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CONVERGENCE TO THE EQUILIBRIA FOR
SELF-STABILIZING PROCESSES IN DOUBLE-WELL

LANDSCAPE∗

By Julian Tugaut

Universität Bielefeld

We investigate the convergence of McKean-Vlasov diffusions in a
non-convex landscape. These processes are linked to nonlinear partial
differential equation. According to our previous results, there are at
least three stationary measures under simple assumptions. Hence,
the convergence problem is not classical like in the convex case. By
using the method in [Benedetto, Caglioti, Carrillo, Pulvirenti|1998]
about the monotonicity of the free-energy and combining this with a
complete description of the set of the stationary measures, we prove
the global convergence of the self-stabilizing processes.

Introduction. We investigate the weak convergence in long-time of the
following so-called self-stabilizing process:

(I)

{
Xt = X0 +

√
ǫBt −

∫ t
0 V

′ (Xs) ds−
∫ t
0 F

′ ∗ us (Xs) ds
us = L (Xs)

.

Here, ∗ denotes the convolution. Since the own law of the process intervenes
in the drift, this equation is nonlinear - in the sense of McKean. We note
that Xt and ut depend on ǫ. We do not write ǫ for simplifying the reading.

The motion of the process is generated by three concurrent forces. The first
one is the derivative of a potential V - the confining potential. The second
influence is a Brownian motion (Bt)t∈R+

. It allows the particle to move up-
wards the potential V . The third term - the so-called self-stabilizing term
- represents the attraction between all the others trajectories. Indeed, we
remark: F ′ ∗us (Xs(ω0)) =

∫
ω∈Ω F

′ (Xs(ω0)−Xs(ω)) dP (ω) where (Ω,F ,P)
is the underlying measurable space.

This kind of processes were introduced by McKean, see [McK67] or [McK66].
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2 J. TUGAUT

Here, we will make some smoothness assumptions on the interaction poten-
tial F . Let just note that it is possible to consider non-smooth F . If F is the
Heaviside step function and V := 0, (I) is the Burgers equation (see [SV79]).
If F := δ0 and without confining potential, it is the Oelschläger equation,
studied in [Oel85].

The particle Xt which verifies (I) can be seen as one particle in a continuous
mean-field system of an infinite number of particles. The mean-field system
that we will consider is a random dynamical system like

(II)





dX1
t =

√
ǫdB1

t − V ′
(
X1
t

)
dt− 1

N

∑N
j=1 F

′
(
X1
t −Xj

t

)
dt

...

dXi
t =

√
ǫdBi

t − V ′
(
Xi
t

)
dt− 1

N

∑N
j=1 F

′
(
Xi
t −Xj

t

)
dt

...

dXN
t =

√
ǫdBN

t − V ′
(
XN
t

)
dt− 1

N

∑N
j=1 F

′
(
XN
t −Xj

t

)
dt

where the N brownian motions
(
Bi
t

)
t∈R+

are independents. Mean-field sys-

tems are the subject of a rich literature: [DG87] about the large deviations
for N → +∞, [Mél96] under weak assumptions on V and F . For applica-
tions, see [CDPS10] about social interactions or [CX10] about the stochastic
partial differential equations.
The link between the self-stabilizing processes and the mean-field system
when N tends to +∞ is called the propagation of chaos, see [Szn91] under
Lipschitz properties ; [BRTV98] if V is a constant ; [Mal01] or [Mal03] when
both potentials are convex ; [BAZ99] for a more precise result ; [BGV07],
[DPdH96] or [DG87] for a sharp estimate ; [CGM08] for a uniform result in
time in the non-uniformly convex case or [Tug10] for a half-uniform propa-
gation of chaos.
Equation (II) can be rewritten:

(II) dXt =
√
ǫBt −N∇ΥN (Xt) dt

where the i-th coordinate of Xt (resp. Bt) is Xi
t (resp. Bi

t) and

ΥN (X ) :=
1

N

N∑

j=1

V (Xj) +
1

2N2

N∑

i=1

N∑

j=1

F (Xi − Xj)

for all X ∈ R
N . As noted in [Tug10], the potential ΥN converges towards a

meta-potential Υ acting on the measures. Some perturbation (proportional
to ǫ) of this meta-potential will play the central role in the article.
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As observed in [DG87], the empirical law of the mean-field system can be seen
as a perturbation of the law of the diffusion (I). Consequently, the long-time
behavior of L (Xt) that we study in this paper provides some consequences
on the exit time for the particle system (II).

Also, the convergence plays an important role in the exit problem for the
self-stabilizing process since the exit time is strongly linked to the drift (ac-
cording to the Kramers’ law, see [DZ10] or [HIP08]) which converges towards
a homogeneous function if the law of the process converges towards a sta-
tionary measure.

Let us recall briefly some of the previous results on diffusions like (I). The ex-
istence problem has been investigated by two different methods. The first one
consists in the application of a fixed point theorem, see [McK67], [BRTV98],
[CGM08] or [HIP08] in the non-convex case. The other consists in a propa-
gation of chaos, see for example [Mél96].

In [McK67], the author proved - by using Weyl lemma - that the law of
the (strong) solution dut admits a C∞-continuous density ut with respect
to the Lebesgue measure for all t > 0. Furthermore, this density satisfies a
nonlinear partial differential equation of the following type:

(III)
∂

∂t
ut(x) =

∂

∂x

{
ǫ

2

∂

∂x
ut(x) + ut(x)

(
V ′(x) + F ′ ∗ ut(x)

)}
.

It is then possible to study equations like (III) by probabilistic methods which
involve the diffusions (I) or (II), see [CGM08], [Fun84], [Mal03]. Reciprocally,
equation (I) is a useful tool for characterizing the stationary measure(s) and
the long-time behavior, see [BRTV98], [BRV98], [Tam84], [Tam87] or [Ver06].
In [HT10a], in the non-convex case, by using (III), it has been proved that
the diffusion (I) admits at least three stationary measures under assump-
tions easy to verify. One is symmetric and the two others are not. Moreover,
Theorem 3.2 in [HT10a] states the thirdness of the stationary measures if
V ′′ is convex and F ′ is linear. This non-uniqueness prevents the long-time
behavior to be as intuitive as in the case of unique stationary measure.
The work in [HT10b] and [HT09] provides some estimates of the small-noise
asymptotic of these three stationary measures. In particular, the convergence
towards Dirac measures and its rate of convergence are investigated. This will
be one of the two main tools for obtaining the convergence.

Convergence for (I) is not a new subject. In [BRV98], if V is identically equal
to 0, the authors proved the convergence towards the stationary measure by
using an ultracontractivity property, a Poincaré inequality and a comparison
lemma for stochastic processes. The ultracontractivity property still holds if
V is not convex by using the results in [KKR93]. It is possible to conserve the
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Poincaré inequality by using the theorem of Muckenhoupt (see [ABC+00])
instead of the Bakry-Emery theorem. But, the comparison lemma needs some
convexity properties. However, it is possible to apply these results if the ini-
tial law is symmetric in the synchronized case (V ′′(0) + F ′′(0) ≥ 0), see
Theorem 7.10 in [Tug10].
Another method consists in using the propagation of chaos in order to derive
the convergence of the self-stabilizing process from the one of the mean-field
system. However, we shall use it independently of the time and the classical
result which is on a finite interval of time is not sufficiently strong. Cattiaux,
Guillin and Malrieu proceeded a uniform propagation of chaos in [CGM08]
and obtained the convergence in the convex case, including the non-uniformly
convex case. See also [Mal03]. Nevertheless, according to Proposition 5.17
and Remark 5.18 in [Tug10], it is impossible to find a general result of uni-
form propagation of chaos. In the synchronized case, if the initial law is
symmetric, it is possible to find such a uniform propagation of chaos (see
Theorem 7.11 and 7.12 in [Tug10]).

The method that we will use in this paper is based on the one of [BCCP98].
See also [Mal03], [Tam84], [Mal01], [HS87], [AMTU01] for the convex case.
In the non-convex case, Carrillo, McCann and Villani provided the conver-
gence in [CMV03] under two restrictions: the center of mass is fixed and
V ′′(0) + F ′′(0) > 0 (that means it is the synchronized case).

However, by combining the results in [HT10a], [HT10b] and [HT09] with the
work of [BCCP98] (and the more rigorous proofs in [CMV03] about the free-
energy), we will be able to prove the convergence in a more general setting.
The principal tool of the paper is the monotonicity of the free-energy along
the trajectories of (III).

Firstly, we introduce the following functional that we call the meta-potential:

(IV) Υ(u) :=

∫

R

V (x)du(x) +
1

2

∫∫

R
2
F (x− y)du(x)du(y) .

This meta-potential appears intuitively as the limit of the potential in (II)
for N → +∞. We consider now the free-energy of the self-stabilizing process
(I):

Υǫ(u) :=
ǫ

2

∫

R

u(x) log(u(x))dx+Υ(u)

for all measures du which are absolutely continuous with respect to the
Lebesgue measure. We can note that dut satisfies this hypothesis.

The paper is organized as follows. After presenting the assumptions, we
will state the first results, in particular the convergence of a subsequence
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(utk)k. This subconvergence will be used for improving the results about the
thirdness of the stationary measures. Then, we will give the main statement
which is the convergence towards a stationary measure, briefly discuss the
assumptions of the theorem and give the proof. Subsequently, we will study
the basins of attraction by two different methods and prove that these basins
are not reduced to a single point. Finally, we postpone four results in the
appendix including Proposition A.2 which extends the classical higher-bound
for the moments of the self-stabilizing processes.

Assumptions. We assume the following properties of the confining po-
tential V :

(V-1) V is an even polynomial function with deg(V ) =: 2m ≥ 4.

(V-2) The equation V ′(x) = 0 admits ex-
actly three solutions: a, −a and 0
with a > 0. Furthermore, V ′′(a) > 0
and V ′′(0) < 0. Then, the bottoms
of the wells are located in x = a and
x = −a.

(V-3) V (x) ≥ C4x
4 − C2x

2 for all x ∈ R

with C2, C4 > 0.
(V-4) lim

x→±∞
V ′′(x) = +∞ and V ′′(x) >

0 for all x ≥ a.
(V-5) V ′′ is convex.
(V-6) Initialization: V (0) = 0.

V

−a a

Fig 1. Potential V

The simplest and most studied example is V (x) := x4

4 − x2

2 . Also, we would
like to stress that weaker assumptions could be considered but all the mathe-
matical difficulties are present in the polynomial case and it permits to avoid
some technical and tedious computations. Let us present now the assump-
tions on the interaction potential F :

(F-1) F is an even polynomial function with deg(F ) =: 2n ≥ 2.
(F-2) F and F ′′ are convex.
(F-3) Initialization: F (0) = 0.

Under these assumptions, we know by [HT10a] that (I) admits at least

one symmetric stationary measure. And, if
∑2n−2

p=0
|F (p+2)(a)|

p! ap < F ′′(0) +

V ′′(a), there are at least three stationary measures: u0ǫ is symmetric and
u+ǫ and u−ǫ are asymmetric. Furthermore, we know by [HT10b] that there
is a unique nonnegative real x0 such that V ′(x0) + 1

2F
′(2x0) = 0 and

V ′′(x0) +
F ′′(0)+F ′′(2x0)

2 > 0. The same paper provides that u0ǫ converges
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weakly towards 1
2δx0 +

1
2δ−x0 and u±ǫ converges weakly towards δ±a ; in the

small noise limit.

We present now the assumptions on the initial law du0:

(ES) The 8q2-th moment of the measure du0 is finite with q := max {m,n}.
(FE) The probability measure du0 admits a C∞-continuous density u0 with

respect to the Lebesgue measure. And, the entropy
∫
R
u0 log(u0) is

finite.

Under (ES), we know by Theorem 2.12 in [HIP08] that (I) admits a strong
solution. Moreover, we have the following inequality:

(V) max
1≤j≤8q2

sup
t∈R+

E

[
|Xt|j

]
≤M0 .

We deduce immediately that the family (ut)t∈R+
is tight. The assumption

(FE) ensures that the free-energy is finite. In the following, we shall use
occasionnaly one of the following three additional properties concerning the
two potentials V and F and the initial law du0:

(LIN) F ′ is linear.
(SYN) V ′′(0) + F ′′(0) > 0.
(FM) For all N ∈ N, we have

∫
R
|x|Ndu0(x) < +∞.

In the following, three important properties linked to the enumeration of
the stationary measures for the self-stabilizing process (I) will be helpful for
proving the convergence:

(M3) The process (I) admits exactly three stationary measures. One is sym-
metric: u0ǫ and the other ones are asymmetric: u+ǫ and u−ǫ . Furthermore,
Υǫ(u

+
ǫ ) = Υǫ(u

−
ǫ ) < Υǫ(u

0
ǫ ).

(M3)’ There exists M > 0 such that the diffusion (I) admits exactly three
stationary measures with free-energy less than M . Furthermore, we
have Υǫ(u

+
ǫ ) = Υǫ(u

−
ǫ ) < Υǫ(u

0
ǫ ) ; u0ǫ is symmetric and u+ǫ and u−ǫ are

asymmetric.
(0M1) The process (I) admits only one symmetric stationary measure u0ǫ .

In the following, we will give some simple conditions such that (M3), (M3)’
or (0M1) are true.

Finally, we recall the assumption (H) introduced in [HT10b]:

(H) A family of measures (vǫ)ǫ verifies the assumption (H) if the family of
positive reals

(∫
R
x2nuǫ(x)dx

)
ǫ

is bounded.

The aim of the weaker assumption (M3)’ is to get the convergence even
if there exists a family of stationary measures which does not verify the
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assumption (H).

For concluding the introduction, we write the statement of the main theorem:
Theorem: Set a probability measure du0 which verifies (FE) and (FM).
Under (M3), ut converges weakly towards a stationary measure.

1. First results. This section is devoted to present the tools that we
will use for getting the main result of the paper. Furthermore, we provide
some new results about the thirdness of the stationary measures for the self-
stabilizing processes.

We introduce the following functionnal:

Υ−
ǫ (u) :=

ǫ

2

∫

R

u(x) log (u(x))1{u(x)<1}dx+

∫

R

V (x)u(x)dx .

This new functionnal does neither contain nor the interaction potential term
nor the positive contribution of u in the entropy term. Due to the positivity
of the interaction potential F , we get directly the inequality Υǫ(u) ≥ Υ−

ǫ (u)
for all the measures u which verify the previous assumptions.
In the following, we will need two particular functions (the free-energy of the
system and a function ηt such that d

dt
ut(x) =

d
dx
ηt(x)).

Definition 1.1. For all t ∈ R+, we introduce the functions:

ξ(t) := Υǫ (ut) and ηt(x) :=
ǫ

2

∂

∂x
ut(x) + ut(x)

(
V ′(x) + F ′ ∗ ut(x)

)
.

According to (III), we remark that if ηt is identically equal to 0 then ut is
a stationary measure for (I).

We recall the following well-known entropy dissipation:

Proposition 1.2. Let a probability measure du0 which verifies (FE) and
(ES). Then, for all t, s ≥ 0, we have

ξ(t+ s) ≤ ξ(t) ≤ ξ(0) < +∞ .

Furthermore, we have:

ξ′(t) ≤ −
∫

R

1

ut(x)
(ηt(x))

2 dx .

See [CMV03] for a proof.
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1.1. Preliminaries. Let’s introduce the functionnal space

M8q2 :=

{
f ∈ C2

0 (R,R+)
∣∣∣
∫

R

f(x)dx = 1

}
.

We can remark that ut ∈ M8q2 for all t > 0, see [McK67]. The first tool is
the Proposition 1.2 (that is to say the fact that the free-energy is decreasing
along the potential lines). The second one is its lower-bound.

Lemma 1.3. There exists Ξǫ ∈ R such that inf
u∈M8q2

Υǫ(u) ≥ Ξǫ.

Proof. Let us recall Υǫ(u) ≥ Υ−
ǫ (u). It suffices then to prove the in-

equality infu∈M8q2
Υ−
ǫ (u) ≥ Ξǫ. We proceed as in the first part of the proof

of Theorem 2.1 in [BCCP98]. We show that we can minorate the negative
part of the entropy by a function of the second moment. Then a growth
condition of V will provide the result.

We split the negative part of the entropy into two integrals:

−
∫

R

u(x) log (u(x))1{u(x)<1}dx = −I+ − I−

with I+ :=

∫

R

u(x) log (u(x))1{e−|x|<u(x)<1}dx

and I− :=

∫

R

u(x) log (u(x))1{u(x)≤e−|x|}dx .

By definition of I+, we have the following estimate:

I+ ≥
∫

R

u(x) log
(
e−|x|

)
1{e−|x|<u(x)<1}dx

≥ −
∫

R

|x|u(x)1{e−|x|<u(x)<1}dx

≥ −
∫

R

|x|u(x)dx ≥ −1

2
− 1

2

∫

R

x2u(x)dx .

By putting γ(x) :=
√
x log(x)1{x<1}, a simple computation provides γ(x) ≥

−2e−1 for all x < 1. We deduce:

I− =

∫

R

√
u(x)γ(u(x))1{u(x)≤e−|x|}dx ≥ −2e−1

∫

R

e−
|x|
2 dx = −8e−1 .

Consequently, it yields:

−
∫

R

u(x) log (u(x))1{u(x)<1}dx ≤ 1

2

∫

R

x2u(x)dx+
1

2
+ 8e−1 .
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This implies:

Υ−
ǫ (u) ≥ − ǫ

4
− 4ǫe−1 +

∫

R

(
V (x)− ǫ

4
x2

)
u(x)dx .(1.1)

By hypothesis, there exist C2, C4 > 0 such that V (x) ≥ C4x
4 − C2x

2 so the
function x 7→ V (x) − ǫ

4x
2 is lower-bounded by some negative constant that

achieves the proof.

Let’s note that the unique assumption we used is lim
x→±∞

V ′′(x) = +∞.

Lemma 1.4. Let a probability measure du0 which satisfies the assump-
tions (FE) and (ES). Then, there exists L0 ∈ R such that Υǫ(u

ǫ
t) converges

towards L0 as time elapses to infinity.

Proof. The assumption (FE) implies ξ(0) = Υǫ(u0) < ∞. As ξ is non-
increasing by Lemma 1.2 and lower-bounded by a constant Ξǫ according to
Lemma 1.3, we deduce that the function ξ converges towards a real L0.

Lemma 1.5. If and only if ξ′(t) = 0, the following is true: ut is a sta-
tionary measure uǫ.

Proof. If ut is a stationary measure uǫ, then ξ(t) = Υǫ(ut) = Υǫ(uǫ) is
a constant that provides ξ′(t) = 0.

Reciprocally, if ξ′(t) = 0, Proposition 1.2 implies
∫

R

1

ut(x)
(ηt(x))

2 dx = 0 .

We deduce ηt(x) = 0 for all x ∈ R ; that means ut is a stationary measure.

1.2. Subconvergence.

Theorem 1.6. Let a probability measure du0 which satisfies the assump-
tions (FE) and (ES). Then, there exists a stationary measure uǫ and a se-
quence (tk)k which converges to infinity such that utk converges weakly to-
wards uǫ.

Proof. Plan: First, we use the convergence of
∫∞
t
ξ′(s)ds towards 0 when

t tends to infinity and we deduce the existence of a sequence (tk)k such that
ξ′ (t− k) tends to 0 when k tends to infinity. Then, we extract a subsequence
of (tk)k for obtaining an adherence value. By using a test function, we prove
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that this adherence value is a stationary measure.

Step 1: Lemma 1.4 implies that
∫∞
t
ξ′(s)ds collapses at infinity. According

to Proposition 1.2, the sign of ξ′ is a constant so we deduce the existence of an
increasing sequence (tk)k∈N which converges to infinity such that ξ′(tk) −→ 0.

Step 2: The uniform boundedness of the first 8q2 moments with respect to
the time allows us to use Prohorov’s theorem: we can extract a subsequence
(we continue to write it (tk)k for simplicity) such that utk converges weakly
towards a probability measure uǫ.

Step 3: We consider now a compact function ϕ ∈ C∞ (R,R)
⋂L2 (uǫ) and

we estimate the following quantity:
∣∣∣∣
∫

R

ϕ(x)

{
ǫ

2

∂

∂x
utk(x) + utk(x)

[
V ′(x) + (F ′ ∗ utk)(x)

]}
dx

∣∣∣∣

=

∣∣∣∣
∫

R

ϕ(x)ηtk(x)dx

∣∣∣∣ =
∣∣∣∣∣

∫

R

ϕ(x)
√
utk(x)

|ηtk(x)|√
utk(x)

dx

∣∣∣∣∣

≤
(∫

R

ϕ(x)2utk(x)dx

) 1
2

×
(∫

R

1

utk(x)
(ηtk(x))

2 dx

) 1
2

≤
√

−ξ′(tk)
√∫

R

ϕ(x)2utk(x) −→ 0

when k tends to infinity ; by using the Cauchy-Schwarz inequality, the hy-
pothesis about the sequence (tk)k and the weak convergence of utk towards
uǫ. Thanks to the compactness of ϕ, we can apply this integration by parts
and we obtain

∫

R

ϕ(x)

{
ǫ

2

∂

∂x
utk(x) + utk(x)

[
V ′(x) + F ′ ∗ utk(x)

]}
dx

=

∫

R

ϕ(x)
[
V ′(x) + F ′ ∗ utk(x)

]
utk(x)dx−

∫

R

ǫ

2
ϕ′(x)utk(x)dx .

The weak convergence of utk towards uǫ implies that the previous term tends
to

∫
R
ϕ(x) [V ′(x) + (F ′ ∗ uǫ)(x)]uǫ(x)dx −

∫
R

ǫ
2ϕ

′(x)uǫ(x)dx. It has already
been proved that

∫
R
ϕ(x)

{
ǫ
2
∂
∂x
utk(x) + utk(x) (V

′(x) + F ′ ∗ utk(x))
}
dx is

collapsing when k tends to ∞. We get the following statement:
∫

R

ϕ(x)
[
V ′(x) + F ′ ∗ uǫ(x)

]
uǫ(x)dx−

∫

R

ǫ

2
ϕ′(x)uǫ(x)dx = 0 .(1.2)

Step 4: This means that uǫ is a weak solution of the equation

ǫ

2

∂

∂x
u(x) +

[
V ′(x) + F ′ ∗ u(x)

]
u(x) = 0 .
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Now, we consider a smooth function ϕ̃ with compact support [a, b]. We put:

ϕ(x) := exp

{
2

ǫ
[V (x) + F ∗ uǫ(x)]

}
ϕ̃′(x) .

ϕ is also a smooth function with compact support. Indeed, the application
x 7→ F ∗ uǫ(x) is a polynomial function parametrized by the moments of uǫ
and these moments are bounded. Equality (1.2) becomes

∫

R

ϕ̃′′(x) exp

{
2

ǫ
[V (x) + F ∗ uǫ(x)]

}
uǫ(x)dx = 0 .

By applying Weyl lemma, we deduce x 7→ exp
[
2
ǫ
(V (x) + F ∗ uǫ(x))

]
uǫ(x)

is smooth. Moreover, its second derivative is equal to 0. Then, there exists
A,B ∈ R such that

uǫ(x) = (Ax+B) exp

[
−2

ǫ
(V (x) + F ∗ uǫ(x))

]

for all x ∈ R. If A 6= 0, we get uǫ(−Ax) < 0 for x big enough. This is
impossible. Consequently, uǫ(x) = Z−1 exp

[
−2
ǫ
(V (x) + F ∗ uǫ(x))

]
. This

means uǫ is a stationary measure.

Definition 1.7. From now, we call A the set of the adherence values of
the family (ut)t∈R+

.

Proposition 1.8. With the assumptions and the notations of Theorem
1.6, we have the following limit:

L0 := lim
t−→+∞

Υǫ(ut) = Υǫ(uǫ) .

Proof. First of all, we aim to prove that (utk)k is uniformly bounded in
the space W 1,1. For doing this, we will bound the integral on R of ∂

∂x
utk(x).

The triangular inequality provides:
∫

R

∣∣∣∣
∂

∂x
utk(x)

∣∣∣∣ dx ≤ 2

ǫ

∫

R

|ηt(x)| dx+
2

ǫ

∫

R

∣∣V ′(x) + F ′ ∗ utk(x)
∣∣utk(x)dx

where ηt is defined in Definition 1.1. By using (V) and the growth property
of V ′ and F ′, it yields
∫

R

∣∣V ′(x) + F ′ ∗ utk(x)
∣∣utk(x)dx ≤ C1

∫

R

(
1 + |x2q|

)
utk(x)dx ≤ C2
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where C2 is a constant. By using Cauchy-Schwarz inequality like in the proof
of Theorem 1.6, we obtain:

∫

R

|ηt(x)| dx ≤
√
−ξ′(tk) .

The quantity
√
−ξ′(tk) tends to 0 so it is bounded. We get finally

∫

R

∣∣∣∣
∂

∂x
utk(x)

∣∣∣∣ dx ≤ C3

where C3 is a constant. Consequently, utk ≤ utk(0) + C for all x ∈ R.
And, since the sequence (utk(0))k converges, it is bounded so there ex-
ists a constant C4 such that utk(x) ≤ C4 for all k ∈ N and x ∈ R. It
is then easy to prove the convergence of

∫
R
utk(x) log (utk(x)) dx towards∫

R
uǫ(x) log (uǫ(x)) dx.

Indeed, the Lebesgue’s theorem implies that
∫
R
utk(x) log (utk(x))1{|x|≤R}dx

converges towards
∫
R
uǫ(x) log (uǫ(x))1{|x|≤R}dx for all R ≥ 0 because the

applications x 7→ utk(x) log (utk(x)) are lower-bounded, uniformly with re-
spect to k. The other integral is split into two terms. The first one is:

∫

R

utk(x) log (utk(x))1{|x|>R ; utk (x)≥1}dx ≤ log(C)utk ([−R;R]c)

≤ log(C)M0

R2
.

The second term is bounded as in the proof of Lemma 1.3:

−
∫

R

utk(x) log (utk(x))1{|x|>R ; utk (x)<1}dx

≤
∫

[−R;R]c

{
|x|utk(x)− γ(utk(x))e

− 1
2
|x|
}
dx ≤ M0

R
+ 4e−

R
2 .

Consequently, Υǫ(u
ǫ
tk
) converges to Υǫ(uǫ) then Υǫ(u

ǫ
t) converges to Υǫ(uǫ)

since the free-energy is monotonous.

By taking R big enough then k big enough, we can make the following
quantity arbitrarily small:

∣∣∫ utk log (utk)−
∫
uǫ log (uǫ)

∣∣.

1.3. Consequences. When V is symmetric, Proposition 3.1 (resp. Theo-
rem 4.6) in [HT10a] states the existence of at least three stationary measures

for ǫ small enough if F ′ is linear (resp. if
∞∑

p=0

∣∣F (p+2)(a)
∣∣

p!
ap < F ′′(0)+V ′′(a)).

Theorem 1.6 permits to extend these results.
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Corollary 1.9. For ǫ small enough, the process (I) admits at least three
stationary measures: one is symmetric (u0ǫ) and two are asymmetric (u+ǫ
and u−ǫ ). Furthermore, under some critical value of ǫ, Υǫ(u

+
ǫ ) = Υǫ(u

−
ǫ ) <

Υǫ(u
0
ǫ ).

Proof. We know by Theorem 4.5 in [HT10a] there exists a symmetric
stationary measure u0ǫ . Theorem 5.4 in [HT10b] implies the weak convergence
of u0ǫ towards 1

2 (δx0 + δ−x0) in the small noise limit where x0 ∈ [0; a[ is the
unique solution of

{
V ′(x0) +

1
2F

′(2x0) = 0

V ′′(x0) +
F ′′(0)

2 + F ′′(2x0)
2 ≥ 0

.

Lemma A.3 provides

lim
ǫ→0

Υǫ

(
u0ǫ

)
= V (x0) +

1

4
F (2x0) and lim

ǫ→0
Υǫ

(
v+ǫ

)
= V (a)

with v+ǫ (x) := Z−1 exp

[
−2

ǫ
(V (x) + F (x− a))

]
.

We note that V (x0) +
1
4F (2x0) > V (a). Consequently, for ǫ small enough,

we have Υǫ (v
+
ǫ ) < Υǫ

(
u0ǫ

)
.

We consider now the process (I) starting by u0 := v+ǫ . This is possible because
the 8q2-th moment of v+ǫ is finite. Theorem 1.6 implies the existence of a
sequence (tk)k which satisfies tk −→ +∞ and utk converges weakly towards
a stationary measure uǫ satisfying Υǫ (uǫ) ≤ Υǫ (u0) = Υǫ (v

+
ǫ ) < Υǫ

(
u0ǫ

)
.

So u0ǫ 6= uǫ. We immediatly deduce there is at least two stationary measures.

If V ′′(0) + F ′′(0) 6= 0, we know by Theorem 7.3 and Theorem 7.4 in [HT09]
that there exists a unique symmetric stationary measure for ǫ small enough.
Hence uǫ is not symmetric

If V ′′(0) + F ′′(0) = 0, by (1.1), we have:

Υǫ(u) ≥ − ǫ
4
− 4ǫe−1 +

∫

R

{
V (x) +

α

2
x2 − ǫx2

4

}
u(x)dx

for all the probability measures satisfying
∫
R
xu(x)dx = 0 ; in particular for

the symmetric measures because F (x)− F ′′(0)
2 x2 ≥ 0 (due to the convexity of

F ′′). Then, for ǫ small enough, Υǫ(u) >
V (a)
2 for all the symmetric measures.

However, Υǫ(v
+
ǫ ) <

V (a)
2 (then Υǫ(uǫ) <

V (a)
2 ) for ǫ small enough.

Consequently, the process admits at least one asymmetric stationary mea-
sure that we call u+ǫ . The measure u−ǫ (x) := u+ǫ (−x) is invariant too. By
construction of u+ǫ and u−ǫ , Υǫ(u

+
ǫ ) = Υ−

ǫ (u
−
ǫ ) < Υǫ(u

0
ǫ ).
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Remark 1.10. By a similar method, we could also prove the existence
of at least one stationary measure in the asymmetric-landscape case.

We know by Theorem 3.2 in [HT10a] that if V ′′ is convex, if F ′ is linear
then there are exactly three stationary measures for ǫ small enough. We
present a more general setting. In view of the convergence, we will prove
that the number of ”useful“ stationary measures is exactly three even if it is
a priori possible to imagine some others stationary measures.

Theorem 1.11. We assume F ′′(0) + V ′′(0) ≥ 0. Then, for all M > 0,
there exists ǫ(M) > 0 such that for all ǫ ≤ ǫ(M), the number of measures u
satisfying the two following conditions is exactly three:

1. u is a stationary measure for the diffusion (I).
2. Υǫ(u) ≤M .

Moreover, if deg(V ) = 2m > 2n = deg(F ), the diffusion (I) admits exactly
three stationary measures for ǫ small enough.

Proof. Plan: We will begin to prove the second statement (when m >
n). For doing this, we will Corollary (1.9) and the results in [HT10b] and
[HT09]. Then, we will prove the first statement by using the second statement
and a minoration of the free-energy for a sequence of stationary measures
which does not verify (H).

Step 1: Corollary 1.9 implies the existence of ǫ0 > 0 such that the process
(I) admits at least three stationary measures (one is symmetric and two are
asymmetric) if ǫ < ǫ0: u+ǫ , u−ǫ and u0ǫ .

Step 2: First, we assume that deg(V ) > deg(F ).

Step 2.1: Proposition 3.1 in [HT10b] implies that each family of stationary
measures for the self-stabilizing process (I) verifies Condition (H). It has also
been shown that under (H), we can extract a subsequence which converges
weakly from any family of stationary measures (uǫ)ǫ>0 for the diffusion (I).

Step 2.2: Since F ′′(0) + V ′′(0) > 0, there are three possible limiting values:
δ0, δa and δ−a according to Proposition 3.7 and Remark 3.8 in [HT10b].

Step 2.3: As F ′′(0) + V ′′(0) > 0 and V ′′ and F ′′ are convex, there is a
unique stationary symmetric measure for ǫ small enough by Theorem 7.3 in
[HT09]. Also, Theorem 7.2 in [HT09] implies there are exactly two asymmet-
ric stationary measures for ǫ small enough. That achieves the proof of the
statement.

Step 3: Now, we will prove the first statement. Firstly, if m > n, by ap-
plying the second statement, the result is obvious. We assume now m ≤ n.
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Set M > 0. All the previous results still hold if we restrict the study to the
families of stationary measures which verify Condition (H). Consequently, it
is sufficient to get the following results in order to achieve the proof of the
theorem:

1. sup
{
Υǫ

(
u0ǫ

)
; Υǫ (u

+
ǫ ) ; Υǫ (u

−
ǫ )

}
< M for ǫ small enough.

2. If (uǫk)k is a sequence of stationary measures,
∫
R
x2nuǫk(x)dx → ∞

implies Υǫk (uǫk) → ∞.

Step 3.1: Lemma A.3 tells us that Υǫ

(
u0ǫ

)
(resp. Υǫ (u

+
ǫ )) tends towards 0

(resp. V (a) < 0) when ǫ tends to 0. Hence, the first point is obvious.

Step 3.2: We will prove the second point. We recall the lower-bound (1.1):

Υ−
ǫ (u) ≥ − ǫ

4
− 4ǫe−1 +

∫

R

(
V (x)− ǫ

4
x2

)
u(x)dx .

As V (x) ≥ C4x
4 − C2x

2 and Υ−
ǫ (u) ≤ Υǫ(u) for all smooth u, we get

Υǫ(u) ≥
∫

R

x2u(x)dx− C

where C is a constant. It is now suffficient to prove that
∫
R
x2nuǫk(x)dx→ ∞

implies
∫
R
x2uǫk(x)dx → ∞. We will not write the index k for simplifying

the reading. We proceed a reductio ad absurdum by assuming the existence
of a sequence (uǫ)ǫ which verifies

∫
R
x2nuǫ(x)dx → ∞ and

∫
R
x2uǫ(x)dx →

C+ ∈ R+.
Step 3.2.1: By taking the notations of [HT10b], we have the equality uǫ(x) =
Z−1 exp

[
−2
ǫ
(Wǫ(x))

]
with

Wǫ(x) := V (x) + F ∗ uǫ(x) =
2n∑

k=1

ωk(ǫ)x
k ,

ωk(ǫ) :=
1

k!




V (k)(0) + (−1)k

2n∑

j≥ k
2

F (2j)(0)

(2j − k)!
m2j−k(ǫ)





and ml(ǫ) :=

∫

R

xluǫ(x)dx ∀l ∈ N .

We introduce ω(ǫ) := sup
{
|ωk(ǫ)|

1
2n−k ; 1 ≤ k ≤ 2n

}
.

Step 3.2.2: We note that ω2n(ǫ) = V (2n)(0)+F (2n)(0)
(2n)! > 0. Then, ω(ǫ) is

uniformly lower-bounded. Consequently, we can divide by ω(ǫ).
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Step 3.2.3: The change of variable x := ω(ǫ)y provides

m2l(ǫ)

ω(ǫ)2l
=

∫
R
y2l exp

[
−2
ǫ̂
Ŵǫ(y)

]
dy

∫
R
exp

[
−2
ǫ̂
Ŵǫ(y)

]
dy

with Ŵǫ(x) :=
2n∑

k=1

ωk(ǫ)

ω(ǫ)2n−k
xk

for all l ∈ N, with ǫ̂ := ǫ
ω(ǫ)2n

.

Step 3.2.4: The 2n sequences
(

ωk(ǫ)
ω(ǫ)2n−k

)
ǫ

are bounded so we can extract

a subsequence of ǫ (that we continue to write ǫ for simplicity) such that
ωk(ǫ)

ω(ǫ)2n−k
converges towards ω̂k when ǫ→ 0. We put Ŵ (x) :=

∑2n
k=1 ω̂kx

k. We

call A1, · · · , Ar the r ≥ 1 location(s) of the global minimum of Ŵ .
Step 3.2.5: By applying the result of Lemma A.4, we can extract a sub-

sequence (and we continue to denote it by ǫ) such that
∫
R
y2l exp[− 2

ǫ̂
Ŵǫ(y)]dy∫

R
exp[− 2

ǫ̂
Ŵǫ(y)]dy

converges towards
∑r

j=1 pjA
2l
j where p1 + · · ·+ pr = 1 and pj ≥ 0.

Step 3.2.6: If ω(ǫ)ǫ is bounded, since the quantity
∑r

j=1 pjA
2n
j is finite, we

deduce that (m2n(ǫ))ǫ is bounded too. Since m2n(ǫ) tends towards infinity
when ǫ converges towards 0, we deduce (ω(ǫ))ǫ converges towards infinity. As
m2(ǫ) is bounded, the quantity m2(ǫ)

ω(ǫ)2
vabishes when ǫ tends to 0. This means∑r

j=1 pjA
2
j = 0 then

∑r
j=1 pjA

2n
j = 0. Consequently, m2n(ǫ) = o

{
ω(ǫ)2n

}
.

The Jensen’s inequality provides mk(ǫ) = o
{
ω(ǫ)k

}
.

Step 3.2.7: We recall the definition of ωk(ǫ):

ωk(ǫ) =
1

k!




V (k)(0) + (−1)k

2n∑

j≥ k
2

F (2j)(0)

(2j − k)!
m2j−k(ǫ)




.

We deduce ωk(ǫ) = O {m2n−k(ǫ)} = o
{
ω(ǫ)2n−k

}
. So

ω(ǫ) = sup
{
|ωk(ǫ)|

1
2n−k ; 1 ≤ k ≤ 2n

}
= o {ω(ǫ)} .

This is a contradiction. This achieves the proof.

This theorem means that - even if the diffusion (I) admits more than three
stationary measures - there are only three stationary measures which play a
role in the convergence. Indeed, if we take a measure u0 with a finite free-
energy, we know that for ǫ small enough, there are only three (maybe less)
stationary measures which can be adherence value of the family (uǫt)t∈R+

.

The assumption (LIN) implies (M3) (and (M3)’ because it is weaker) and
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(0M1) for ǫ small enough. The condition (SYN) implies (M3)’ and (0M1)
for ǫ small enough. Furthermore, if deg(V ) > deg(F ), (SYN) implies (M3)
when ǫ is less than some threshold.
This description of the stationary measures permits to obtain the principal
result that is to say the long-time convergence of the process.

2. Global convergence.

2.1. Statement of the theorem. We write the main result of the paper:

Theorem 2.1. Set a probability measure du0 which verifies (FE) and
(FM). Under (M3), ut converges weakly towards a stationary measure.

The proof is postponed in Subsection 2.3. Before, we will discuss briefly
about the assumptions.

2.2. Remarks on the assumptions.

du0 is absolutely continuous with respect to the Lebesgue measure. We
shall use Theorem 1.6 and prove that the family (ut)t∈R+

admits a unique
adherence value. This theorem needs that the initial law is absolutely contin-
uous with respect to the Lebesgue measure. However, it is possible to relax
this hypothesis by using the following result (see Lemma 2.1 in [HT10a] for
a proof):

Set a probability measure du0 which verifies
∫
R
x8q

2
du0(x) < +∞. Then,

for all t > 0, the probability dut is absolutely continuous with respect to the
Lebesgue measure.

Consequently, it is sufficient to apply Theorem 2.1 to the probability measure
u1 since there is a unique solution to the non-linear equation (I).

The entropy of du0 is finite. An essential point of the proof is the con-
vergence of the free-energy. For being sure of this, we assume that it is finite
at time 0. The assumption about the moments implies Υǫ (ut) < +∞ if and
only if

∫
R
ut(x) log (ut(x)) dx < +∞.

If V was convex, a little adaptation of the theorem in [OV01] (taking into
account the fact that the drift is not homogeneous here) would provide the
non-optimal following inequality:

Υǫ (ut) ≤
1

2t
inf

{√
E |X − Y |2 ; L (X) = ut ; L (Y ) = vt

}

with vt(x) := Z−1 exp

[
−2

ǫ

(
V (x) + F ∗ ut(x)

)]
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for all t > 0. The second moment of ut is upper-bounded uniformly with
respect to t. By using the convexity of V and F , we can prove the same thing
for vt. Consequently, since t > 0, the free-energy is finite so the entropy is
finite. However, in this paper, we deal with non-convex landscape so we will
not relax this hypothesis.

All the moments are finite. Theorem 1.6 tells us we can extract a se-
quence from the family (ut)t∈R+

such that it converges towards a stationary
measure. The last step in order to obtain the convergence is the uniqueness
of the limiting value. The most difficult part will be to prove this uniqueness
when the symmetric stationary measure u0ǫ is an adherence value and the
only one of these adherence values to be stationary. For doing this, we will
consider a function like this one:

Φ(u) :=

∫

R

ϕ(x)u(x)dx

where ϕ is an odd and smooth function with compact support such that
ϕ(x) = x2l+1 for all x in a compact subset of R. Then, we will prove -
by proceeding a reductio ad absurdum - there exists an integer l such that
Φ
(
u0ǫ

)
6= Φ(u∞), where u∞ would be an other limiting value. This in-

equality will permit to construct a stationary measure uǫ such that Φ(uǫ) /∈{
Φ
(
u0ǫ

)
; Φ (u+ǫ ) ; Φ (u−ǫ )

}
. This implies the existence of a stationary mea-

sure which does not belong to
{
u0ǫ ; u

+
ǫ ; u−ǫ

}
. Under (M3), it is impossible.

We make the integration with an ”almost-polynomial“ function because we
need the square of the derivative of such function to be uniformly bounded
with respect to the time.

However, it is possible to relax the condition (FM). Indeed, according to
Proposition A.2, if we assume that

∫
R
x8q

2
du0(x) < +∞ (the condition used

for the existence of a strong solution), we have
∫

R

x2luǫt(x)dx < +∞ ∀t > 0, l ∈ N .

Hypothesis (M3). As written before, the key for getting the uniqueness
of the adherence value is to proceed a reductio ad absurdum and then to
construct a stationary measure uǫ such that Φ(uǫ) takes a forbidden value
(a value different from Φ

(
u0ǫ

)
, Φ (u+ǫ ) and Φ (u−ǫ )).

But, it is possible to deal with a less strong hypothesis. Indeed, by considering
an initial law with finite free-energy and since the free-energy is decreasing,
it is impossible for ut to converge towards a stationary measure with a higher
energy. Consequently, we can consider (M3)’ instead of (M3).
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All of these remarks permit to obtain the following result:

Theorem 2.2. Set a probability measure du0 with finite entropy. If V
and F are polynomial functions such that F ′′(0) + V ′′(0) > 0, uǫt converges
weakly towards a stationary measure for ǫ small enough.

2.3. Proof of the theorem. In order to get the statement of Theorem 2.1,
we will provide two lemmas and one proposition about the free-energy. The
lemmas state that a probability measure which verifies simple properties
and with some level of energy is necessary a stationary measure for the self-
stabilizing process (I). The third one permits to confine all the adherences
values under some level of energy.

Lemma 2.3. Under (M3), if u is a probability measure which satisfies
(FE) and (ES), Υǫ(u) ≤ Υǫ(u

±
ǫ ) implies u ∈ {u+ǫ ; u−ǫ }.

Proof. Set u such a measure. We consider the process (I) starting by
the initial law u0 := u. Theorem 1.6 implies that there exists a stationary
measure uǫ such that Υǫ(ut) converges towards Υǫ(uǫ).

However, according to Proposition 1.2 and Proposition 1.8,

Υǫ(uǫ) = lim
t→+∞

Υǫ (ut) ≤ Υǫ(ut) ≤ Υǫ(u) ≤ Υǫ(u
±
ǫ ) .

Condition (M3) provides uǫ ∈
{
u+ǫ ; u

−
ǫ ; u0ǫ

}
. But, Υǫ(uǫ) ≤ Υǫ(u

±
ǫ ) <

Υǫ(u
0
ǫ ) so uǫ ∈ {u+ǫ ; u−ǫ }. Without loss of generality, we will assume uǫ = u+ǫ .

Consequently, the function ξ (see Definition 1.1) is constant. We deduce that
ξ′(t) = 0 for all t ≥ 0. Lemma 1.5 implies that ut is a stationary measure in
other words u = u0 = uǫ = u+ǫ .

We have a similar result with the symmetric measures:

Lemma 2.4. Under (0M1), if u is a symmetric probability measure sat-
isfying (FE) and (ES), Υǫ(u) ≤ Υǫ(u

0
ǫ ) implies u = u0ǫ .

The key-argument is the following: if the initial law is symmetric then the
law at time t is still symmetric. The proof is similar to the previous so it is
left to the reader’s attention.

Before making the convergence, we need a last result on the adherence values:
the free-energy of a limiting value is less than the limit value of the free-
energy.
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Proposition 2.5. We assume that u∞ is an adherence value of the fam-
ily (ut)t∈R+

. We call L0 := lim
t→+∞

Υǫ(ut). Then Υǫ(u∞) ≤ L0.

Proof. As u∞ is an adherence value of the family (ut)t∈R+
, there exists

an increasing sequence (tk)k which tends to infinity such that utk converges
weakly towards u∞. We remark:

Υ(utk) =V (a) +

∫

R

(V (x)− V (a))utk(x)dx

+
1

2

∫∫

R
2
F (x− y)utk(x)utk(y)dxdy

where the meta-potential Υ is defined in (IV). As V (x) − V (a) ≥ 0 for all
x ∈ R, the Fatou lemma implies Υ(u∞) ≤ lim inf

k→∞
Υ(utk). In the same way:

∫

R

u∞(x) log (u∞(x))1{u∞(x)≥1}dx

≤ lim inf
k→∞

∫

R

utk(x) log (utk(x))1{utk (x)≥1}dx .

Set R > 0. By putting γ−k (x) := utk(x) log (utk(x))1{utk (x)<1}1{|x|≤R}, we

not that
∣∣γ−k (x)

∣∣ ≤ e−1
1{|x|≤R} for all x ∈ R and k ∈ N. We can apply the

Lebesgue theorem:
∫

R

u∞(x) log (u∞(x))1{u∞(x)≥1}1{|x|≤R} = lim
k→∞

∫

R

γ−k (x)dx .

We put γ+k (x) := utk(x) log (utk(x))1{utk (x)<1}1{|x|>R}. By proceeding as in
the proof of Lemma 1.3, we have:

−γ+k (x) =− utk(x) log (utk(x))1{e−|x|≤utk (x)<1}1{|x|>R}

− utk(x) log (utk(x))1{utk (x)<e
−|x|}1{|x|>R}

≤|x|utk(x)1{|x|>R} + 2e−1e−
|x|
2 1{|x|>R} .

Consequently, we get the lower-bound
∫

R

uǫtk(x) log
(
uǫtk(x)

)
1{uǫtk

(x)<1}1{|x|>R}dx ≥ −M0

R
− 8e−1e−

R
2

where M0 is defined in (V).
By introducing Υ̂ǫ(u) := Υǫ(u)− ǫ

2

∫
R
u(x) log(u(x))1{u(x)<1}1{|x|>R}dx, we
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obtain:

Υǫ (u∞) ≤ Υ̂ǫ (u∞) ≤ lim inf
k→∞

Υ̂ǫ (utk)

≤ lim inf
k→∞

Υǫ (utk) +
M0ǫ

2R
+ 4e−1 exp

(
−R

2

)
ǫ

≤ L0 +
M0ǫ

2R
+ 4e−1ǫ exp

(
−R

2

)

for all R > 0. Consequently, Υǫ(u∞) ≤ L0.

Proof of the theorem. Plan: The first step of the proof consists in the
application of the Prohorov’s theorem since the family of measure is tight.
We shall prove the uniqueness of the adherence value. We will proceed a
reductio ad absurdum. The previous results provide A⋂{

u0ǫ ; u
+
ǫ ; u−ǫ

}
6= ∅

where A is introduced in Definition 1.7. We will then study all the pos-
sible cases and we will prove that all of these case imply contradictions.
The cases

{
u0ǫ ; u

+
ǫ

}
⊂ A,

{
u0ǫ ; u

−
ǫ

}
⊂ A and A⋂{

u0ǫ ; u
+
ǫ ; u−ǫ

}
= {u+ǫ }

would imply contradiction by using the fact that u+ǫ and u−ǫ are the unique
minimizers of the free-energy. The cases A⋂{

u0ǫ ; u
+
ǫ ; u−ǫ

}
=

{
u0ǫ

}
and

A⋂{
u0ǫ ; u

+
ǫ ; u−ǫ

}
= {u+ǫ ; u−ǫ } imply the existence of an other stationary

measure which is an adherence value.

Step 1: The inequality (V) implies that the family of probability measures
{ut ; t ∈ R+} is tight. Prohorov Theorem permits to conclude that each ex-
tracted sequence of this family is relatively compact with respect to the
weak convergence. So, in order to prove the statement of the theorem, it is
sufficient to prove that this family admits exactly one adherence value. We
proceed a reductio ad absurdum. We assume in the following that the family
admits at least two adherence values.

Step 2: As the condition (M3) is true, there are exactly three stationary mea-
sures : u0ǫ , u

+
ǫ and u−ǫ . By Theorem 1.6, we know that A⋂{

u0ǫ ; u
+
ǫ ; u−ǫ

}
6= ∅.

We split this step into four cases:

•
{
u0ǫ ; u

+
ǫ

}
⊂ A.

• A⋂{
u0ǫ ; u

+
ǫ ; u−ǫ

}
=

{
u0ǫ

}
.

• A⋂{
u0ǫ ; u

+
ǫ ; u−ǫ

}
= {u+ǫ ; u−ǫ }.

• A⋂{
u0ǫ ; u

+
ǫ ; u−ǫ

}
= {u+ǫ }.

By symmetry, we will not deal with the two following cases:
{
u0ǫ ; u

−
ǫ

}
⊂ A

and A⋂{
u0ǫ ; u

+
ǫ ; u−ǫ

}
= {u−ǫ }.

Step 2.1: First case:
{
u0ǫ ; u

+
ǫ

}
⊂ A. According to Proposition 1.8, we have
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the following equality:

Υǫ

(
u0ǫ

)
= L0 = Υǫ

(
u+ǫ

)
with L0 := lim

t→+∞
Υǫ (ut) .

The hypothesis (M3) implies Υǫ

(
u0ǫ

)
> Υǫ (u

+
ǫ ). This is impossible.

Step 2.2: We will now prove that the second case: A⋂{
u0ǫ ; u

+
ǫ ; u−ǫ

}
={

u0ǫ
}

is impossible. It will be the core of the proof.
Step 2.2.1: Set u∞ an other adherence value of the family (ut)t∈R+

. Proposi-

tion 2.5 tells us Υǫ (u∞) ≤ Υǫ

(
u0ǫ

)
. Since u∞ 6= u0ǫ , Lemma 2.4 implies u∞ is

not symmetric. We deduce there exists l ∈ N such that
∫
R
x2l+1u∞(x)dx 6= 0.

Set R > 0. We introduce the following function:

ϕ(x) := x2l+1
1[−R;R](x)

+ x2l+1
1[R;R+1](x)Z

−1

∫ R+1

x

exp

[
− 1

(y −R)2
− 1

(y −R− 1)2

]
dy

+ x2l+1
1[−R−1;−R](x)Z

−1

∫ x

−R−1
exp

[
− 1

(y +R)2
− 1

(y +R+ 1)2

]
dy

with Z :=

∫ 1

0
exp

[
− 1

z2
− 1

(z − 1)2

]
dz .

By construction, ϕ is an odd function so
∫
R
ϕ(x)u0ǫ (x)dx = 0. Furthermore,

|ϕ(x)| ≤ |x|2l+1. By using the triangular inequality and (FM), we have:
∣∣∣∣
∫

R

ϕ(x)u∞(x)dx

∣∣∣∣ ≥
∣∣∣∣
∫

R

x2l+1u∞(x)dx

∣∣∣∣−
∫

[−R;R]c
|x|2l+1 u∞(x)dx

≥
∣∣∣∣
∫

R

x2l+1u∞(x)dx

∣∣∣∣−
1

R3
C0

where C0 := supt∈R+

∫
R
|x|2l+4ut(x)dx < +∞. Since

∫
R
x2l+1u∞(x)dx 6= 0,

we deduce that
∫
R
ϕ(x)u∞(x)dx 6= 0 for R big enough. Consequently, we

obtain the existence of a smooth function ϕ with compact support such that

0 =

∫

R

ϕ(x)u0ǫ (x)dx <

∫

R

ϕ(x)u∞(x)dx =: 3κ

with κ > 0. Moreover, we can verify that ϕ′(x)2 ≤ C(R)x4l+2 for all x ∈ R.
This implies: supt∈R+

∫
R
ϕ′(x)2ut(x)dx < +∞.

Step 2.2.2: By definition of A, there exist two increasing sequences (t
(1)
k )k

(resp. (t(2)k )k) such that u
t
(1)
k

(resp. u
t
(2)
k

) converges weakly towards u0ǫ (resp.

u∞). We deduce there exist two increasing sequences (rk)k and (sk)k such
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that
∫
R
ϕ(x)urk(x)dx = κ and

∫
R
ϕ(x)usk(x)dx = 2κ. Then, for all k ∈ N,

we put r̂k := sup
{
t ∈ [0; sk] |

∫
R
ϕ(x)ut(x)dx = κ

}
then we define ŝk :=

inf
{
s ∈ [r̂k; sk] |

∫
R
ϕ(x)us(x)dx = 2κ

}
. For simplicity, we write rk (resp.

sk) instead of r̂k (resp. ŝk). And, we have:

κ =

∫

R

ϕ(x)urk(x)dx ≤
∫

R

ϕ(x)ut(x)dx ≤
∫

R

ϕ(x)usk(x)dx = 2κ

for all t ∈ [rk; sk].
Step 2.2.3: By applying Proposition A.1, we deduce there exists an increas-
ing sequence (qk)k converging to +∞ such that (uqk)k converges weakly
towards a stationary measure uǫ verifying

∫
R
ϕ(x)uǫ(x)dx ∈ [κ; 2κ]. As the

set A⋂ {u+ǫ ; u−ǫ } is empty, we deduce uǫ = u0ǫ . This is impossible since∫
R
ϕ(x)u0ǫ (x)dx = 0 /∈ [κ; 2κ].

Step 2.3: We deal now with the third case: A⋂{
u0ǫ ; u

+
ǫ ; u−ǫ

}
= {u+ǫ ; u−ǫ }.

Step 2.3.1: By definition of u+ǫ and u−ǫ , we know that these measures are not
symmetric. Consequently, there exists l ∈ N such that

∫
R
x2l+1u+ǫ (x)dx 6= 0.

As u−ǫ (x) = u+ǫ (−x), by proceeding as in Step 2.2.1 and Step 2.2.2 and
after the application of Proposition A.1, we deduce there exists an increasing
sequence (qk)k∈N which converges to ∞ such that uqk converges weakly to-
wards a stationary measure uǫ which verifies

∫
R
ϕ(x)uǫ(x)dx ∈ [κ; 2κ] where

ϕ is a smooth function with compact support such that
∫
R
ϕ(x)u±ǫ (x)dx /∈

[κ; 2κ]. We deduce that uǫ = u0ǫ which contradicts u0ǫ /∈ A.

Step 2.4: We consider now the last case: A⋂{
u0ǫ ; u

+
ǫ ; u−ǫ

}
= {u+ǫ }. Propo-

sition 1.8 implies that Υǫ(ut) converges towards Υǫ(u
+
ǫ ). Set u∞ a limit value

of the family (ut)t∈R+
which is not u+ǫ . By Proposition 2.5, we know that

Υǫ (u∞) ≤ Υǫ (u
+
ǫ ) = lim

t−→+∞
Υǫ(ut). Then, Lemma 2.3 implies u∞ = u−ǫ /∈

A.

Conclusion The family (ut)t∈R+
admits only one adherence value with re-

spect to the weak convergence. So ut converges weakly towards a stationary
measure that achieves the proof. �

3. Bassins of attraction. Now, we shall provide some condition in
order to precise the limit.

3.1. Domain of u0ǫ .

Theorem 3.1. Set a symmetric probability measure du0 which verifies
(FE) and (ES). We assume that V ′′(0)+F ′′(0) 6= 0. Then, for ǫ small enough
ut converges weakly towards u0ǫ .
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Proof. V ′′(0) + F ′′(0) 6= 0 and both functions V ′′ and F ′′ are convex.
Theorem 7.3 and 7.4 in [HT09] imply the existence and the uniqueness of a
symmetric stationary measure u0ǫ for ǫ small enough.

Theorem 1.6 provides the existence of a stationary measure uǫ and an in-
creasing sequence (tk)k which converges to ∞ such that utk converges weakly
towards uǫ and Υǫ(ut) converges towards Υǫ(uǫ). As ut is symmetric for all
t ≥ 0, we deduce uǫ = u0ǫ , the unique symmetric stationary measure.

We proceed a reductio ad absurdum by assuming there exists an other se-
quence (sk)k which converges to ∞ such that usk does not converge weakly
towards u0ǫ . The uniform boundedness of the second moment with respect to
the time permits to extract a subsequence (that we continue to write (sk)k
for simplicity) such that usk converges weakly towards u∞ 6= u0ǫ . Proposi-
tion 2.5 implies Υǫ(u∞) ≤ Υǫ(u

0
ǫ ). Lemma 2.4 implies u∞ = u0ǫ . This is

absurd.

Remark 3.2. We assume V ′′(0) + F ′′(0) 6= 0 in order to have a unique
symmetric stationary measure for ǫ small enough. We can extend to the case
V ′′(0) + F ′′(0) = 0 by using the half-uniform propagation of chaos, see The-
orem 6.5 in [Tug10]. We can also assume that n = 2 that means deg(F ) = 4
by Subsection 4.2 in [HT10a].

Remark 3.3. In the previous theorem, if we have assumed (FM) instead
of (ES), we could have applies directly Theorem 2.1.

3.2. Domain of u±ǫ . The principal tool of the previous theorem is the
stability of the subset of all the symmetric stationary measures with a fi-
nite 8q2-moment. If we could find an invariant subset which contains u+ǫ
but neither u0ǫ nor u−ǫ , we could apply the same method for obtaining the
convergence towards u+ǫ .

Instead of this, we will consider some inequality linked to the meta-potential
and we will exhibit a simple subset included in the domain of attraction of
u+ǫ . Let us first introduce the following hyperplan:

H :=

{
u ∈ C∞ (R ; R+)

∣∣∣
∫

R

x8q
2
u(x)dx <∞ and

∫

R

xu(x)dx = 0

}
.

Theorem 3.4. Set a probability measure du0 which verifies (FE) and
(FM). We assume also

Υǫ (u0) < inf
u∈H

Υǫ(u) and

∫

R

xu0(x)dx > 0 .

Under (M3), ut converges weakly towards u+ǫ .



CONVERGENCE FOR SELF-STABILIZING PROCESSES 25

Proof. We know by Theorem 2.1 that there exists a stationary measure
uǫ such that (ut)t converges weakly towards uǫ. And, by Proposition 1.8,
Υǫ(ut) converges towards Υǫ(uǫ).

Step 1: As
∫
R
xu0ǫ (x)dx = 0 and

∫
R
x8q

2
u0ǫ (x)dx < +∞, we have

Υǫ

(
u0ǫ

)
≥ inf

u∈H
Υǫ(u) > Υǫ (u0) .

We deduce uǫ 6= u0ǫ since t 7→ ξ(t) = Υǫ(ut) is nonincreasing.

Step 2. We proceed now a reductio ad absurdum by assuming uǫ = u−ǫ .
There exists t0 > 0 such that

∫
R
xut0(x)dx = 0. Consequently:

Υǫ (ut0) ≥ inf
u∈H

Υǫ(u) > Υǫ (u0)

which contradicts the fact that ξ is non-increasing.

Step 3. Assumption (M3) implies the weak convergence towards u+ǫ .

We use now Theorem 3.4 in some particular cases.

Theorem 3.5. Set a probability measure du0 which verifies (FE) and
(FM). We assume also

Υ(u0) < V (x0) +
1

4
F (2x0) and

∫

R

xu0(x)dx > 0

where x0 is defined in the introduction. Under either Condition (LIN) or
Condition (SYN), for ǫ small enough ut converges weakly towards u+ǫ .

Proof. Step 1. Theorem 3.2 in [HT10a] and Theorem 1.11 imply Con-
dition (M3) under (LIN) or (SYN).

Step 2. Lemma A.3 provides the following limit:

lim
ǫ−→0

Υǫ(u
0
ǫ ) = V (x0) +

1

4
F (2x0) .

Then, we deduce

lim
ǫ−→0

inf
u∈H

Υǫ(u) ≤ V (x0) +
1

4
F (2x0) .(3.1)

Step 3. We prove now that V (x0) +
1

4
F (2x0) = lim

ǫ−→0
inf
u∈H

Υǫ(u). Indeed, if

u is a probability measure such that
∫
R
xu(x)dx = 0, it verifies the following



26 J. TUGAUT

inequality:

Υǫ(u) ≥ Υ−
ǫ (u) +

F ′′(0)

4

∫∫

R
2
(x− y)2u(x)u(y)dxdy

≥ Υ−
ǫ (u) +

F ′′(0)

2

∫

R

x2u(x)dx .

By using (1.1), it yields

Υǫ(u) ≥ − ǫ
4
− 4ǫ

exp(1)
+

∫

R

{
V (x) +

F ′′(0)

2
x2 − ǫx2

4

}
u(x)dx .(3.2)

We split now the study depending on whether we use Condition (LIN) or
Condition (SYN):

(LIN) If F ′ is linear, α2x
2 = 1

4F (2x). So the minimum of x 7→ V (x)+ 1
4F (2x)

is V (x0) +
1
4F (2x0). We can easily prove that

min
x∈R

(
V (x) +

α

2
x2 − ǫ

4
x2

)
= V (x0) +

1

4
F (2x0)−

ǫ

4
x20 + o(ǫ) .

Consequently:

Υǫ(u) ≥ − ǫ
4
− 4ǫ

exp(1)
+ V (x0) +

1

4
F (2x0)−

ǫ

4
x20 + o(ǫ)

for all u ∈ H. Then, lim
ǫ−→0

min
u∈H

Υǫ(u) ≥ V (x0)+
1

4
F (2x0). The inequality

(3.1) provides lim
ǫ−→0

inf
u∈H

Υǫ(u) = V (x0) +
1

4
F (2x0).

(SYN) If V ′′(0)+F ′′(0) > 0, (3.2) implies Υǫ(u) ≥ − ǫ
4− 4ǫ

exp(1) for all u ∈ H
since ǫ is less than 2 (V ′′(0) + F ′′(0)). We deduce that lim

ǫ−→0
inf
u∈H

Υǫ(u) ≥
0. However, as V ′′(0) + F ′′(0) > 0, Theorem 5.4 in [HT10b] implies
x0 = 0 so V (x0) +

1
4F (2x0) = 0. The inequality (3.1) provides the

following limit: lim
ǫ−→0

inf
u∈H

Υǫ(u) = 0 = V (x0) +
1

4
F (2x0).

Step 4. Consequently, Υǫ(u0) < infu∈HΥǫ(u) for ǫ small enough. Then, we
apply Theorem 3.4.

Remark 3.6. We can replace
∫
R
xu0(x)dx > 0 by

∫
R
xu0(x)dx < 0 in

Theorem 3.4 and 3.5 then the same results holds with u−ǫ instead of u+ǫ .
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APPENDIX A: APPENDIX

In this appendix, we present some results used previously in the proofs of
the main theorems which were postponed here.

Proposition A.1 permits to ensure that even if the free-energy does not reach
its global minimum on the stationary measure u0ǫ , if the unique symmetric
stationary measure is an adherence value, then it is unique.

Proposition A.2 is a general result on the self-stabilizing processes. Indeed, it
is well-known that dut is absolutely continuous with respect to the Lebesgue
measure. Proposition A.2 extends this instantaneous regularization to the
finiteness of all the moments since t > 0.

Lemma A.3 consists in asymptotic computation of the free-energy in the
small-noise limit for some useful measures. Lemma A.4 is a Laplace method
tedious computation necessary for avoiding to assume that any family of
stationary measures verify Condition (H).

We present now the essential proposition for proving Theorem 2.1.

Proposition A.1. Set a probability measure du0 which verifies (FE)
and (FM). We assume the existence of two polynomial functions P and Q,
a smooth function ϕ with compact support such that |ϕ(x)| ≤ P(x) and
|ϕ′(x)|2 ≤ Q(x), κ > 0 and two sequences (rk)k and (sk)k which converge to
∞ such that for all rk ≤ t ≤ sk < rk+1:

κ =

∫

R

ϕ(x)urk(x)dx ≤
∫

R

ϕ(x)ut(x)dx ≤
∫

R

ϕ(x)usk(x)dx = 2κ .

Then, there exists a stationary measure uǫ which verifies
∫
R
ϕ(x)uǫ(x)dx ∈

[κ; 2κ] and an increasing sequence (qk)k which converges to ∞ such that uqk
converges weakly towards uǫ.

Proof. Step 1: We will prove that lim sup
k−→+∞

(sk − rk) > 0. We introduce

the function :

Φ(t) :=

∫

R

ϕ(x)ut(x)dx .

This function is well-defined since |ϕ| is bounded by a polynomial function.
The derivation of Φ, the use of equation (III) and an integration by part lead
to:

Φ′(t) = −
∫

R

ϕ′(x)

{
ǫ

2

∂

∂x
ut(x) + ut(x)

(
V ′(x) + F ′ ∗ ut(x)

)}
dx

= −
∫

R

ϕ′(x)ηt(x)dx .
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The Cauchy-Schwarz inequality implies

∣∣Φ′(t)
∣∣ ≤

√
|ξ′(t)|

√∫

R

(ϕ′(x))2 ut(x)dx

where we recall that ξ(t) = Υǫ (ut). The function (ϕ′)2 is bounded by a
polynomial function and

∫
R
x2Nut(x) is uniformly bounded with respect to

t ∈ R+ for all N ∈ N. So, there exists C > 0 such that
∫
R
(ϕ′(x))2 ut(x)dx ≤

C2 for all t ∈ R+. We deduce
∣∣Φ′(t)

∣∣ ≤ C
√
|ξ′(t)| .(A.1)

By definition of the two sequences (rk)k and (sk)k, we have

Φ(sk)− Φ(rk) = κ .

Combining this identity with (A.1), it yields

C

∫ sk

rk

√
|ξ′(t)|dt ≥ κ .

We apply the Cauchy-Schwarz inequality and obtain:

C
√
sk − rk

√
ξ(rk)− ξ(sk) ≥ κ

since ξ is non-increasing (see Proposition 1.2). Moreover, ξ(t) converges as t
converges to ∞ (see Lemma 1.4). It implies the convergence of ξ(rk)− ξ(sk)
towards 0 when k tends to +∞. Consequently, sk − rk converges to +∞ so
lim sup
k−→+∞

sk − rk > 0.

Step 2: By Lemma 1.4, Υǫ(ut)−Υǫ(uǫ) =
∫∞
t
ξ′(s)ds converges to 0. As ξ′

is nonpositive, we deduce that
∑∞

k=N

∫ sk
rk
ξ′(s)ds converges also to 0 when

N tends to +∞. As lim sup
k−→+∞

sk− rk > 0, we deduce there exists an increasing

sequence qk ∈ [rk; sk] which converges to ∞ and such that ξ′ (qk) converges to
0 when k tends to ∞. Furthermore,

∫
R
ϕ(x)uqk(x)dx ∈ [κ; 2κ] for all k ∈ N.

Step 3: By proceeding similarly as in the proof of Theorem 1.6, we extract a
subsequence of (qk)k (we continue to write it qk for simplifying the reading)
such that uqk converges weakly towards a stationary measure uǫ. Moreover,
uǫ verifies

∫
R
ϕ(x)uǫ(x)dx ∈ [κ; 2κ].

We provide now a result that allows us to get the results of the main
theorem (Theorem 2.1) with less strong condition:
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Proposition A.2. Let a probability measure du0 which verifies (FE)
and (ES). Then, for all t > 0, dut satisfies (FM).

Proof. Step 1: If du0 verifies (FM) then dut satisfies (FM) for all t > 0,
see Theorem 2.12 in [HIP08]. We assume now that du0 does not satisfy
(FM). Let us introduce l0 := min

{
l ≥ 0 | E

[
X2l

0

]}
= +∞. We know that

E

[
X2l0−2
t

]
< +∞ for all t ≥ 0.

Step 2: Set t0 > 0. We proceed a reduction ad absurdum by assuming

that E

[
X2l0
t0

]
= +∞. This implies directly E

[
X2l0
t

]
= +∞ for all t ∈

[0, t0]. We recall that 2m (resp. 2n) is the degree of the confining (resp.
interaction) potential V (resp. F ). Also, q := max {m ; n}. For all t ∈ [0, t0],
the application x 7→ F ′ ∗ ut(x) is a polynomial function with parameters
m1(t), · · · ,m2n−1(t), where mj(t) is the j-th moment of the law dut. We
recall the inequality (V):

sup
1≤j≤8q2

sup
t∈[0,t0]

mj(t) ≤M0 .

Consequently, the application x 7→ V ′(x)+F ′∗ut(x) is a polynomial function
with degree 2q − 1. Furthermore, the principal term does not depend of the
moments of the law dut so we can write:

V ′(x) + F ′ ∗ ut(x) = κ2q−1x
2q−1 + Pt(x)

where κ2q−1 ∈ R
∗
+ is a constant, and Pt is a polynomial function with degree

at most 2q − 2. Moreover, Pt is parametrized by the 2n first moments only.
Set l ∈ N. We introduce the function Qt(x) := 2lx2q−1Pt(x)− l(2l−1)ǫx2l−2.
As Qt is a polynomial function of degree less than 2l + 2q − 3, we have the
following inequality:

2lκ2q−1x
2l+2q−2 +Qt(x) ≥ Cl

(
x2l+2q−2 − 1

)
(A.2)

where Cl is some positive constant. The application of Ito formula provides:

dX2l
t = 2lX2l−1

t

√
ǫdBt −

[
2lκ2q−1X

2l+2q−2
t +Qt (Xt)

]
dt .

After integration, we obtain:

X2l
t0

= X2l
0 + 2l

√
ǫ

∫ t0

0
X2l−1
t dBt

−
∫ t0

0

[
2lκ2q−1X

2l+2q−2
t +Qt (Xt)

]
dt .
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We put ΩR := 1{supu∈[0,t0]
|Xu|≤R} for all R > 0. We take now the expectation

after multiplying by ΩR:

E

[
X2l
t0
ΩR

]
= E

[
X2l

0 ΩR

]
−
∫ t0

0
E

[(
2lκ2q−1X

2l+2q−2
t +Qt (Xt)

)
ΩR

]
dt

≤ E

[
X2l

0

]
+ Clt0 − Cl

∫ t0

0
E

[
X2l+2q−2
t ΩR

]
dt

after using (A.2). We take l := l0 + 1− q:

0 ≤ E

[
X2l0+2−2q
t0

ΩR

]
≤ C1 − C2

∫ t0

0
E

[
X2l0
t ΩR

]
dt

where C1 and C2 are positive constants. As R 7→ ΩR is increasing and
converges towards 1 almost surely when R tends to +∞, we deduce the

pointwise convergence of E
[
X2l0
t ΩR

]
towards E

[
X2l0
t

]
= +∞ when R tends

to +∞. Also, the application R 7→ E

[
X2l0
t ΩR

]
being increasing for all t ∈

[0, t0], it yields the convergence of
∫ t0
0 E

[
X2l0
t ΩR

]
dt towards +∞ when R

tends towards +∞ which implies E

[
X2l0+2−2q
t0

ΩR

]
< 0 for R big enough.

This contradicts the fact that E

[
X2l0+2−2q
t0

ΩR

]
is positive for all R and

increasing with respect to R. Consequently, for all t0 > 0, E
[
X2l0
t0

]
< +∞.

Step 3: Set T > 0 and l1 ∈ N such that l1 ≥ l0 where the integer l0 is
defined as previously: l0 := min

{
l ≥ 0 | E

[
X2l

0

]
= +∞

}
. If l1 = l0, the

application of Step 2 leads to E

[
X2l1
T

]
< +∞. If l1 > l0, we put ti :=

i
l1+1−l0

T for all 1 ≤ i ≤ l1 + 1 − l0. We apply Step 2 to t1 and we deduce

E

[
X2l0
t1

]
< +∞. By recurrence, we deduce E

[
X2l0+2i
ti

]
< +∞ for all 1 ≤ i ≤

l1+1− l0, in particular E
[
X

2l0+2(l1−l0)
tl0−l1

]
< +∞ that means E

[
X2l1
T

]
< +∞.

This inequality holds for all l1 ≥ l0 so the probability measure duT satisfies
(FM).

In order to get the thirdness of the stationary measure (or a weaker result,
see Theorem 1.11), we need to compute the small noise limit of the free-
energy for the stationary measures u+ǫ , u−ǫ and u0ǫ .

Lemma A.3. Set ǫ0 such that there exist three families of stationary mea-
sures (u+ǫ )ǫ∈]0;ǫ0], (u

−
ǫ )ǫ∈]0;ǫ0] and

(
u0ǫ

)
ǫ∈]0;ǫ0]

which verify

lim
ǫ→0

u±ǫ = δ±a and lim
ǫ→0

u0ǫ =
1

2
δx0 +

1

2
δ−x0
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where x0 is defined in the introduction. Then, we have the following limits:

lim
ǫ→0

Υǫ

(
u±ǫ

)
= V (a) and lim

ǫ→0
Υǫ

(
u0ǫ

)
= V (x0) +

1

4
F (2x0) .

Plus, by considering the measure v+ǫ (x) := Z−1 exp
[
−2
ǫ
(V (x) + F (x− a))

]
,

we have:

lim
ǫ→0

Υǫ

(
v+ǫ

)
= V (a) .

Proof. Step 1: We begin to prove the result for u0ǫ .

Step 1.1: We can write u0ǫ (x) = Z−1 exp
[
−2
ǫ

(
V (x) + F ∗ u0ǫ (x)

)]
since it

is a stationary measure. Hence

Υǫ

(
u0ǫ

)
= − ǫ

2
log

(∫

R

exp

[
−2

ǫ

(
V (x) + F ∗ u0ǫ (x)

)]
dx

)

− 1

2

∫∫

R
2
F (x− y)u0ǫ (x)u

0
ǫ (y)dxdy .

It has been proved in [HT09] (Theorem 3.1 if V ′′(0) + F ′′(0) > 0, Corollary
3.6 if V ′′(0)+F ′′(0) = 0 and Theorem 4.5 if V ′′(0)+F ′′(0) < 0 applied with
f2l(x) := x2l) that the 2l-th moment of u0ǫ tends towards x2l0 for all l ∈ N.
Since F is a polynomial function, we get the convergence of

∫∫
R
2 F (x −

y)u0ǫ (x)u
0
ǫ (y)dxdy towards F (2x0)

2 .
Step 1.2: If V ′′(0) + F ′′(0) 6= 0, we can apply Lemma A.4 in [HT09] to
f(x) := 1 and Uǫ(x) := V (x) + F ∗ u0ǫ (x). This provides

∫

R

exp

[
−2

ǫ

(
V (x) + F ∗ u0ǫ (x)

)]
dx = Cǫ exp

[
−2

ǫ

(
V (x0) +

F (2x0)

2

)]

where the constant Cǫ verifies ǫ log(Cǫ) −→ 0 in the small noise limit. We
deduce

− ǫ
2
log

(∫

R

exp

[
−2

ǫ

(
V (x) + F ∗ u0ǫ (x)

)]
dx

)
−→ V (x0) +

F (2x0)

2

when ǫ −→ 0. Consequently, we get the following limit:

Υǫ

(
u0ǫ

)
−→ V (x0) +

1

4
F (2x0) .

Step 1.3: We assume now V ′′(0) + F ′′(0) = 0. Then x0 = 0 according
to Proposition 3.7 and Remark 3.8 in [HT10b]. Proposition 3.2 and 3.3 in
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[HT09] imply

0 < lim inf
ǫ→0

ǫ
1

2m0

∫

R

exp

[
−2

ǫ

(
V (x) + F ∗ u0ǫ (x)

)]
dx

and lim sup
ǫ→0

ǫ
1

2m0

∫

R

exp

[
−2

ǫ

(
V (x) + F ∗ u0ǫ (x)

)]
dx < +∞

where m0 ∈ N
∗ depends only on V and F . We deduce

− ǫ
2
log

(∫

R

exp

[
−2

ǫ

(
V (x) + F ∗ u0ǫ (x)

)]
dx

)
−→ 0

when ǫ −→ 0. Consequently, we get the following limit:

Υǫ

(
u0ǫ

)
−→ 0 = V (x0) +

1

4
F (2x0) .

Step 2: We prove now the result for u+ǫ (the proof is similar for u−ǫ ).

Step 2.1: We can write u+ǫ (x) = Z−1 exp
[
−2
ǫ
(V (x) + F ∗ u+ǫ (x))

]
since it

is a stationary measure. Hence

Υǫ

(
u+ǫ

)
= − ǫ

2
log

(∫

R

exp

[
−2

ǫ

(
V (x) + F ∗ u+ǫ (x)

)]
dx

)

− 1

2

∫∫

R
2
F (x− y)u+ǫ (x)u

+
ǫ (y)dxdy .

It has been proved in [HT09] (Theorem 6.3 applied with fl(x) := xl) that
the l-th moment of u+ǫ tends towards al for all l ∈ N. Since F is a polynomial
function, we obtain the convergence of

∫∫
R
2 F (x−y)u+ǫ (x)u+ǫ (y)dxdy towards

0.
Step 2.2: Since the second derivative of the application x 7→ V (x)+F (x−a)
in a is positive, we can apply Lemma A.4 in [HT09] to f(x) := 1 and Uǫ(x) :=

V (x) + F ∗ u+ǫ (x) (after noting that U (i)
ǫ (x) tends to V (i)(x) + F (i)(x − a)

uniformly on each compact for all i ∈ N). This provides
∫

R

exp

[
−2

ǫ

(
V (x) + F ∗ u+ǫ (x)

)]
dx = Cǫ exp

[
−2

ǫ
V (a)

]

where the constant Cǫ verifies ǫ log(Cǫ) −→ 0 in the small noise limit. We
deduce

− ǫ
2
log

(∫

R

exp

[
−2

ǫ

(
V (x) + F ∗ u+ǫ (x)

)]
dx

)
−→ V (a)

when ǫ −→ 0. Consequently, we get the following limit:

Υǫ

(
u0ǫ

)
−→ V (a) .

Step 3: We proceed similarly for v+ǫ .
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We provide here a useful asymptotic result linked to the Laplace method.

Lemma A.4. Let Uk and U ∈ C∞ (R,R) such that for all i ∈ N, U
(i)
k

converges uniformly on all compact subset when k tends to +∞. Set a se-
quence (ǫk)k which tends to 0 as k tends to +∞. If U has r global minimum
locations A1 < · · · < Ar and if there exist R > 0 and kc such that Uk(x) > x2

for all |x| > R and k > kc, then, for k big enough, we get:

1. Uk has exactly one global minimum location A
(k)
j on each interval Ij, where

Ij represents the Voronoï cells corresponding to the central points Aj, with
1 ≤ j ≤ r.

2. A
(k)
j tends to Aj when k tends to +∞.

Furthermore, for all N ∈ N, there exists p1, · · · , pr which verify p1+· · ·+pr =
1 and pi ≥ 0 for all 1 ≤ i ≤ r such that we can extract a subsequence ψ(k)
which satisfies

lim
k→+∞

∫
R
xl exp

[
− 2
ǫψ(k)

Uψ(k)

]
dx

∫
R
exp

[
− 2
ǫψ(k)

Uψ(k)

]
dx

=
r∑

j=1

pjA
l
j

for all 1 ≤ l ≤ N .

Proof. 1. The first point of the lemma is exactly the one of Lemma A.4
in [HT09].

2. Since Uk(x) ≥ x2 for x ≥ R and k > kc, we can confine each A
(k)
j in a

compact subset. Then, the uniform convergence on all the compact subset
implies the convergence of A(k)

j towards Aj when k tends to +∞.

3. Set ρ > 0 arbitrarily small such that [Aj − ρ,Aj + ρ] ⊂ Ij . For obvious
reasons, we can extract a subsequence such that

∫ Ai+ρ
Ai−ρ

exp
[
− 2
ǫψ(k)

Uψ(k)(x)
]
dx

∑r
j=1

∫ Aj+ρ
Aj−ρ

exp
[
− 2
ǫψ(k)

Uψ(k)(x)
]
dx

−→ λi(ρ)

with λi(ρ) ≥ 0 for all 1 ≤ i ≤ r and
∑r

j=1 λj(ρ) = 1.
We can note that the generation of the sequence ψ(k) depends on the choice
of ρ. Consequently, in the following, we can take ρ arbitrarily small then ǫψ(k)
arbitrarily small.

As the r families (λj(ρ)) are bounded, we can extract a subsequence (ρp)p
such that λj(ρp) tends to λj when p tends to +∞. Furthermore, λj ≥ 0 for
all 1 ≤ j ≤ r and

∑r
j=1 λj = 1. For simplicity, we will write ρ (resp. k)
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instead of ρp (resp. ψ(k)).

We introduce the function ζ
(k)
l (x) := xl exp

[
− 2
ǫk
Uǫk(x)

]
for all l ∈ N. By

using classical analysis’ inequality, we obtain:

∣∣∣∣∣∣

∫
R
ζ
(k)
l (x)dx

∫
R
ζ
(k)
0 (x)dx

−
r∑

j=1

λjA
l
j

∣∣∣∣∣∣
≤ T1 + T2 + T3 + T4 + T5

(A.3)

with T1(ρ) :=

∣∣∣∣∣∣

r∑

j=1

(λj − λj(ρ))A
l
j

∣∣∣∣∣∣
, T2 (ρ,R) := ρlRl−1,

T3 (ρ, k) :=
r∑

j=1

∫
Ij

⋂
[Aj−ρ,Aj+ρ]

c ζ
(k)
l (x)dx

∫
R
ζ
(k)
0 (x)dx

, T4 (R, k) := 2

∫ +∞
R

ζ
(k)
l (x)dx

∫
R
ζ
(k)
0 (x)dx

and

T5 (ρ,R, k) :=
r∑

j=1

|Aj |l
∣∣∣∣∣∣

∫ Aj+ρ
Aj−ρ

ζ
(k)
0 (x)dx

∫
R
ζ
(k)
0 (x)dx

− λj(ρ)

∣∣∣∣∣∣
≤




r∑

j=1

|Aj |l

 (T3 + T4) .

Set τ > 0 arbitrarily small. We take R ≥ 2 such that

max
z∈[A1−1;A1+1]

U(z) + 2 <
R2

2

3.1: The convergence of λj(ρ) towards λj implies the existence of ρ0 > 0
such that for all ρ < ρ0, we have:

T1(ρ) ≤
τ

5
(A.4)

for all 1 ≤ l ≤ N .

3.2: By taking ρ < min
{
ρ0 ; min1≤l≤N

τ
5lRl−1

}
, we get:

T2 (ρ,R) ≤
τ

5
(A.5)

for all 1 ≤ l ≤ N .

3.3: We will prove that the third term tends to 0. It is sufficient to prove
the following convergence:

∫
Ij

⋂
[Aj−ρ,Aj+ρ]

c ζ
(k)
l (x)dx

∫
[Aj−ρ,Aj+ρ]

ζ
(k)
0 (x)dx

−→ 0
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for all 1 ≤ j ≤ r. Since Ij ⊂ [−R,R], we have

∫
Ij

⋂
[Aj−ρ,Aj+ρ]

c ζ
(k)
l (x)dx

∫
[Aj−ρ,Aj+ρ]

ζ
(k)
0 (x)dx

≤ Rl

∫
Ij

⋂
[Aj−ρ,Aj+ρ]

c ζ
(k)
0 (x)dx

∫
[Aj−ρ,Aj+ρ]

ζ
(k)
0 (x)dx

.

Let us prove the convergence towards 0 of the right hand term:

∫
Ij

⋂
[Aj−ρ,Aj+ρ]

c ζ
(k)
0 (x)dx

∫
[Aj−ρ,Aj+ρ]

ζ
(k)
0 (x)dx

≤ Rl+1
sup

{
ζ
(k)
0 (z) ; z ∈ Ij

⋂
[Aj − ρ,Aj + ρ]c

}

∫ Aj+ ρ

2

Aj−
ρ

2
ζ
(k)
0 (x)dx

≤ Rl+1

ρ

sup
{
ζ
(k)
0 (z) ; z ∈ Ij

⋂
[Aj − ρ,Aj + ρ]c

}

inf
{
ζ
(k)
0 (z) ; z ∈

[
Aj − ρ

2 , Aj +
ρ
2

]}

≤ Rl+1

ρ
exp



− 2

ǫk


 inf
z∈Ij∩[Aj−ρ,Aj+ρ]

c
Uk(z)− sup

z∈[Aj− ρ

2
,Aj+

ρ

2 ]
Uk(z)







Let ρ1 > 0 such that for all ρ < ρ1, we have:

min
1≤j≤r



 inf
z∈Ij∩[Aj−ρ,Aj+ρ]

c
U(z)− sup

z∈[Aj− ρ

2
,Aj+

ρ

2 ]
U(z)



 ≥ δ > 0 .

We take ρ < min
{
ρ0, ρ1,min1≤l≤N

τ
5lRl−1

}
. As Uk converges uniformly to-

wards U on all the compact subset, we deduce that for k ≥ k0, we have:

T3 (ρ, k) ≤
τ

5
(
1 + max1≤l≤N

∑r
j=1 |Aj |l

)(A.6)

for all 1 ≤ l ≤ N .

3.4: By using the growth property on Uk then the change of variable x :=√
ǫky, it yields

∫ +∞

R

ζ
(k)
l (x) ≤

∫ +∞

R

xl exp

[
− 2

ǫk
x2

]
dx ≤ C(l)e

−R2

ǫk ǫ
l+1
2
k

where C(l) is a constant. We recall that we assume max
z∈[A1−1;A1+1]

U(z) +

2 <
R2

2
. Since Uk converges U uniformly on all the compact subset, we
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have maxz∈[A1−1;A1+1] Uk(z) + 1 < R2

2 for k ≥ k1 (independantly of ρ).
Consequently:

T4 (R, k) ≤
2C(l)ǫ

l+1
2
k exp

[
− 2
ǫk

(
maxz∈[A1−1;A1+1] Uk(z) + 1

)]

∫ A1+1
A1−1 exp

[
− 2
ǫk
Uk(z)

]
dx

≤ C(l)ǫ
l+1
2
k exp

[
− 2

ǫk

]
.

For k ≥ k2, we have the inequality

ǫ
l+1
2
k exp

[
− 2

ǫk

]
≤ τ

5max1≤l≤N C(l)×
(
1 + max1≤l≤N

∑r
j=1 |Aj |l

) .

By taking k ≥ max {k0, k1, k2}, we get:

T4 (R, k) ≤
τ

5
(
1 + max1≤l≤N

∑r
j=1 |Aj |l

)(A.7)

for all 1 ≤ l ≤ N .

3.5 By taking ρ < min
{
ρ0, ρ1,

τ
5lRl−1

}
and k ≥ max {k0, k1, k2}, Inequalities

(A.3), (A.4), (A.5), (A.6) and (A.7) provide
∣∣∣∣∣∣

∫
R
ζ
(k)
l (x)dx

∫
R
ζ
(k)
0 (x)dx

−
r∑

j=1

λjA
l
j

∣∣∣∣∣∣
< τ

for all 1 ≤ l ≤ N . This achieves the proof.

Remark A.5. This lemma seems weaker than Lemma A.4 in [HT09].
However, in Lemma A.4 we do not assume that the second derivative of U
is positive in all the global minimum locations.

It is a great pleasure to thank Samuel Herrmann for his remarks concerning
this work. The most of the ideas of this work have been found while I was at
the Institut Élie Cartan in Nancy. And so I wanted to mention that I would
not have been able to write it without the hospitality I received from the
beginning.
Finalement, un très grand merci à Manue et à Sandra pour tout.
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