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Abstract

This paper presents a new resolution strategy for multi-scale gas discharge simulations
based on a second order time adaptive integration and space adaptive multiresolution.
A classical fluid model is used to model plasma discharges, considering drift-diffusion
equations and electric field computation. The proposed numerical method provides a
time-space accuracy control of the solution, and thus, an effective accurate resolution
independent of the fastest physical time scale. Important improvement of computational
efficiency is achieved whenever the required time steps go beyond standard stability
constraints associated with mesh size or source time scales for the resolution of drift-
diffusion equations, whereas stability constraint related to dielectric relaxation time scale
is respected but with second order precision. Numerical illustrations show that the
strategy can be efficiently applied to simulate propagation of highly nonlinear ionizing
waves as streamer discharges, as well as highly multi-scale nanosecond repetitively pulsed
discharges, describing consistently a broad spectrum of space and time scales as well as
different physical scenarios for consecutive discharge/post-discharge phases, out of reach
of standard non-adaptive methods.
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1. Introduction

In recent years, plasma discharges at atmospheric pressure have been studied for an
increasing list of applications such as chemical and biological decontamination, aerody-
namic flow control and combustion [1, 2]. In all these physical configurations, discharges
take usually the form of thin plasma filaments driven by highly nonlinear ionizing waves,
also called streamers. These ionizing waves occur as a consequence of the high electric
field induced by fast variations of net charge density ahead of an electron avalanche with
large amplification. Streamer discharge dynamics are mainly governed by the Courant,
effective ionization and dielectric relaxation times scales [3], which are usually of the
order of 10−14 − 10−12s, whereas typical time scale of the discharge propagation in cen-
timeter gaps, is about a few tens of nanoseconds. On the other hand, large variation of
space scales needs also to be taken into account, since the Debye length at atmospheric
pressure can be as small as a few micrometers, while the interelectrode gaps, where dis-
charges propagate, are usually of the order of a few centimeters. As a result, the detailed
physics of discharges reveals an important time-space multi-scale character [4, 5].

More complex applications include plasma assisted combustion or flow control, for
which the enhancement of the gas flow chemistry or momentum transfer during typical
time scales of the flow of 10−4 − 10−3s, is due to consecutive discharges generated by
high frequency (in the kHz range) sinusoidal or pulsed applied voltages [6, 7]. Therefore,
during the post-discharge phases of the order of tens of microseconds, not only time
scales are very different from those during discharges of a few tens of nanoseconds, but
a complete different physics is taking place. Then, to the rapid multi-scale configura-
tion during discharges, we have to add other rather slower multi-scale phenomena in
the post-discharge, such as recombination of charged species, heavy-species chemistry,
diffusion, gas heating and convection. Therefore, it is very challenging to simulate accu-
rately physics of the plasma/flow interaction due to synergy effects between consecutive
discharge/post-discharge phases.

In most numerical models of streamer discharges, the motion of electrons and ions
is governed by drift-diffusion equations coupled to Poisson’s equation. Early simulation
studies were limited to simplified situations where streamer was considered as a cylinder
of constant radius [8, 9, 10, 11], in which charged particle densities are assumed to be
constant along the radial extension of the streamer: the 1.5D model approach. Spatio-
temporal evolution of charged particle densities is then solved only along one spatial
dimension in the direction of propagation, whereas electric field has to be calculated in
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two dimensions using the so-called disc method, based on direct integration of analytical
results. Since first 2D streamer simulations using Poisson’s equation resolution were
performed [12], this approach has been extensively used for streamer simulations in 2D
[3, 13, 14, 15, 16, 17, 18] and extended also to 3D [19, 20, 21, 22].

Being aware of the complexity of fully coupled resolution of these modeling equations,
a decoupling strategy is usually adopted, which considers an independent and successive
numerical resolution of Poisson’s equation with fixed charge distribution, and of drift-
diffusion equations with fixed electric field during each decoupling time step. These
computations might be performed explicitly in time with standard first and eventually
second order schemes [23, 24]. In these cases, time steps are limited for the sake of
stability by the various characteristic times scales (Courant, ionization, dielectric relax-
ation), whereas accuracy of simulations is assumed to be given by resolution of the fastest
physical time scale. In order to somehow overcome dielectric relaxation limitation, semi-
implicit approaches were developed [25, 26, 27], based on a predictive approximation of
space charge ahead in time for electric field computation, even though other time scale
constraints remain. This gain of stability allows important improvements in terms of
computational efficiency but accuracy of simulations becomes rather difficult to quan-
tify.

In this work, a numerical study is conducted in order to build a second order explicit in
time decoupling scheme for the resolution of electric field and electron and ion densities.
A lower order and embedded method is taken into account to dynamically compute
decoupling time steps that guarantee an accurate description with error control of the
global physical coupling. At this stage, the only limiting time scale is dielectric relaxation
for stability reasons. In a second level, drift-diffusion equations are solved using a Strang
second order operator splitting scheme in order to guarantee global order of the strategy
[28, 29]. This time integration scheme considers high order dedicated methods during
each splitting time step, which is dynamically adapted by an error control procedure [30],
in order to overcome time step limitations related to reaction, diffusion and convection
phenomena [31].

Both electric field and density resolutions are performed on an adapted mesh ob-
tained by a spatial multiresolution method, based on Harten’s pioneering work [32] and
further developed in [33]; being aware of the interest of adaptive mesh techniques for
spatial multi-scale phenomena with locally steep spatial gradients. In fact, grid adap-
tive techniques for 2D structured meshes were already used [23, 4, 20] and extensions to
3D have been also proposed [20, 19] for streamer simulations. However, one of the main
advantages of multiresolution approach is that it is based on wavelet representation tech-
niques and an error of the spatial approximation can be then mathematically estimated.
Consequently, an effective error control is achieved for both time and space resolution of
multi-scale phenomena under study.

The performance of the method is first evaluated for a propagating discharge prob-
lem with the multi-scale features previously discussed, for which the various simulating
parameters are studied. With the physical configuration settled, a 1.5D streamer model
is adopted in order to obtain an electric field resolution strategy based on direct compu-
tations derived from analytical expressions, suitable for adapted finite volume discretiza-
tions [34]. In a second step, a more complex physical configuration is considered for the
simulation of repetitively pulsed discharges, for which a time-space adaptive method is
required to efficiently overcome high multi-scale features in order to fully describe the
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various physical phenomena.
The paper is organized as follows: in section 2, we present the physical configuration

and modeling equations. The numerical strategy is presented in section 3, in which the
second order adaptive time integration technique is detailed along with the resolution of
drift-diffusion equations and electric field, as well as the spatial multiresolution adaptive
procedure. Numerical illustration are summarized in section 4 for two configurations
given by single propagating and multi-pulsed discharges. We end in the last part with
some concluding remarks and prospects on future developments and applications.

2. Model formulation

In this work, we consider positive streamer discharges in air at atmospheric pressure
in a point-to-plane geometry, shown in Figure 1. The tip of the anode is placed 1 cm
from the planar cathode and the radius of curvature of the anode is 324µm.

Figure 1: Computational domain for the studied point-to-plane geometry.

The most common and effective model to study streamer dynamics is based on the
following drift-diffusion equations for electrons and ions, coupled with Poisson’s equation
[35, 36]:

∂tne − ∂x · ne ve − ∂x · (De ∂xne) = neα|ve| − neη|ve|+ nenpβep + nnγ,
∂tnp + ∂x · npvp − ∂x · (Dp ∂xnp) = neα|ve| − nenpβep + nnnpβnp,
∂tnn − ∂x · nnvn − ∂x · (Dn ∂xnn) = neη|ve| − nnnpβnp − nnγ,




 (1)

ε0 ∂
2
x
V = −qe(np − nn − ne), (2)

where x ∈ R
d, ni is the density of species i (e: electrons, p: positive ions, n: negative

ions), V is the electric potential, vi = µiE (E being the electric field) is the drift velocity.
Di and µi, are diffusion coefficient and absolute value of mobility of charged species i, qe is
the absolute value of electron charge, and ε0 is permittivity of free space. α is the impact
ionization coefficient, η stands for electron attachment on neutral molecules, βep and βnp
accounts respectively for electron-positive ion and negative-positive ion recombination,
and γ is the detachment coefficient.

Electric field E and potential V are related by

E = −∂xV, (3)

and thus, Poisson’s equation (2) is deduced from

ε0 ∂x ·E = qe(np − nn − ne). (4)
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All the coefficients of the model are assumed to be functions of the local reduced
electric field E/Ngas, where E is the electric field magnitude and Ngas is the air neutral
density. For test studies presented in this paper, transport parameters for air are taken
from [37]; detachment and attachment coefficients, respectively from [38] and [39]; and
other reaction rates, also from [37].

In simulations of positive streamer discharges in air at atmospheric pressure without
any preionization, the photoionization term is crucial to produce seed charges in front of
the streamer head and then ensure the streamer propagation [24]. However, in repetitive
discharges, [40] and recently [41] have shown that even at low frequency, significant
amount of seed charges from previous discharges may be present in the interelectrode
gap. In this work, we have neglected the photoionization source term and considered
discharge conditions with a preionization background to ensure a stable propagation of
the discharge without impacting the main discharge characteristics [15, 40, 18, 42].

3. Construction of the numerical strategy

In this section, we introduce a new numerical technique for multi-scale gas discharge
simulations, based on a second order decoupled resolution of electric field and drift-
diffusion equations of electrons and ions, with self-adapted decoupling time steps with
error control. On the one hand, drift-diffusion equations are solved using a dedicated
Strang time operator splitting scheme for multi-scale phenomena. And on the other hand,
electric field is computed based on a parallel computing method, specially conceived for
the configuration under study in 1.5D geometry. Both resolutions are conducted on a
dynamic adaptive mesh using spatial multiresolution transformation with error control
of the adapted spatial representation.

3.1. Second order adaptive time integration strategy

Let us write the semi-discretized equations (1) and (4) in the following way just for
analysis purposes

dtψ = Ψ(ψ, φ),
0 = Φ(ψ, φ),

}
(5)

for t > t0, where ψ : R → R
N×m and φ : R → R

N×d, stand respectively for the
spatial discretization of (ne, np, nn), i.e. m = 3, and of E over N points. Supposing
that all functions are sufficiently differentiable in all their variables and using the Taylor
expansion of the true solution, one can write after some time ∆t from initial time t0,

ψ(t0 +∆t) = ψ0 +∆tΨ(ψ0, φ0) +
∆t2

2
[∂ψΨΨ+ ∂φΨdtφ]t=t0 +O(∆t

3), (6)

with ψ0 = ψ(t0), φ0 = φ(t0).
A second order in time resolution of system (5) must then verify (6) locally for each

∆t. However, as it was stated before, solving simultaneously (1) and (2) (or (4)), or
equivalently (5), involves important numerical difficulties, considering for instance the
different nature of equations (1) and (2) (or (4)). Therefore, a decoupled approach
is often used in which one aims at solving drift-diffusion equations and electric field
independently; this amounts to solve

dtψ̃ = Ψ(ψ̃, φ⋆), t ∈ ]t0, t0 +∆t], (7)
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with fixed φ⋆ = φ(t⋆), t⋆ ∈ [t0, t0 +∆t] and ψ̃(t0) = ψ0.
The most common technique considers t⋆ = t0, that is, to previously compute electric

field at t0 from Φ(ψ0, φ0) = 0, and then solve (7) with φ⋆ = φ0. This can be interpreted
as a standard first order operator splitting method that yields an approximation of order
1, ψ̃1(t), of exact solution, ψ(t), based on classical numerical analysis results, obtained
by confronting (6) with

ψ̃1(t0 +∆t) = ψ0 +∆tΨ(ψ0, φ0) +
∆t2

2
[∂ψΨΨ]t=t0 +O(∆t

3). (8)

Same result follows for φ̃1(t0 +∆t) computed out of Φ(ψ̃1(t0 +∆t), φ̃1(t0 +∆t)) = 0 or
equivalently, out of its explicit representation φ̃1(t0 + ∆t) = Υ(ψ̃1(t0 + ∆t)), assuming
Lipschitz condition:

‖Υ(ψ)−Υ(ψ⋆)‖ ≤ L ‖ψ − ψ⋆‖ . (9)

Considering now any t⋆ ∈ [t0, t0+∆t] into (7), the only second order solution, (ψ̃2(t), φ̃2(t)),
will be given by resolution of (7) with φ⋆ = φ 1

2

for t⋆ = t0 +∆t/2, for which

ψ̃2(t0 +∆t) = ψ0 +∆tΨ(ψ0, φ 1

2

) +
∆t2

2
[∂ψΨΨ]ψ→ψ0,φ 1

2

+O(∆t3), (10)

where

Ψ(ψ0, φ 1

2

) = Ψ

(
ψ0, φ

(
t0 +

∆t

2

))
,

= Ψ

(
ψ0, φ0 +

∆t

2
dtφ|t=t0 +O(∆t

2)

)
,

= Ψ(ψ0, φ0) +
∆t

2
[∂φΨdtφ]t=t0 +O(∆t

2), (11)

and hence,

ψ̃2(t0 +∆t) = ψ0 +∆tΨ(ψ0, φ0) +
∆t2

2
[∂ψΨΨ+ ∂φΨdtφ]t=t0 +O(∆t

3); (12)

and
φ̃2(t0 +∆t) = Υ(ψ̃2(t0 +∆t)). (13)

Nevertheless, second order approximation, ψ̃2(t), is based on the previous knowledge
of φ 1

2

= φ(t0 + ∆t/2), and thus, of ψ(t0 + ∆t/2). In order to overcome this difficulty,

one can solve (7) with φ⋆ = φ̃1(t0 +∆t/2) = Υ(ψ̃1(t0 +∆t/2)), that is, computing first
ψ̃1(t0+∆t/2) with first order method. In particular, this does not change previous order
estimates as it follows from

ψ(t0 +∆t)− ψ̃2(t0 +∆t) =
∆t2

2

[
∂φΨdt(φ− φ̃1)

]

t=t0
+O(∆t3),

=
∆t2

2

[
∂φΨ ∂ψΥdt(ψ − ψ̃1)

]

t=t0
+O(∆t3),

= O(∆t3). (14)
6



Taking into account both methods,

(
ψ̃1(t0 +∆t)

φ̃1(t0 +∆t)

)
= T ∆t

1

(
ψ0

φ0

)
,

(
ψ̃2(t0 +∆t)

φ̃2(t0 +∆t)

)
= T ∆t

2

(
ψ0

φ0

)
, (15)

we perform computations with second order scheme T ∆t
2 , which uses embedded and lower

order scheme T
∆t/2
1 , as it was previously detailed. An adaptive time step strategy is then

implemented in order to control the accuracy of computations. It is based on a local error
estimate, dynamically computed at the end of each decoupling time step ∆t, given by

∥∥T ∆t
2 (ψ0, φ0)

t − T ∆t
1 (ψ0, φ0)

t
∥∥ ≈ O(∆t2). (16)

Therefore, for a given accuracy tolerance ηT ,

∥∥T ∆t
2 (ψ0, φ0)

t − T ∆t
1 (ψ0, φ0)

t
∥∥ < ηT (17)

must be verified in order to accept current computation with ∆t, while new time step is
calculated by

∆tnew = ∆t

√
ηT∥∥T ∆t

2 (ψ0, φ0)t − T ∆t
1 (ψ0, φ0)t

∥∥ . (18)

3.2. Resolution of drift-diffusion equations

We consider now the numerical resolution of equations (1), that one can write in a
general format of convection-reaction-diffusion system of equations

∂tu− ∂x (F (u) +D(u)∂xu) = f (u) , t > t0,
u(t0,x) = u0(x), t = t0,

}
(19)

where F, f : Rm → R
m and u : R × R

d → R
m, with a tensor of order d × d × m as

diffusion matrix D(u). In particular, u = (ne, np, nn)
t with m = 3 in this study.

System (19) corresponds to problem (7) for a fixed electric field, and it is solved
during decoupling ∆t into T2 (or T1) scheme, using a Strang time operator scheme with
dedicated high order time integrators on a dynamic adaptive mesh, based on a strategy
introduced in [28]. This resolution is briefly detailed in what follows.

3.2.1. Time operator splitting

An operator splitting procedure allows to consider dedicated solvers for the reaction
part which is decoupled from other physical phenomena like convection, diffusion or both,
for which there also exist dedicated numerical methods. These dedicated methods chosen
for each subsystem are then responsible for dealing with the fast scales associated with
each one of them, in a separate manner, while the reconstruction of the global solution
by the splitting scheme should guarantee an accurate description with error control of
the global physical coupling, without being related to the stability constraints of the
numerical resolution of each subsystem.

Considering problem (19) and in order to remain consistent with second order T2
scheme, a second order Strang scheme is implemented [43]

S∆ts(u0) = R
∆ts/2D∆ts/2C∆tsD∆ts/2R∆ts/2(u0), (20)

7



where operators R, D, C indicate respectively the independent resolution of reaction,
diffusion and convection problems with splitting time step, ∆ts, taken inside overall
decoupling time step, ∆ts ≤ ∆t. Usually, for propagating reaction waves where for
instance, the speed of propagation is much slower than some of the chemical scales, the
fastest scales are not directly related to the global physics of the phenomenon, and thus,
larger splitting time steps might be considered [28, 29]. Nevertheless, order reductions
may then appear due to short-life transients associated to fast variables and in these
cases, it has been proved in [44] that better performances are expected while ending the
splitting scheme by operator R or in a more general case, the part involving the fastest
time scales of the phenomenon.

Resolution of (19) should be precise enough to guarantee theoretical estimates given
in Section 3.1. Therefore, an adaptive splitting time step strategy, based on a local error
estimate at the end of each splitting ∆ts, is also implemented in order to control the ac-
curacy of computations [31]. In this context, a second, embedded and lower order Strang

splitting method S̃∆ts was developed by [30], which allows to dynamically calculate a
local error estimate that should verify

∥∥S∆ts(u0)− S̃
∆ts(u0)

∥∥ ≈ O(∆ts2) < ηsplit, (21)

in order to accept current computation with ∆ts, and thus, new splitting time step is
given by

∆tnews = min


∆ts

√
ηsplit∥∥S∆ts(u0)− S̃∆ts(u0)

∥∥ , t0 +∆t− t̂


 , (22)

with ηsplit ≤ ηT and t̂ =
∑

i∆tsi while t̂ ∈ ]t0, t0 +∆t].
The choice of suitable time integration methods to approximate numerically R, D

and C during each ∆ts is mandatory not only to guarantee the theoretical framework of
the numerical analysis but also to take advantage of particular features of each indepen-
dent subproblem. A new operator splitting for reaction-diffusion systems was recently
introduced [28, 29], which considers on the one hand, a high fifth order, A-stable, L-
stable method like Radau5 [45], based on implicit Runge-Kutta schemes for stiff ODEs,
that solves with a local cell by cell approach the reaction term: a system of stiff ODEs
without spatial coupling in a splitting context. And on the other hand, another high
fourth order method like ROCK4 [46], based on explicit stabilized Runge-Kutta schemes
which features extended stability domains along the negative real axis, very appropriate
for diffusion problems because of the usual predominance of negative real eigenvalues.
Both methods incorporate adaptive time integration tools, similar to (18) and (22), in
order to control accuracy for given ηRadau5 and ηROCK4, chosen such that ηRadau5 < ηsplit
and ηROCK4 < ηsplit.

An explicit high order in time and space one step monotonicity preserving scheme
OSMP [47] is used as convective scheme. It combines monotonicity preserving constraints
for non-monotone data to avoid extrema clipping, with TVD features to prevent spurious
oscillations around discontinuities or sharp spatial gradients. Classical CFL stability re-
strictions are though imposed during each splitting time step ∆ts. Notice that the overall
combination of explicit treatment of spatial phenomena as convection and diffusion, with
local implicit integration of stiff reaction implies important savings in computing time
and memory resources. For the reaction, local treatment plus adaptive time stepping
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allow to discriminate cells of high reactive activity in the neighborhood of the localized
wavefront, saving as a consequence an enormous quantity of integration time [29].

3.2.2. Mesh refinement technique

Regarding problem (19), we are concerned with the propagation of reacting wave-
fronts, hence important reactive activity as well as steep spatial gradients are localized
phenomena. This implies that if we consider the resolution of reactive problem, a con-
siderable amount of computing time is spent on nodes that are practically at (partial)
equilibrium. Moreover, there is no need to represent these quasi-stationary regions with
the same spatial discretization needed to describe the reaction front, so that drift and
diffusion problems might also be solved over a smaller number of nodes. An adapted
mesh obtained by a multiresolution process which discriminates the various space scales
of the phenomenon, turns out to be a very convenient solution to overcome these dif-
ficulties [28, 48]. Furthermore, in plasma applications, resolution of Poisson’s equation
takes usually ∼80% of computing time; thus, important savings are achieved with mesh
adaptive techniques, as a consequence of strong reduction of computing cells.

In practice, if one considers a set of nested spatial grids from the coarsest to the finest
one, a multiresolution transformation allows to represent a discretized function as values
on the coarsest grid plus a series of local estimates at all other levels of such nested
grids. These estimates correspond to the wavelet coefficients of a wavelet decomposition
obtained by inter-level transformations, and retain the information on local regularity
when going from a coarse to a finer grid. Hence, the main idea is to use the decay of
the wavelet coefficients to obtain information on local regularity of the solution: lower
wavelet coefficients are associated to local regular spatial configurations and vice-versa.
The basis of this strategy is presented in the following; for further details on adaptive
multiresolution techniques, we refer to the books of [49] and [50].

3.2.3. Basis of multiresolution representation

To simplify the presentation let us consider nested finite volume discretizations of
(19) with only one component, m = 1. For l = 0, 1, · · · , L from the coarsest to the finest
grid, we have then regular disjoint partitions (cells) (Ωγ)γ∈Sl

of an open subset Ω ⊂ R
d,

such that each Ωγ , γ ∈ Sl, is the union of a finite number of cells Ωµ, µ ∈ Sl+1, and
thus, Sl and Sl+1 are consecutive embedded grids. We denote Ul := (uγ)γ∈Sl

as the
representation of u on the grid Sl where uγ represents the cell-average of u : R×R

d → R

in Ωγ ,

uγ := |Ωγ |
−1

∫

Ωγ

u(t,x) dx. (23)

Data at different levels of discretization are related by two inter-level transformations
which are defined as follows:

1. The projection operator P ll−1, which maps Ul to Ul−1. It is obtained through exact
averages computed at the finer level by

uγ = |Ωγ |
−1

∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|uµ, (24)

where |γ| := l if γ ∈ Sl. As far as grids are nested, this projection operator is exact
and unique [49].
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2. The prediction operator P l−1
l , which maps Ul−1 to an approximation Ûl of Ul.

There is an infinite number of choices to define P l−1
l , but we impose at least two

basic constraints [33]:
(a) The prediction is local, i.e., ûµ for a given Ωµ depends on a set of values uγ

in a finite stencil Rµ surrounding Ωµ, where |µ| = |γ|+ 1.
(b) The prediction is consistent with the projection in the sense that

|Ωγ |uγ =
∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|ûµ; (25)

i.e., P ll−1 ◦ P
l−1
l = Id.

With these operators, we define for each cell Ωµ the prediction error or detail as the
difference between the exact and predicted values:

dµ := uµ − ûµ, (26)

or in terms of inter-lever operations:

dµ = uµ − P
|µ|−1
|µ| ◦ P

|µ|
|µ|−1uµ; (27)

and then, construct a detail vector Dl as shown in [33] in order to get a one-to-one
correspondence from expressions (26) and (25):

Ul ←→ (Ul−1,Dl). (28)

Hence, by iteration of this decomposition, we finally obtain a multi-scale representation
of UL in terms of ML = (U0,D1,D2, · · · ,DL):

M : UL 7−→ML, (29)

where the details computed with (27) stand for the wavelet coefficients in a wavelet basis.
One of the main interests of carrying on such a wavelet decomposition is that this

new representation defines a whole set of regularity estimators all over the spatial domain
and thus, a data compression might be achieved by deleting cells whose detail verifies

|dµ| < εl, l = |µ|, εl = 2
d
2
(l−L)ηMR, (30)

where ηMR is the threshold value for the finest level L.
An important theoretical result is that if we denote by Vn

L := (vnλ)λ∈SL
, the solution

fully computed on the finest grid, and denote by Un
L, the solution reconstructed on the

finest grid that used adaptive multiresolution (keeping in mind that the time integration
was really performed on a compressed representation of Un); then, for a fixed time
T = n∆t, it can be shown that [32, 33]

‖Un
L −Vn

L‖L2 ∝ nηMR. (31)

3.3. Computation of electric field

In this part, we are concerned with the resolution of electric field according to T2
(or T1) scheme at some fixed time for a given distribution of charges (ne, np, nn) con-
sidering 1.5D model. Computation is also performed on the adapted mesh obtained by
multiresolution analysis. A description of the resolution is presented in what follows.
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3.3.1. Discretization of computation domain

According to Figure 1, computational domain is limited by planar cathode at x = 0
and the tip of hyperbolic anode at x = Lx. Anode is not included in the domain. We
consider streamers of fixed radius Rs along the axis of symmetry. Computational domain
is divided into nx cells of different size corresponding to the multiresolution adapted mesh,
with faces xif , where i ∈ [0, nx] and cell centers xjc, where j ∈ [1, nx]. Face x

0
f corresponds

to the position of the cathode and xnx

f corresponds to the position of the tip of the anode.
Therefore for each cell xic, there is its left face xi−1

f , and its right face xif . For each cell

xjc we define a width wj = xjf − x
j−1
f (see Figure 2).

Figure 2: Definition of the grid: cell centers located at x
j
c, cell faces located at xi

f
. Domain is bounded

by faces x0
f
(cathode) and x

nx
f

(tip of anode).

3.3.2. Resolution of electric field in the 1.5D model

To determine the electric field in the streamer during its propagation, the space
charge of the streamer is considered as a set of finite cylinders of width wj , bounded

by cell faces xj−1
f and xj−1

f . As the computational domain is bounded by conducting
electrodes of fixed potential, each volume charge ρj creates infinite series of image charges.
Then the principle of superposition is used to sum individual contributions from all the
cylindrical space charges in the domain, their image charges, and the Laplacian electric
field (computed based on classical results [51]). An advantage of this approach dwells
in the fact that electric field contributions from individual cylinders can be expressed
analytically in a simple form and determination of the electric field in each point of the
domain can be done in parallel.

Figure 3: Image charges up to third order: (a) charge ρj is first mirrored behind the anode (x = Lx),
(b) charge ρj is first mirrored behind the cathode (x = 0), (c) charge ρj and its images.

For simplicity, planar geometry of electrodes is assumed for charge mirroring. In such
11



a case, a mirrored cylinder charge conserves its geometrical shape and value of charge
as shown in Figure 3. For volume charge ρj centered at xjc, there exist image charges of
the first order with charge −ρj at x = 2Lx − x

j
c mirrored through the anode, see Figure

3a, and at x = −xjc mirrored through the cathode, see Figure 3b. And for each of these
image charges there exist higher order image charges of opposite signs and so forth. All
the image charges of ρj up to order three are depicted on Figure 3c.

Integrating the generalized Coulomb’s law [52] and using principle of superposition,
we find that the cylinder charges of cells j ∈ [1, nx] of width wj , radius Rs, charged with
densities ρj , and the Laplacian electric field EL(x

i
f) at x

i
f [51], create the electric field E

at position xif as follows:

E(xif) = EL(x
i
f) +

nx∑

j=1

s
ρjwj
2ε0


1−

wj + 2hi,j√
h2i,j + R2

s +
√
(hi,j + wj)

2
+R2

s


 , (32)

where

hi,j =

{
xif − x

j
f for i ≥ j

xj−1
f − xif for i < j

and s =

{
+1 for i ≥ j
−1 for i < j

Figure 4: Charged cylinder considered to compute the electric field in the 1.5D model.

Positive sign of s accounts for electric field calculated on the right from the position
of cylinder and vice versa. The same formula applies for image charges, but appropriate
sign of the charge has to be carefully taken into account according to Figure 3. In
particular, in a shared memory computing environment, a straightforward parallelization
is accomplished for equation (32), in which each core solves successively the electric field
on one single position xif , and where neither synchronization stages nor data exchange
are needed among nodes.

Note that for Rs →∞ (infinite plane charges), Equation (32) gives exact electric field

Einf =

nx∑

j=1

s
ρjwj
2ε0

.

For finite radius Rs the solution (32) is valid only on the axis of the discharge, but when
applied to a discharge of a small radius, the electric field will vary only negligibly over
the cross section of the discharge. This approach is expected to be more accurate for any
finite radius than any discretization of Poisson’s equation [8].
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4. Numerical results

In this section, we present numerical illustrations of the proposed numerical strategy
for simulations of positive streamers using 1.5D model in point-to-plane geometry. First,
we will consider discharge propagation in constant applied voltage for which different
features of the numerical strategy, e.g., error estimates, data compression values and
computing time, are discussed and allows one to select simulation parameters. Then, the
potential of the method is fully exploited for a more complex configuration of repetitive
discharges generated by high frequency pulsed applied voltages followed by long time
scale relaxation, for which a complete physical description of discharge and post-discharge
phases is achieved.

4.1. Propagation of positive streamer with constant applied voltage
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Figure 5: Positive streamer propagation at t = 6ns (left) and t = 10ns (right). Top: electric field;
middle: charged species density; and bottom: grid levels. Finest grid: 4096, ηT = ηsplit = ηMR = 10−4.

We consider a point-to-plane geometry with a 1 cm gap between the point electrode
and the plane, and a constant applied voltage of 13 kV. For all following simulations,
discharge is initiated by placing a neutral plasma cloud with a Gaussian distribution
close to the point electrode. Initial distributions of electrons and ions are then given by

ne,p(x)|t=0 = nmax exp
(
−(x− c)2/w2

)
+ n0, nn = 0, (33)
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where w = 0.027 cm, c = 1 cm, nmax = 1014 cm−3, and preionization n0 = 108 cm−3.
There are no negative ions as initial condition. Streamer radius is set to Rs = 0.05 cm
to have a typical electric field magnitude in the streamer head of 120 kV/cm [53]. Ho-
mogeneous Neumann boundary conditions were considered for drift-diffusion equations.

Two instances of discharge propagation are shown in Figure 5, for 12 nested grids
equivalent to 4096 cells on the finest grid, L = 12, and threshold values of ηT = ηsplit =
ηMR = 10−4; spatial refinement takes place only where it is required. Fine tolerances
were chosen in all cases for the solvers, ηRadau5 = ηROCK4 = 10−7, to guarantee accurate
integrations. For all the simulation cases, detail in each cell is taken as the minimum of
the details computed according to (27) for each variable, where the prediction operator
is a polynomial interpolation of order 3, performed on normalized logu of the density
variables in order to properly discriminate the streamer heads from the high ionized
plasma channel; this scale guarantees a correct spatial representation of the phenomenon
as seen in Figure 5 for the density profiles.
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Figure 6: L2 errors between reference and T1 (first order) and T2 (second order) solutions for various
decoupling time steps ∆t on an uniform grid of 4096 cells. Top: electron (left) and positive ions (right);
and bottom: negative ions.

In order to perform an analysis of the numerical results, we define as reference solution
a fine resolution with T2 scheme that considers a fixed decoupling time step, ∆t = 10−14 s
and an uniform grid of 4096 cells. For this reference solution, the memory requirements
are acceptable and the simulation is still feasible, but it requires about 14 days of real
simulation time on an AMD Opteron 6136 Processor cluster, while running the electric
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field computation in parallel on 16 CPU cores. In this case, the direct integration of the
electric field represents 80% of total CPU time (about 3.2 s) per time step.

First of all, we must verify previous order estimates for T1 and T2 schemes given
in section (3.1). We consider as initial condition, reference solution at t = 10 ns. In
order to only evaluate errors coming from the decoupling techniques, T1 and T2, we
consider a fine splitting time step, ∆ts = 10−14 s, to solve drift-diffusion problem (1)
and an uniform grid; then, we solve (5) with both schemes for several decoupling time
steps ∆ti, and calculate L2 error between first/second order and reference solutions after
t = 210∆ts = 1.024× 10−11 s. Figure 6 shows results with ∆ti = 2i∆ts, where i ∈ [1, 10],
which clearly verify first and second order in time for T1 and T2 schemes, respectively,
and prove important gains in accuracy for same time steps.
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Figure 7: Time evolution of L2 errors between reference and adapted solutions with η = ηT = ηsplit =
ηMR = 10−4, 10−3, and 10−2, and 4096 cells corresponding to finest discretization. Top: electron (left)
and positive ions (right); and bottom: negative ions.

Figure 7 shows time evolution of L2 error between time-space adapted and reference
solutions for various threshold values, ηT = ηsplit = ηMR = 10−4, 10−3, and 10−2 for
each variable. These are rather approximations of the error since reference and adapted
solutions are not evaluated exactly at the same time, and therefore, they are sometimes
slightly shifted of about ∼10−14 − 10−13s. In these tests, decoupling time steps ∆t were
limited by dielectric relaxation time step, ∆tDR, after noticing an important amount
of rejections of computed time steps according to (18), whenever ∆t &1.5 × ∆tDR.
Otherwise, ∆t is dynamically chosen in order to locally satisfy the required accuracy, but
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does not show important variations considering the steady propagating phenomenon.
In Figure 8, we can see the adapted grid corresponding to each configuration. Rep-

resentations of electric field and densities show that for ηT = ηsplit = ηMR = 10−2, the
streamer front propagates faster than in the reference case, with a slightly higher peak of
electric field in the front. On the other hand, for ηT = ηsplit = ηMR ≤ 10−3, we observe
a quite good agreement between adapted and reference resolutions.
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Figure 8: Top: adapted grids (left) and electric fields (right) at t = 8ns corresponding to 4096 cells as
finest discretization, and η = ηT = ηsplit = ηMR = 10−4, 10−3, and 10−2. Bottom: zoom on electron
distributions (left) and electric field (right) for same parameters and reference solution.

We consider now an accurate enough resolution ηT = ηsplit = ηMR = 10−4 and
investigate the influence of the number of grids, that is, the finest spatial discretization
at level L that is taken into account. Figure 9 shows the adapted grids for L = 10, 11 and
12, respectively equivalent to 1024, 2048 and 4096 cells in the finest grid; and a close-up
of the corresponding electric fields in the discharge head at t = 8ns. We see that for
this level of tolerance, the streamer front propagates slightly slower than the reference
case for L = 10, whereas L = 11 give already good resolutions compared to the reference
solution and to L = 12; in particular, higher L would need lower tolerances in order to
retain regions at the finest level; this is already the case for L = 13 (equivalent to 8192
cells). Therefore, a finest level L = 11 with 2048 cells seems to be an appropriate choice
for this level of accuracy.

Table 1 summarizes the number of cells in the adapted grid (#AG) at time t = 8ns,
and the corresponding data compression (DC) defined as the percentage of active cells
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Figure 9: Adapted grids (left) and electric fields (right) at t = 8 ns, for finest spatial discretization
L = 10, 11 and 12, ηT = ηsplit = ηMR = 10−4, and reference solution.

with respect to the equivalent number of cells for the finest discretization, in this case
2048 for L = 11. For this propagating case, data compression remains of the same order
during time simulation interval. The CPU computing times correspond to a time domain
of study of t ∈ [0, 10] ns computed by one sole CPU core. If we consider for example
total computing time for L = 11 and tolerances ηT = ηsplit = ηMR = 10−4, it is ∼44
times less expensive with respect to a resolution on an uniform grid with 2048 cells and
ηT = ηsplit = 10−4 (CPU time of 8552 s). This is quite reasonable, taking into account
that computing time for electric field resolution is proportional to at least O(N2) for N
computing cells, after (32).

Table 1: Number of cells in the adapted grid (#AG) and data compression (DC) at time t = 8ns, CPU
computing time for t ∈ [0, 10] ns, L = 11, and various tolerances η = ηT = ηsplit = ηMR.

η #AG DC% CPU(s)

10−6 724 35.35 1360
10−5 421 20.56 517
10−4 263 12.84 193
10−3 138 6.74 66
10−2 70 3.42 24

In conclusion, in this section we have shown that the numerical strategy developed can
be efficiently applied to simulate the propagation of highly nonlinear ionizing waves as
streamer discharges. An important reduction of computing time results from significant
data compression with still accurate resolutions. In addition, this study allows to properly
tune the various simulation parameters in order to guarantee fine resolution of more
complex configurations, based on the time-space accuracy control capabilities of the
method.
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4.2. Simulation of multi-pulsed discharges

In this section, we analyze the performance of the proposed numerical strategy on
simulation of nanosecond repetitively pulsed discharges [6, 54]. Applied voltage profile
for this type of discharges is a high voltage pulse followed by zero voltage relaxation

phase. Typical pulse duration is ∼10−8 s, while relaxation phase takes over ∼10−4 s.
The detailed experimental study of these discharges in air has shown that the cumulative
effect of repeated pulsing achieves a steady-state behavior [54]. In following illustrations,
we choose a pulse duration of Tp = 15 ns, which is approximately equal to the time that is
needed for the discharge to cross the interelectrode gap. The rise time considers the time
needed to go from zero to maximum voltage and it is set to Tr = 2ns. Pulse repetition
period is set to TP = 10−4 s, equal to 10 kHz of repetition frequency, a typical value used
in experiments [6]. We model voltage pulse P by using sigmoid functions

P (t, s, r, p) = 1− σ(−t,−s, r)− σ(t, s+ p, r), (34)

with

σ(t, s, r) =
1

1 + exp(−8(t− s)/r)
, (35)

for time t, where s indicates when pulse starts; r, the rise time; and p, pulse duration; t,
s, r, p ∈ [0, TP]. With maximum applied voltage Vmax, applied voltage V (t) is computed
by

V (t) = Vmax · P

(
t−

⌊
t

TP

⌋
· TP, Tr, Tr, Tp

)
. (36)

In this section, we assume as initial condition a homogeneous preionization consisting
only of ions with density 109 cm−3; electrons are considered to have a low homogeneous
background of 101 cm−3. This initial configuration is based on a rough guess of the final
steady-state value after some initial discharges [40, 41].
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Figure 10: Time evolution of applied voltage and time steps for multi-pulse simulation for first six pulses
(left) and the fourth one (right) with subsequent relaxation. Rejected time steps are marked with black
crosses, while minimum time scales correspond to blue line.

We set tolerances to ηT = ηsplit = ηMR = 10−4 and consider L = 11 grid levels, equiv-
alent to 2048 cells in the finest grid. Figure 10 shows time evolution of decoupling time
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steps and applied voltage for the first six pulses, even though simulation was performed
for 100 pulses, that is t ∈ [0, 10−2] s. This simulation took over 8h44m while running
electric field computation in parallel on 6 CPU cores of the same AMD Opteron 6136
Processor cluster; this gives an average of 5.24 minutes per pulse period. Second figure
corresponds to fourth pulse for which the steady state of the periodic phenomenon was
already reached and almost the same numerical performance is reproduced during the
rest of computations. Time steps are about ∼10−11 s during pulses, then increase from
∼10−12 s up to about ∼10−6 s during a period ∼6000 times longer, and they are com-
puted according to required tolerance. Solving this problem for such different scales with
a constant time step is out of question and even a standard strategy that considers mini-
mum of all time scales would limit considerably the efficiency of the method as it is shown
in the representation. In this particular case, dielectric relaxation is the governing time
scale during discharge as in the previous case with constant applied voltage, whereas the
post-discharge phase is sometimes ruled by diffusive or convective CFL, or by ionization
time scale, with all security factors and CFL conditions set to one in Figure 10.

Computation is initialized with a time step included in the pulse duration. Never-
theless, after each relaxation phase, since the new time step is computed based on the
previous one according to (18), this new time step will surely skip the next pulse. In
order to avoid this, each time we get into a new period, that is ⌊t/TP⌋ changes, we ini-
tialize time step with ∆t = 0.5Tr = 1ns; this time step is obviously rejected as seen in
Figure 10, as well as the next ones, until we are able to retrieve the right dynamics of the
phenomenon for the required accuracy tolerance. No other intervention is needed neither
for modeling parameters nor for numerical solvers in order to automatically adapt time
step to describe the various time scales of the phenomenon within a prescribed accuracy.

Figure 11 represents time evolution of data compression which ranges from ∼2% up
to ∼16% during each pulse period. Regarding only electric field resolution with the same
time integration strategy, grid adaptation involves resolutions ∼39 to ∼2500 times faster,
based on a really rough estimate for O(N2) operations.
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Figure 11: Time evolution of data compression for multi-pulse simulation for first six pulses (left) and
the fourth one (right) with subsequent relaxation.

In this last part, we will describe physical details of the studied phenomenon obtained
by simulation, in order to evaluate the numerical performance of the strategy for the
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different multi-scale phases. Figure 12 presents the discharge dynamics for the first
period. First, we observe at t = 10 ns after the beginning of the pulse, the propagation
of a positive streamer in the gap. In section 4.1, a preionization of positive ions and
electrons was used to ensure the positive streamer propagation. In this section, seed
electrons ahead of the streamer front are created as the front propagates by detachment
of negative ions present initially. We note that at 15 ns, which corresponds to almost
the end of the plateau before the decrease of the applied voltage, the discharge has
crossed ∼0.75 cm of the 1 cm gap. As a consequence, during the voltage decrease and
at the beginning of the relaxation phase where the applied voltage is zero, there is a
remaining space charge and steep gradients of charged species densities in the gap. Then
for t = 50 ns, Figure 12 shows that the electric field in the discharge is almost equal to
zero except in a small area where steep gradients of the electric field with peak values
of 30V/cm are observed. We have checked that this area corresponds to the location
of the streamer head at the end of its propagation. We note that in the post-discharge,
electrons are attaching (timescale of the order of 100 ns) and then at t = 50 ns, the
density of positive ions is almost equal to the density of negative ions in the whole gap.
At t = 99972 ns, the densities of charged species have significantly decreased due to
charged species recombination. However, it is interesting to note that the location of
the previous streamer head can still be observed at the same location as at t = 50 ns,
but with much smaller gradients of charged species densities and a very small electric
field. This final state is the initial condition of the second pulse with a non-uniform axial
preionization with positive and negative ions.

After a few repetitive pulses, we have observed that the discharge dynamics reached
a steady-state behavior as observed in the experiments. To show the characteristics of
the discharge when the steady-state is reached, Figure 13 shows the discharge dynamics
of the 100th period. The sequence of images is the same as in Figure 12. At the end of
the 99th pulse, we have observed that the axial distribution of charged species in the gap
is uniform and that the level of preionization is 5× 1010 cm−3 positive and negative ions
and 104 cm−3 electrons. We note that 10 ns after the beginning of the 100th pulse the
propagation of the discharge is faster than for the first pulse. This faster propagation
is mostly due to the higher preionization level of positive and negative ions in the gap
in comparison of the first voltage pulse. We note that for the 100th pulse, 15 ns after
the beginning of the pulse the discharge has almost crossed the interelectrode gap and
then during the relaxation phase, there is no remaining space charge in the whole gap.
Consequently, 50 ns after the beginning of the 100th pulse, axial distributions of all
charged species are uniform. As already observed for the first pulse, at 50 ns after the
beginning of the voltage pulse most electrons have attached and then, the density of
positive ions is almost equal to the density of negative ions in the whole gap. We note
that the corresponding electric field distribution is not uniform at 50 ns, but no steep
gradients are observed as for the first voltage pulse. At t = 9999998 ns, that is to say
at the end of the 100th period, we note that a very low electric field is obtained in
the gap. An axially uniform distribution of charges is obtained with 5 × 1010 cm−3 for
positive and negative ions and 104 cm−3 for electrons, which was the initial condition of
the 100th pulse, and then this demonstrates the existence of the steady-state behavior
of nanosecond repetitively pulsed discharges.
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Figure 12: First period of pulsed discharge. Top: propagation of discharge in the domain at t = 10ns
after the beginning of the pulse (left); and at t = 15ns (right). Bottom: relaxation on the short time
scale t = 50ns; and end of the relaxation phase after t = 99972 ns (right).
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Figure 13: Steady state of pulsed discharge (last period). Top: propagation of discharge in the domain at
t = 9900010 ns after the beginning of the pulse (left); and at t = 9900015 ns (right). Bottom: relaxation
on the short time scale t = 9900050 ns; and end of the relaxation phase after t = 9999998 ns (right).

22



5. Conclusions

The present work proposes a new numerical strategy for multi-scale discharge sim-
ulations. It is based on an adaptive second order time integration strategy that allows
to discriminate time scales related features of the phenomena, given a required level of
accuracy of computations. Compared to a standard procedure for which accuracy is
guaranteed by considering time steps of the order of the fastest scale, the control er-
ror approach implies on the one hand, an effective accurate resolution independent of
the fastest physical time scale, and on the other hand, an important improvement of
computational efficiency whenever the required time steps go beyond standard stability
constraints. The latter is a direct consequence of the self-adapting time step strategy for
the resolution of drift-diffusion equations which considers splitting time steps not limited
by stability constraints for reaction, diffusion and convection phenomena. So far, global
decoupling time steps are limited by dielectric relaxation stability constraint but with
second order accuracy; nevertheless, we have demonstrated that time steps are rather
chosen based on an accuracy criterion. Besides, if a technique such as a semi-implicit
approach is implemented, the same ideas of the proposed strategy remain valid.

An adaptive multiresolution technique was also proposed in order to provide error
control of the spatial adapted representation. Numerical results have proven a natural
coupling between time and space accuracy requirements and how the set of time-space ac-
curacy tolerances tunes the precise description of the time-space multi-scale phenomenon.
As a consequence, numerical results on time-space adaptation strategy for multi-pulsed
discharge configurations prove first, that this kind of multi-scale phenomena, previously
out of reach, can be successfully simulated with conventional computing resources; and
second, that a consistent physical description is achieved for a broad spectrum of space
and time scales as well as different physical scenarios.

In this work, we focused on a 1.5D model, which in terms of spatial representation
implies a 1D configuration, in order to first evaluate the numerical performance of the
strategy. However, the dimension of the problem will only have an influence on the
computational efficiency measurements but not on any space-time accuracy or stability
aspects. At this stage of development, the same numerical strategy can be coupled to a
multi-dimensional Poisson’s equation solver, even for adapted grid configurations as de-
veloped recently in [23, 4, 20]. Finally, an important amount of work is still in progress
concerning programming features such as data structures, optimized routines and paral-
lelization strategies. On the other hand, numerical analysis of theoretical aspects is also
underway to extend and further improve the proposed numerical strategy. These issues
constitute particular topics of our current research.
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