(
u0ǫ
)
.
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Proof. By taking the derivative in (3.2), we get:

τ ′′ǫ (m) = −αVar (umǫ )

Zǫ(m)
ψ′
ǫ(m)− ψǫ(m)

d

dm

[
αVar (umǫ )

Zǫ(m)

]
.

As ψǫ(0) = 0, we obtain: τ ′′ǫ (0) = −αVar(u0
ǫ)

Zǫ(0)
ψ′
ǫ(0). We recall that ψ′

ǫ(0) = γ0(ǫ)

(defined in the proof of Theorem 2.1). According to Theorem 2.1, the critical
value of ǫc is the only solution of γ0(ǫ) = 0 consequently there is only one value

of ǫ such that d2

dm2Υǫ (u
m
ǫ )
∣∣∣
m=0

= 0 and this value is ǫc.

When ǫ < ǫc, there are exactly three stationary measures: u+ǫ , u−ǫ and u0ǫ . The
symmetry implies directly Υǫ (u

+
ǫ ) = Υǫ (u

−
ǫ ). By definition of the two outlying

stationary measures,
∫
R
xu+ǫ (x)dx is the only positive zero of the function ψǫ

and consequently the only positive critical point of the function τǫ according

to Lemma 3.5. Since ǫ < ǫc,
d2

dm2Υǫ (u
m
ǫ )
∣∣∣
m=0

< 0 that implies τǫ reaches its

global minimum in
∫
R
xu+ǫ (x)dx and in

∫
R
xu−ǫ (x)dx. Also, τǫ reaches one local

maximum in 0 =
∫
R
xu0ǫ (x)dx. Immediatly, we get Υǫ (u

±
ǫ ) < Υǫ

(
u0ǫ
)
.

According to (3.1), after recalling that ǫ
(0)
c is the critical value under which

there is a unique symmetric stationary measure, we get this new lower-bound:

ǫc ≥ sup
{
ǫ0 ∈]0, ǫ(0)c [ | ∀ ǫ ∈]0; ǫ0[ , min Sp

(
Jǫ(m

0)
)
< 0
}

where Jǫ(m) is the Hessian matrix of the function from R
2n−1 to R: m 7→

Υǫ (u
m
ǫ ) andm0 is the only point in R

2n−1 such that um
0

ǫ is the unique symmetric
stationary measure. Here, we defined umǫ by:

umǫ (x) =
exp

[
− 2
ǫ
Wm(x)

]
∫
R
exp

[
− 2
ǫ
Wm(y)

]
dy

with Wm(x) = V (x) + F (x) +
2n−1∑

p=0

(−1)p

p!
mpF

(p)(x)

However, the computations are so tedious that it is better to use the previous
method. Also, we will derive this method for a simpler one.

3.1.3 Stability of the free-energy method

We will use here another method in the particular example V (x) := x4

4 − x2

2 and

F (x) := α
2 x

2 + β
4x

4 but it can be computed for more general potentials. We
provide some simulation of an a priori other critical value. We define ǫ̃c (α, β) as
the transition phase between the stability and the instability of the symmetric
stationary measure for the free-energy.

Definition 3.7. We will say that u0ǫ is stable for Υǫ if for each function f ∈
L2

(
u0ǫ
)

which verifies
∫
R
f(x)u0ǫ (x)dx = 0 and C ≥ f(x) ≥ −C with C > 0, the
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application ζǫ(δ) := Υǫ
(
u0ǫ + δf × u0ǫ

)
admits a local maximum in δ = 0. We

will call ǫ̃c
+ (α, β) the value such that for all ǫ > ǫ̃c

+ (α, β), u0ǫ is stable for Υǫ
and ǫ̃c

− (α, β) the value such that for all ǫ < ǫ̃c
− (α, β), u0ǫ is not stable for Υǫ.

Remark 3.8. It corresponds to a variationnal calculus. Intuitively, since the
second derivative of the confining potential V is convex, we expect a similar
result for the free-energy Υǫ.

Since u0ǫ is a stationary measure, we get directly ζ′ǫ(0) = 0. It remains now
to compute the second derivative:

ζ′′ǫ (0) =
ǫ

4

∫

R

f−(x)
2u0ǫ(x)dx +

ǫ

4

∫

R

f+(x)
2u0ǫ(x)dx − α

2

(∫

R

xf−(x)u
0
ǫ (x)dx

)2

− β

(∫

R

xf−(x)u
0
ǫ (x)dx

)(∫

R

x3f−(x)u
0
ǫ (x)dx

)

with f−(x) := f(x)−f(−x)
2 and f+(x) := f(x)+f(−x)

2 . The Cauchy-Schwarz in-
equality implies

ζ′′ǫ (0) ≥
( ǫ
4
− α

2
m2(ǫ)− β

√
m2(ǫ)m6(ǫ)

) ∫

R

f(x)2u0ǫ(x)dx

where m2(ǫ) (resp. m6(ǫ)) is the second (resp. sixth) moment of u0ǫ . Conse-
quently, the inequality

2α

ǫ
m2(ǫ) +

4β

ǫ

√
m2(ǫ)m6(ǫ) ≤ 1

implies ǫ ≥ ǫ̃c
+(α, β). This will permit us to simulate ǫ̃c

+(α, β). Let us note
that if β = 0, we recover the implicit equation which defines the critical value
ǫc(α) exhibited in Theorem 2.1.

The method of stability derives from the one of convexity since the idea of the
stability around u0ǫ consists in choosing a particular direction and computing
the second derivative in this direction.
We consider the sequence of bounded functions (fn)n∈N

with fn(x) := x1[−n,n].

We remark that fn ∈ L2
(
u0ǫ
)
. For all n ∈ N, we can define ζǫ on an interval

containing 0 in its interior. Consequently, ζ′′ǫ (0) has a sense for all n ≥ 0 (we
do not write the dependence in n in ζ′′ǫ (0) for simplifying the reading). Since
fn converges towards x 7→ x in L2

(
u0ǫ
)
, it yields:

lim
n→+∞

ζ′′ǫ (0) = m2(ǫ)
( ǫ
4
− α

2
m2(ǫ)− βm4(ǫ)

)
.

We deduce that the inequality 2α
ǫ
m2(ǫ) +

4β
ǫ
m4(ǫ) > 1 implies ǫ < ǫ̃c

−(α, β).

This will permit us to simulate ǫ̃c
−(α, β).

By taking N := 2 × 105, we get the following simulations of the surfaces of
ǫ̃c

−(α, β) and ǫ̃c
+(α, β):
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Figure 3: ǫ̃c
+(α, β)

0.2 0.4 0.6 0.8 1 1.2 1.4

0.20.40.60.811.21.4

0.2

0.4

0.6

0.8

1

1.2

1.4

αβ

ǫ

Figure 4: ǫ̃c
−(α, β)

Remark 3.9. Let us note that it would also have been possible to compute with
x 7→ x2n+1 for n ≥ 1.

3.1.4 Comparison of the methods

If V is even and if deg(F ) ≥ 4, three methods have been examinated.

The first one is the low-energy method which consists in providing one symmet-
ric stationary measure u0ǫ and one asymmetric measure with lower free-energy
than u0ǫ . The main advantage of this method is the simplicity of computation.
But, the critical value provided is far from the phase transition. Thanks to this
method, we see that the critical value is not asymptotically small.

The method which uses the convexity of the free-energy around a symmetric
stationary measure seems to be the most precise because it needs only a local
knowledge of the free-energy around this measure and this is exactly in this
sense that we can separate the two phases in the case described in Theorem 2.1.
However, even if F (x) := β

4x
4, the computations are too tedious.

The last method consists in the stability or the instability of the free-energy
around a symmetric stationary measure. Since the direction x 7→ x plays a
special role in the study of the self-stabilizing processes, we do not study the
stability in all the directions but in this special one. Figure 3 and Figure 4
prove that the estimation provided by the low-energy method is less than the
one provided by the instability of the free-energy around u0ǫ . In the other hand,
the stability method provides a larger value but by construction, it is reasonable
to assume that this is larger than the critical value.

3.2 If V is asymmetric

We will only simulate with F (x) := α
2 x

2. It remains to study the number of
roots of a function from R to R. However, it is not as simple as if V was even.
Indeed, when it is symmetric, there is an immediate and obvious solution - and
this is 0 - then the number of stationary measures is directly linked to the second
derivative in this obvious solution. Here, there is not any obvious solution so we
need to know the whole trajectory of the function. Consequently, the simulation
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is the following. We compute χǫ
(
ag +

k
M
(ad − ag)

)
for all 1 ≤ k ≤ M − 1 by

using the Monte Carlo method. Then, we count the number of changes of sign.

We apply this simulation to V (x) := x4

4 + x3

3 − x2

2 and F (x) := α
2 x

2 for α :=
j×0.01 for 1 ≤ j ≤ 120 and ǫ := i×0.005 for 1 ≤ i ≤ 60. By taking N := 2×105

and M := 250, we obtain:

0

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1 1.2

α

ǫ

Figure 5: ǫc(α)

The lack of precision and the slow increasing of the critical value ǫc(α) in
function of α implies that the curve seems jerky.
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