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The paper focuses on the synthesis of labelled transition systems (LTSs) for process

calculi, choosing as testbed Mobile Ambients (MAs). The proposal is based on a

graphical encoding: a process is mapped into a graph equipped with interfaces, such that

the denotation is fully abstract with respect to the standard structural congruence.

Graphs with interfaces are amenable to the synthesis mechanism based on borrowed

contexts (BCs), an instance of relative pushouts (RPOs). The BC mechanism allows the

effective construction of a LTS that has graphs with interfaces as states and labels, and

such that the associated bisimilarity is a congruence. Our paper focuses on the analysis

of a LTS over processes as graphs with interfaces: we use the LTS on graphs to recover a

LTS directly defined over the structure of MAs processes, further defining a set of SOS

inference rules capturing the same operational semantics.

1. Introduction

Process calculi are a powerful formalism for the specification of concurrent and dis-

tributed systems. Their flexibility is proved by the wide range of different domains they

found application in. Their expressiveness is guaranteed by the comparison with stan-

dard (e.g. functional) computational frameworks. Finally, their usability is supported by

well-defined methodologies for the presentation of their semantics.

Concerning operational semantics, it is usually defined by means of labelled transitions

systems (LTSs): a set of states of the system, plus a labelled relation describing its tran-

sitions. This easily allows for providing a behavioural semantics based on observations,

looking at the labels of the evolutions that might be performed by the system.

Usually, these LTSs are obtained inductively by means of a set of inference rules.

Nevertheless, to obtain such a compact presentation of a LTS is often complex, and

relies on the ingenuity of the researcher, which is nowadays tested by the increasing

complexity of the calculi. So, in particular after Milner’s treatment of π-calculus (Mil99),

it became customary to present the semantics of a calculus by a reduction semantics:
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an unlabelled relation (also generated by a set of rules) modulo a structural congruence

equating those processes which intuitively represent the same distributed system.

The considerations above can be applied verbatim to one of the most recent and fruitful

proposal: the calculus of mobile ambients (CG00) (MAs). The analogy between ambients

and network domains, addressed since the introduction of the calculus, and between

ambients and molecular environments, often exploited in system biology, made MAs a

centerpiece in recent applications and developments of the process calculi paradigm.

It is then baffling that the calculus has been so resilient to the introduction of an

observational semantics. This is likely due to the fact that already the set of rules defining

the original reduction semantics of MAs is rather complex. As an example, the system

evolution stating the “exporting” of a process P out of an ambient named n is represented

by the rule m[n[out m.P |Q]|R] → n[P |Q]|m[R]. The rule needs to carry around the

occurrences of processes Q and R, which denote the context into which the instance

of the rule has to be mapped into. The need of such a rich contextual information

makes difficult to obtain a satisfying observational semantics. After the early proposals

by Cardelli and Gordon (GC03), and by Ferrari, Montanari and Tuosto (FMT01), we are

only aware of the work by Merro and Zappa-Nardelli (MZN05) and, quite recently, by

Rathke and Sobociński, originally presented in (RS08b) and partly modified in (RS10).

With the exception of (RS08b; RS10), the other proposals are not based on a method-

ological assumption. Indeed, only a recent series of papers addressed the problem of

automatically synthesizing a LTS out of the reduction semantics of a calculus, further

guaranteeing that the derived observational semantics is a congruence. The most success-

ful technique so far was proposed by Leifer and Milner, based on the notion of relative

pushout (RPO) (LM00): it captures in an abstract setting the intuitive notion of minimal

context into which a process has to be inserted, in order to enable a reduction to occur.

However, proving that a calculus satisfies the requirements needed for applying the

RPOs technique is often a daunting task. A way out of the impasse is represented by the

graphical encodings of processes, turning structural congruence into graph isomorphism.

Graph formalisms are usually amenable to the RPOs technique, and once the processes

of a calculus have been encoded as graphs, a LTS can be distilled. Indeed, it seems no

chance that the main source of examples concerning RPOs have been bigraphs (Mil06).

It is noteworthy that, should the reduction relation over graphs be defined using the

double pushout (DPO) approach (BCE+99), these graphs are amenable to the borrowed

context (BC) technique (EK06), developed by Ehrig and König, which offers an algo-

rithmic solution for calculating the minimal contexts enabling a graph transformation

rule. Indeed, graphs form an adhesive category (LS05) hence, via the so-called cospan

construction (SS05), BCs and RPOs are proved to be coincident notions (Sob04).

So, the approach pursued in this and other papers (BGK06; GM05) is quite straightfor-

ward: for a given calculus, a graphical encoding is found such that structural congruence

is preserved, and the reduction semantics is captured by a set of graph transformation

rules, specified using the DPO approach. A LTS for the calculus can thus be distilled.

This is the way which allowed to derive the unique successful application so far of the

RPO technique to the set of recursive processes of a calculus, still recovering the standard

bisimulation congruence, even if for one of the simplest calculi, Milner’s CCS (Mil89).
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This paper exploits the graphical encoding for MAs proposed in (GM08) in order to

distill a LTS on (processes encoded as) graphs. This LTS is used to infer a set of SOS

rules defined on the processes of MAs, and to compare it with the alternative solution

proposed in (RS08b) (also inspired by the RPO technique), discovering many similarities

yet with a few substantial differences, as summed up in the concluding section.

Synopsis Section 2 summarizes a few notions concerning MAs. Section 3 introduces

typed (hyper-)graphs with interfaces, while Section 4 recalls the DPO approach to graph

rewriting and the associated BC technique for distilling a LTS. Section 5 discusses a

graphical encoding for MAs processes, while Section 6 states the simulation of process

reduction by DPO rewriting. The simulation is needed in Section 7 for the presentation

of a LTS for graphs with interfaces representing MAs processes, which is exploited in

Section 8 to introduce a LTS defined directly over MAs processes. Section 9 then presents

a novel description of the distilled LTS by means of a set of SOS-style inference rules,

which is finally used in Section 10 to prove the correspondence between our proposal and

Rathke and Sobociński’s. Section 11 concludes the paper.

Previous works This work builds on (BGM09a): the presentation of the single sections

has been tightened and reshaped, inserting detailed proofs and a few additional examples.

Two novel sections, Section 9 and Section 10, are partly drawn (with heavy restructuring)

from (BGM09c). The SOS presentation of the distilled LTS is a fundamental feature, in

order to reason about the structural properties of the operational semantics: its presence

here strengthen our claims of the practical relevance of our proposal (Section 9). The co-

incidence between our LTS and Rathke and Sobociński’s further witnesses the soundness

of the operational semantics for MAs that we propose (Section 10).

2. Mobile Ambients

This section briefly recalls the finite, communication-free fragment of mobile ambients

(CG00), its structural equivalence and reduction semantics. Note that, for the need of the

presentation of the operational semantics in Section 8, we introduce an extended syntax

that allows us to build processes containing process variables and name variables.

Definition 2.1 (Extended processes). Let N be a set of names ranged over by

m,n, u, . . ., X = {X,Y, . . .} a set of process variables and V = {x, y, . . .} a set of name

variables. An extended process is a term generated by the syntax in Table 1.

Intuitively, an extended process such as x[P ]|X represents an underspecified process,

where either the process X or the name of the ambient x[−] can be further instantiated.

P ::= 0, n[P ],M.P, (νn)P, P1|P2, X, x[P ] M ::= in n, out n, open n

Table 1. Extended syntax of mobile ambients.



F. Bonchi, F. Gadducci, G.V. Monreale 4

P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)
(νn)(νm)P ≡ (νm)(νn)P (νn)(P |Q) ≡ P |(νn)Q if n /∈ fn(P )
P ≡ Q ⇒ n[P ] ≡ n[Q] (νn)m[P ] ≡ m[(νn)P ] if n 6= m

P ≡ Q ⇒ M.P ≡ M.Q P |0 ≡ P
P ≡ Q ⇒ (νn)P ≡ (νn)Q (νn)M.P ≡ M.(νn)P if n /∈ fn(M)
P ≡ Q ⇒ P |R ≡ Q|R (νn)P ≡ (νm)(P{m/n}) if m /∈ fn(P )

Table 2. Structural congruence on pure processes.

Definition 2.2 (Pure and linear processes). An extended process is a pure process

if no process or name variable occurs in it; it is a linear process if no process or name

variable occurs in it more than once.

We let P,Q,R, . . . range over the set P of pure processes; and Pε, Qε, Rε, . . . over the

set Pε of linear processes. We use the standard definitions for the set of free names of a

pure process P , denoted fn(P ), and for α-convertibility, with respect to the restriction

operators. Variables carry no name, hence fn(x[Pε]) = fn(Pε) and fn(X) = ∅; the sets

of name and process variables are defined as expected and denoted nv(Pε) and pv(Pε).

Moreover, we consider a family of substitutions, which may replace a process/name

variable with a pure process/name, respectively. Substitutions avoid name capture: for

a pure process P , the expression (νn)(νm)(m[X]|x[0]){m/x,
n[P ] /X} corresponds to the

pure process (νp)(νq)(q[n[P ]]|m[0]), for names p, q 6∈ {m} ∪ fn(n[P ]).

The semantics exploits a structural congruence, denoted ≡, which is the least equiv-

alence on pure processes that satisfies the equations in Table 2. The congruence relates

processes which intuitively specify the same system, up-to a syntactical rearrangement of

its components, and it is then used to define a reduction relation, introduced below and

denoted →. The relation describes the evolution of processes over time: P → Q means

that P reduces to Q, i.e., P executes a computational step and evolves into Q.

Definition 2.3 (Reduction relation). The reduction relation Ramb ⊆ P × P is the

smallest relation, closed under ≡, generated by the rules in Table 3.

Our chosen congruence slightly differs from the standard one: we drop (νn)0 ≡ 0 and

we add (νn)M.P ≡M.(νn)P , allowing a restriction to enter a capability. The reduction

semantics does not substantially change: the equality induced by the latter axiom holds in

all the behavioural equivalences for mobile ambients that we are aware of. In particular,

two processes that are structurally congruent are reduction barbed congruent (MZN05).

Example 2.1. As a running example, consider processes Q = n[in m.0]|m[out m.0] and

P = (νn)Q. The application of the (InRed) axiom to Q results in m[n[0]|out m.0], hence

we may apply the rule (ResRed) to P and conclude P → (νn)(m[n[0]|out m.0]).

(InRed) n[in m.P |Q]|m[R] → m[n[P |Q]|R] (ResRed) P → Q ⇒ (νn)P → (νn)Q

(OutRed) m[n[out m.P |Q]|R] → n[P |Q]|m[R] (AmbRed) P → Q ⇒ n[P ] → n[Q]
(OpenRed) open n.P |n[Q] → P |Q (ParRed) P → Q ⇒ P |R → Q|R

Table 3. Reduction relation on pure processes.
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3. Graphs and Their Extension with Interfaces

We recall a few definitions concerning typed (hyper-)graphs, and their extension with

interfaces, referring e.g. to (CG99) for a more detailed introduction.

Definition 3.1 (Typed graphs). A (hyper-)graph is a four-tuple 〈N,E, s, t〉, for N , E

the sets of nodes and (hyper-)edges and s, t : E → N∗ the source and target functions.

A graph morphism is a pair of functions 〈fN , fE〉 preserving source and target.

Let T be a graph. A typed graph G over T is a pair 〈|G|, tG〉, for |G| a graph and

tG : |G| → T the typing morphism. A T-typed graph morphism is a graph morphism

f : |G1| → |G2| between the underlying graphs preserving the typing.

The category of graphs typed over T is denoted by T -Graph.

Definition 3.2 (Graphs with interfaces). Let J and K be typed graphs. A graph

with input interface J and output interface K is a triple G = 〈j,G, k〉, for G a typed

graph and j : J → G, k : K → G the input and output morphisms. Let G and H be

graphs with the same interfaces. An interface graph morphism is a typed graph morphism

f : G→ H between the underlying typed graphs preserving the input and output.

We let J
j−→ G

k← K denote a graph with interfaces J and K. If the interfaces J , K

are discrete, i.e., they contain only nodes, we represent them by sets; if K is the empty

set, we often denote a graph with interfaces as a graph morphism J → G.†

In order to define the encoding, some operators on graphs with discrete interfaces are

needed. Since we rely on the proposal in (GM08), we refer the reader there for details.

Definition 3.3 (Two operators). Let G = I
j−→ G

k← K and G′ = K
j′−→ G′ k′

← J be

graphs with discrete interfaces. Their sequential composition is the graph with discrete

interfaces G◦G′ = I
j′′−→ G′′ k′′

← J , for G′′ the disjoint union G]G′, modulo the equivalence

induced by k(x) = j′(x) for all x ∈ NK , and j′′, k′′ the uniquely induced arrows.

Let G = J
j−→ G

k← K and G′ = J ′ j′−→ G′ k′

← K ′ be graphs with discrete, compatible

interfaces.‡ Their parallel composition is the graph with discrete interfaces G ⊗ G′ =

(J ∪ J ′)
j′′−→ G′′ k′′

← (K ∪K ′), for G′′ the disjoint union G ] G′, modulo the equivalence

induced by j(x) = j′(x) for all x ∈ NJ ∩NJ′ and k(y) = k′(y) for all y ∈ NK ∩NK′ , and

j′′, k′′ the uniquely induced arrows.

The sequential composition G◦G′ take the disjoint union of the graphs underlying G and

G′, gluing the outputs of G with the corresponding inputs of G′. The parallel composition

G⊗G′ takes the disjoint union of the graphs underlying G and G′, and glue the inputs

(outputs) of G with the corresponding inputs (outputs) of G′. Both operations are defined

on “concrete” graphs, even if the result is independent of the chosen representatives.

† We often refer implicitly to a graph with interfaces as the representative of its isomorphism class,

using the same symbols to denote it and its components. Moreover, in the discrete iterfaces case, we
refer to the nodes in the image of the input and output morphisms as inputs and outputs, respectively.

‡ That is, any node in NJ ∩NJ′ has the same type in J and J ′ (and similarly for NK ∩NK′ ).
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Fig. 1. Graphs with interfaces G and G′ (from left to right).
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Fig. 2. Graph with interfaces G⊗G′.

Example 3.1. Let us consider the two graphs with interfaces G = {a, p, n,m} → G← ∅
and G′ = {a, p,m} → G′ ← ∅ in Fig. 1. As it is going to be explained in Section 5,

these two graphs respectively represent the graphical encodings of the MAs processes

Q1 = n[in m.0] and Q2 = m[out m.0]. For the moment, the reader can ignore how these

encodings are obtained. We only observe that in the graph G there is an edge amb

representing the ambient n and an edge in simulating the capability in m. Analogously,

in the graph G′ there is an edge amb representing the ambient m and an edge out

simulating the capability out m. Moreover, ambient names are represented by nodes of

type ◦ that are in the input interfaces of the two graphs, and processes (subprocess) are

represented by graphs (subgraphs) that have as root a pair of nodes 〈•, �〉. Only the root

nodes 〈•, �〉 of the graphs representing the processes Q1 and Q2 are in the input interfaces

of the corresponding graphs. Moreover, as we can note, each subprocess is represented

by a subgraph that has a different • root node, while sometimes subgraphs representing

different subterms share the � root node. We shall see later on why this occurs.

The two graphs G and G′ have compatible interfaces. Indeed, it is easy to check

that the type of the nodes belonging to both input interfaces coincides. Therefore, it is

possible to compute the parallel composition of the graphs G and G′, resulting in the

graph with interfaces shown in Fig. 2. It is easy to note that it is obtained by making the

union of the input interfaces and of the output interfaces, respectively, and the disjoint

union of G and G′, gluing the root nodes of both graphs and the nodes representing

the name m. As explained later in Section 5, the graph with interfaces obtained by the

parallel composition of G and G′ represents the process obtained by making the parallel

composition between Q1 and Q2, that is, the process Q1|Q2.
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4. On Graphs with Interfaces and Borrowed Contexts

This section introduces the double-pushout (DPO) approach to the rewriting of graphs

with interfaces and its extension with borrowed contexts (BCs), as introduced in (EK06).

Definition 4.1 (Graph production). A T -typed graph production is a span of mor-

phisms L
l� I

r−→ R in T -Graph, such that l is mono. A T -typed graph transformation

system (GTS) G is a pair 〈P, π〉 where P is a set of production names and π is a function

assigns a T -typed production to each production name.

A production identifies those graph items that should be rewritten, and specifies how

new items have to be inserted. The intuitive meaning is captured by the definition below.

Definition 4.2 (Direct derivation). Let J → G and J → H be two graphs with

interfaces and p:L � I → R a production. A match of p in G is a morphism m:L→ G.

A direct derivation from J → G to J → H via p and m is a commuting diagram as in

Fig. 3, such that two squares are pushouts (PO), denoted J → G =⇒ J → H.

L��
m

��
PO

I // //oooo

��
PO

R

��
G C //oooo H

J

``AAAAA k

OO >>}}}}}

Fig. 3. A direct

derivation.

The morphism k : J → C (making the left triangle commute) is

unique, whenever it exists. If such a morphism does not exist, the

rewriting step is not feasible.

In these derivations, the left-hand side L of a production must

then occur completely in G. In a borrowed context (BC) derivation

L might occur partially in G, since the latter may interact with the

environment through the interface J in order to exactly match L.

Those BCs are the “smallest” contexts needed to obtain the image

of L in G, and they may be used as suitable labels.

Definition 4.3 (Rewriting with Borrowed Contexts). Given a production p:L �
I → R, a graph with interfaces J → G and a span of monos d : G � D � L, we say that

J → G reduces to K → H with label J � F � K via p and d if there are graphs G+,

C and additional morphisms such that the diagram in Fig. 4 commutes and the squares

are either pushouts (PO) or pullbacks (PB). We write J → G
J�F�K−−−−−→ K → H, called

rewriting step with borrowed context.

D

PO

��

��

// // L

PO

��

��

I

PO

oooo //
��

��

R��

��
G

PO

// // G+

PB

Coooo // H

J

OO

// // F

OO

K

OO

oooo

>>

Fig. 4. A BC derivation.

The upper left-hand square of the diagram in Fig. 3

merges the left-hand side L and the graph G to be rewrit-

ten according to a partial match G � D � L. The re-

sultingG+ contains a total match of L and is rewritten as

in the DPO approach, producing the two other squares

in the upper row. The pushout in the lower row gives the

BC F which is missing for obtaining a total match of L,

along with a morphism J � F indicating how F should

be pasted to G. Finally, the interface for H is obtained

by “intersecting” F and C via a pullback.

Note that two pushout complements that are needed in Definition 4.3, namely C and

F , may not exist. In this case, the rewriting step is not feasible.
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5. Graphical Encoding for Processes

This section shortly recalls a graphical encoding for MAs processes presented (with minor

variants) in (GM08). After the description of a type graph (TM , in Fig. 5), the encoding

is defined inductively by means of the composition operators introduced in Definition 3.3.

This roughly corresponds to the standard construction of the tree for a term of an algebra:

names are interpreted as variables, so they are mapped to graph leaves and can be shared.

amb

 ��
•

>>

!!

◦ �

``

}}

// go

act

QQ MMOO

Fig. 5. The type graph TM (for

act ∈ {in, out, open}).

Intuitively, a node of type ◦ represents an am-

bient name, while a graph that has as roots a

pair of nodes 〈�, •〉 represents a process. More pre-

cisely, the node of type � represents the activating

point for reductions of the process represented by

the graph. We need two different types of node to

model processes by graphs, because each graph has

to model both syntactical and activation dependen-

cies between the operators of a process.

Each edge of TM , except the go edge, simulates

an operator of MAs. Note that the act edge stands

for three edges, namely in, out and open. These edges simulate the capabilities of the

calculus, while the amb edge simulates the ambient operator, and no edge simulates

either the restriction or the parallel composition. The go edge is a syntactical device

for detecting the “entry” point for the computation, needed to simulate MAs reduction

semantics: it allows to avoid the occurrence of a reduction underneath an act operator.

Figs. 6, 7 and 8 depict a class of graphs: linear processes are encoded into an expres-

sion containing those graphs as constants, and parallel and sequential composition as

operators. We assume a set {a, p} ] {Xa, Xp | X ∈ X} with no intersection with N .

We use 0a,p and ida,p as shorthands for 0a⊗0p and ida⊗idp, respectively; and similarly

0X and idX stand for 0Xa ⊗0Xp and idXa ⊗ idXp . Moreover, for a set of names Γ, we use

0Γ and idΓ as shorthands for
⊗

n∈Γ 0n and
⊗

n∈Γ idn, respectively; and for a process Pε,

idpv(Pε) stands for
⊗

X∈pv(Pε)
idX . The preceding expressions are well-defined, because

the ⊗ operator is associative. The definition below introduces the encoding of extended

processes (with no occurrence of name variables) into graphs with interfaces, mapping a

process into a graph expression. JM.PεKΓ denotes the encoding of in n.Pε, out n.Pε and

open n.Pε, while actn represents the inn, outn and openn graphs, respectively.

Definition 5.1 (Encoding for processes). Let Pε be a linear process with no occur-

rence of name variables and let Γ be a set of names such that fn(Pε) ⊆ Γ. The encoding of

Pε, denoted by JPεKΓ, is defined by structural induction according to the rules in Table 4.

Given a linear process P and a set of names Γ, such that fn(Pε) ⊆ Γ, its encodingJPεKΓ is a graph with interfaces ({a, p} ] {Xa, Xp | X ∈ pv(Pε)} ] Γ, ∅). Its enriched

encoding is the graph JPεKΓ ⊗ go, denoted JPεKgoΓ , and intuitively links a go edge to the

� root node of each graph representing a process. This edge is needed for detecting the

‘entry’ point for the computation of the process. Its usee will become clearer later on.
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a // �

  

� aoo

p // • // act

>>

//

  

• poo

◦ noo

a // �

  

aoo

p // • // amb //

  

• poo

◦ noo

a // � // go

Fig. 6. Graphs actn (with act ∈ {in, out, open}); ambn; and go (left to right).

a // �

p // •

n // ◦

◦ noo

a // � aoo

p // • poo

n // ◦ noo

Fig. 7. Graphs 0a and 0p; 0n and newn; ida, idp and idn (top-down, left to right).

Xa

��
a // �

Xp SS
p // •

Xa
// � Xa
oo

Xp // • Xpoo

Fig. 8. Graphs 0Xa and 0Xp ; idXa and idXp (top-down, left to right).

The encoding is fully abstract with respect to structural congruence (GM08, Thm 1).

Proposition 5.1. Let P,Q be pure processes and let Γ be a set of names, such that

fn(P ) ∪ fn(Q) ⊆ Γ. Then, P ≡ Q if and only if JP KgoΓ = JQKgoΓ .

The result could be suitably extended, in order to encompass also linear processes.

Example 5.1. Consider the pure process Q = n[in m.0]|m[out m.0] from Example 2.1.

Fig. 2 shows the encoding JQK{n,m}, as for Definition 5.1. The upper sub-graph in the

encoding represents the left parallel component of Q, the process n[in m.0]; the lower

sub-graph represents the right component of the parallel operator, m[out m.0]. The sub-

graphs have the same roots, into which the nodes of the interface a and p are mapped,

and they share the name node representing the ambient name m, which is used in both

terms. This happens because the encoding is obtained via the ⊗-composition (Definition

3.3) of Jn[in m.0]K{n,m} and Jm[out m.0]K{n,m}, shown in Fig. 1 (left to right).

The enriched encoding JP Kgo{m} for pure process P = (νn)Q, also from Example 2.1, is

in Fig. 9. It is obtained from JQK{n,m} in two steps: the node n is first removed from the

interface (getting JP K{m}); and the go edge is then attached to the activation node �.
Let us focus on the first step: by definition, JP K{m} = (newn⊗ idm⊗ ida,p) ◦ JQK{n,m}.

The graph with interface (newn⊗idm⊗ida,p) has the same underlying graph of idn,m,a,p,

but name n is missing from the input interface: its sequential composition with a graph

having interface {n,m, a, p} results into the same graph but without n among its inputs.

As for the second step, note that the activation node � is linked to the edges repre-

senting the ambients n and m and to the capabilities in m and out m: attaching the go

edge to � will allow the ambients connected to it to be involved into a reduction.
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JXKΓ = 0X ⊗ 0ΓJ0KΓ = 0a,p ⊗ 0ΓJn[Pε]KΓ = (idpv(Pε) ⊗ ambn ⊗ idΓ) ◦ JPεKΓJM.PεKΓ = (idpv(Pε) ⊗ actn ⊗ idΓ) ◦ JPεKΓJPε | QεKΓ = JPεKΓ ⊗ JQεKΓJ(νn)PεKΓ = (idpv(Pε) ⊗ ida,p ⊗ newm ⊗ idΓ) ◦ JPε{m/n}KΓ∪{m} for m /∈ Γ

Table 4. Encoding for pure processes.

6. Graph Transformation for Mobile Ambients

This section presents a GTS that models the reduction semantics of MAs. Fig. 10 presents

the rules of the GTS Ramb, which simulates the reduction semantics → introduced in

Section 2. The GTSRamb contains just three rules: pin, pout, and popen. They simulate the

three axioms of the reductions relation: the rule popen stands for the (OpenRed) axiom,

and the same occurs for the others. Moreover, since we consider injective matches, we

need an instance for the rules pin and pout, where the nodes labelled n and m may

actually be coalesced, denoted pin−c and pout−c, respectively (not presented here).

Node identifiers describe the rules action, and they are of course arbitrary: they cor-

respond to the elements of the set of nodes and characterize the span of functions.

Three (plus two) rules suffice for recasting the reduction semantics of mobile ambients.

Indeed, the closure of reduction with respect to contexts is obtained by the embedding

of a graph within a larger one. And no rule instance is needed: graph isomorphism takes

care of structural congruence, and interfaces of the renaming of free names.

Our encoding is fully abstract with respect to the reduction relation→ (GM08, Thm 2).

Theorem 6.1 (Reductions vs. rewrites). Let P be a pure process, and let Γ be a

set of names, such that fn(P ) ⊆ Γ. If P → Q, then Ramb entails a direct derivationJP KgoΓ =⇒ JQKgoΓ . Vive versa, if Ramb entails a direct derivation JP KgoΓ =⇒ G, then there

exists a pure process Q, such that P → Q and G = JQKgoΓ .

The correspondence holds since a rule is applied only if there is a match that covers a

sub-graph with the go operator on top. This allows the occurrence of reductions inside

activated ambients, but not inside capabilities.

go

�

�a // �

;;

""
//

"" %%

amb //

  

• // in

>>

//

  

•

◦ ◦

•p // •

@@

// amb

22fffffffffffffff // • // out

>>

//

  

•

◦m

QQ

�

Fig. 9. Graph encoding for the process (νn)(n[in m.0]|m[out m.0]).
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go

�3a

�1a

<<

!!
//

""

amb //

  

•2p // in

??

//

  

•3p

◦n ◦m

•1p

@@

// amb

::

// •4p

go

�3a

�1a

<<

•2p •3p

◦n ◦m

•1p •4p

go

�1a3a

;;

""

// amb //

��

•
2p
3p

◦n ◦m

•1p // amb

;;

// •4p

@@

Lin Iin Rin

go

�4a

�1a

<<

!! ��
// amb //

99

•2p // amb //

  
•3p // out

>>

//

  
•4p

•1p

>>

◦n ◦m

go

�4a

�1a

<<

•2p •3p •4p

•1p ◦n ◦m

go

�1a4a

;;

!!
// amb //

::

•2p amb //

  

•
3p
4p

•1p

?? ??

◦n ◦m

Lout Iout Rout

go

�1a

##

//

##

amb //

!!

•2p

◦n

•1p

??

// open

==

//

!!

•3p

�3a

go

�1a

""

•2p

◦n

•1p •3p

�3a

go

�1a3a

""

◦n

1p•
2p
3p

Lopen Iopen Ropen

Fig. 10. The rewriting rules pin, pout, and popen.

go

�a // �

;;

//

"" &&

amb //

!!

•

◦ ◦

•p // • // amb

22eeeeeeeeeeeeeeeee // • //

>>

out

>>

//

  

•

◦m

PP

�

Fig. 11. Graph encoding for the process (νn)(m[n[0]|out m.0]).

Example 6.1. Let us consider again the process P = (νn)(n[in m.0]|m[out m.0]) from

Example 2.1: its enriched graphical encoding is in Fig. 9. The edge labelled go denotes

the entry point for the computation of the process. All edges of the graph can be involved

in a reduction step because they have the same activation node with an outgoing go edge.

The application of the pin rule to the graph in Fig. 9 results in the graph in Fig. 11, the

encoding of process (νn)(m[n[0]|out m.0]). This rewriting step simulates the transition

P → (νn)(m[n[0]|out m.0]) in Example 2.1. With respect toQ = n[in m.0]|m[out m.0]→
m[n[0]|out m.0], the application of the (ResRed) rule is immaterial: the occurrence of the

restriction operator is mimicked by embedding Lin into a graph lacking n in the interface.
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7. The Synthesized Transition System

This section applies the BC synthesis mechanism to Ramb in order to derive a LTS for

graphs representing MAs processes. We open with an introductory section explaining the

graphical counterpart of process variables (Section 7.1): these are used in the presenta-

tion (Section 7.2) of some rewriting steps with BCs. We then introduce (Section 7.4)

a compact representation of the derived LTS by means of minimal derivations: these

are extrapolated via pruning techniques (Section 7.3). The resulting LTS is going to be

exploited in Section 8, in order to define a novel LTS directly for MAs processes.

7.1. Process variables, graphically

We first illustrate how a single BC transition may induce a reduction involving extended

processes. To this end, consider the graph J � G in Fig. 12 and the diagram in Definition

4.3. The former represents the encoding of the process S = (νn)(m[0] | n[0]).
The occurrence of nodes •1p and �1a ensures that the process represented by J � F ,

T = openm.0, is put in parallel with S, so that J � G+ intuitively corresponds to S | T .
Note however the occurrence of the nodes •2p and �2a inK: they witness the possibility of

a parametric instance of process T . Indeed, the graph with interfaces K � G+ represents

S | TX , for any process variable X and linear process TX = openm.X.

Put differently, the context J � F � K is the minimal context allowing the reaction,

because it could be further instantiated with any substitution of the process variable X.

7.2. Examples of borrowed transitions

This section shows the application of the BC synthesis mechanism to the graphical

encoding of a process. Let us consider the graph J � G = JP Kgo{m}, where P =

(νn)(n[in m.0]|m[out m.0]). In the following we discuss the possible transitions with

source J � G that are induced by the rule pin : Lin � Iin → Rin of Ramb. Since

for each pair of monos G � D � Lin a labelled transition might exist, in order to

perform a complete analysis, we should consider all the pairs of monos G � D � Lin.

We proceed by showing some of the possible transitions generated by such pairs. Actu-

ally, we are going to see that it is not necessary to check all those pairs that we are not

considering here, by exploiting the pruning techniques presented in the next subsection.

go

◦m

�1a

��
99

99
99

??

// amb //

>>

•

•1p

>>

>>

◦

amb //

>>

•

◦m

�1a

•1p

◦m

�1a // open

==

!!

// •2p

•1p

>>

�2a

◦m

�1a •2p

•1p �2a

G J F K

Fig. 12. The graphs with interfaces J � G and the context J � F � K.



RPO Semantics for Mobile Ambients 13

BC transition for D equal to Lin Let D be Lin: there is only one map into G. The

resulting transition is in Fig. 20. G+ coincides with G, and C and H are constructed as

in a standard DPO rewriting step. Since J � G needs no context for the reaction, the

label of this transition is the identity context: two isomorphisms into the discrete graphs

with three nodes {p, a,m} (i.e., the value of the expression idp ⊗ ida ⊗ idm, see Section

5). Intuitively, this corresponds to an internal transition over processes, labelled with τ .

BC transition for D equal to the upper sub-graph of Lin Let D be the sub-graph

of Lin representing an ambient with a capability in inside it: again, there is only one map

into G. The resulting transition is in Fig. 21. G+ coincides with G in parallel with the

graph representing an ambientm, encoding the process (νn)(n[in m.0]|m[out m.0]|m[X])

for some variable X. In order to reach G+, J � G borrows from the environment the

context J � F � K (the syntactic context −|m[X]). In the interface K there is a node

•4p pointing to the process node of F inside the ambient m, and this node represents a

variable X, as detailed in Section 7.1. C and H are then constructed as in the standard

DPO approach. Intuitively, K → H represents the process m[out m.0]|m[n[0]|X], where

X is the variable occurring in the label J � F � K. This can be understood by observ-

ing that the node •4p of K points both to a node of H and to a node of F . Summarizing,

the ambient n moves into an ambient m that is provided by the environment.

BC transition for D equal to the lower sub-graph of Lin Let D be the lower sub-

graph of Lin consisting of the ambient edge alone. In this case, there are two possible

maps into G: the map into the sub-graph of G representing the ambient m, and the map

into the sub-graph of G representing the restricted ambient n.

In the first case, we obtain the transition in Fig. 22. G+ coincides with G in parallel

with the graph representing a fresh ambient name w having inside a capability in m, en-

coding the process (νn)(n[in m.0]|m[out m.0]|w[in m.X2|X1]) for some variables X1, X2.

In order to reach G+, J � G borrows from the environment the context J � F � K

(the syntactic context −|w[in m.X2|X1]). As before, X1 and X2 are variables, since in the

interfaceK there are nodes •2p and •3p . C andH are obtained by a standard DPO deriva-

tion. Intuitively, K → H represents the process (νn)(n[in m.0]|m[out m.0|w[X2|X1]]).

Summarizing, an ambient w from the environment enters the ambient m of a process P .

In the second case no transition is possible. G+ coincides with G in parallel with a fresh

ambient w having inside a capability in n, yet the pushout complement of J � G � G+

does not exist: n is restricted and thus it does not belong to the interface J . Intuitively,

no ambient from the environment can enter inside a restricted sibling ambient n.

7.3. Reducing the borrowing

In order to derive the transitions originating from a graph J � G, all the sub-graphs

D’s of Lin, Lout and Lopen should be analyzed. To shorten this procedure, we use two

pruning techniques presented in (BGK06). One exploits the observation that those items

of L that are not in D must be glued to G through J . Consider a node n of D mapped

to a node n′ in L, such that n′ is the source or the target of an edge e not in D.
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Such graph items, called boundary nodes, are modelled via initial pushouts (EEPT06).

Definition 7.1 (Initial pushout). Let the square (1) below be a pushout. It is an

initial pushout of C → D if for every other pushout as in diagram (2) there exist two

unique morphisms A→ A′ and B → B′ such that diagram (2) commutes.

A //

��

PO

B

��

C // D

A //

��

""

B

��

||

A′

||yyy
y

//

PO

B′

""E
EEE

C // D

(1) (2)

Since our chosen category of typed

(hyper-)graphs has initial pushouts for all

arrows (EEPT06), the previous discussion

can be formalized by the lemma stated be-

low (BGK06, Corollary 1).

Lemma 7.1. A graph with interfaces J → G can perform a BC rewriting step in Ramb

if and only if there exist a mono D � L (where L is the left hand side of some production

in Ramb), a mono D � G, and a morphism JD → J such that square (1) in Fig. 13 is

an initial pushout and square (2) commutes.

JD

��

��

(1)

// FD

��
D // //
��

(2)

��

PO

L

PO

��

��

I

PO

��

��

oooo // R��

��
G

PO

// // G+

PB

Coooo // H

J

OO

// // F

OO

Koooo

OO >>

Fig. 13. BC construction with

commuting squares (1) (the initial

pushout of D � L) and (2).

This lemma allows to heavily prune the

space of possible D’s. For instance, we can ex-

clude those D’s having a continuation node

(any process node depicted by • that is not

the root) as boundary node, observing that the

only process node in the interface J is the root

node. We can also exclude those D’s having as

boundary node a name node that is not in the

interface J , otherwise JD should contain such

a node and the morphism JD → J would not

exist. Consider e.g. the popen rule: this means

that when the node n is not in the interface J

(the name n of the encoded process is bound),

then J → G can perform a BC rewriting step

if the node n in D is not boundary, i.e., if D contains both the open and the amb edges.

A further pruning —partially based on proof techniques presented in (EK06)— is

performed by excluding those D’s which generate a BC transition that is not relevant

for bisimilarity. We may e.g. exclude those D’s that contain only nodes, since they can

be embedded in every graph (with the same interface) generating the same transitions.

Concerning our case study, also those transitions generated by a D having the root node

without the go edge are not relevant: a graph can perform a BC transition using such a

D if and only if it can perform a transition using the same D with a go edge outgoing

from the root. Note indeed that the resulting states of these two transitions only differ for

the number of go edges attached to the root: the state resulting after the first transition

has two go’s, the state resulting after the second transition only one. These states are

bisimilar, since the number of go’s does not change the behavior (BGK06, Lemma 12).

The two pruning techniques presented above allow us to only consider the partial

matches D shown in Figs. 15, 23 and 24, together with those D’s obtained from the ones

of the last two figures by coalescing the name nodes n and m.
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7.4. Minimal transitions

In Section 7.3 we restricted a lot the space of possible D’s. However, reasoning on the

synthesized LTS is still hard (this is usually with derived LTSs, as pointed out in (BEK06)

and (Bon08), where an SOS presentation of the synthesized LTS is deemed as desirable).

In order to simplify this reasoning, we introduce a set of minimal transitions that allow

us to derive all and only the transitions of the (pruned) synthesized LTS.

Inspired by Lemma 7.1, providing necessary and sufficient conditions for performing a

transition, we consider the graphs JD → D for all those D’s that have not been pruned

in Section 7.3 and JD containing only the boundary nodes of D.

D

PO

��

��

// // L

PO

��

��

I

PO

oooo //
��

��

R��

��

D

IPO

// // L

PB

Ioooo // R

JD

OO

// // FD

OO

KD

OO

oooo

==

Fig. 14. Transition shape.

The minimal transitions have the shape as in

Fig. 14, where the leftmost square in the lower row is

an initial pushout. Figs. 15, 23 and 24 concisely rep-

resent these transitions, showing their starting graph

D, the label JD � FD � KD, and the resulting

graph R. The three figures represent the minimal

transitions generated by the rules popen, pin and pout.

The minimal transitions generated by the rules pin−c

and pout−c should also be considered, but they are

easily described from those of pin and pout. More precisely, for each minimal transition

with Dinx
there exists a minimal transition generated by pin−c, where the relevant graphs

are obtained by coalescing the nodes n and m (and similarly for Doutx and pout−c).
§

All the transitions originating from a process encoding J � G can be characterized

via these minimal transitions. By Lemma 7.1, we can state that J � G can perform a

BC rewriting step in Ramb if and only if there exist a mono D � G, for some D of the

minimal transitions, and a morphism JD → J such that square (2) in Fig. 13 commutes.

The label of the rewriting step can be obtained from the label of the minimal transition.

First of all note that the interface J contains all the nodes of JD (as suggested by the

morphism JD → J), all the name nodes ◦ representing the free names of the modeled

process (as expected by our encoding), and the root nodes of the graph D when they are

not in JD. Then the graph F only contains the whole graph FD and all the nodes of J .

Indeed, as shown in the proposition below, which is an adaptation of Proposition 4 of

(BGK06), F can be obtained as the pushout of JD → FD and JD → J .

Proposition 7.1. Let p : L � I → R be a production of Ramb, J � G a graph with

interfaces, and d : D � L a mono such that square (i) in Fig. 16 is the initial pushout

of d and square (ii) is a pullback. There is a K such that J � G
J�F�K−−−−−→ K → H via p

and d if and only if there are a mono D � G, a graph V and a morphism JD → J such

that diagram (iii) in Fig. 16 commutes and F and H are built as shown there.

It is easy to prove that K is a discrete graph containing exactly the nodes of F (i.e,

K consists only of the nodes of J and KD).

§ Note also that it is irrelevant to consider the coalesced version for the rule with D′
ini

, since it would
coincide with the minimal transition for Din−ci , for all i.
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D � JD � FD � KD→ R

go

�1a

$$

##

◦n

•1p // open

==

//

!!

•3p

�3a

�1a

◦n

•1p

�1a // amb //

!!

•2p

◦n

•1p

?? �1a •2p

◦n

•1p

go

�1a3a

$$

◦n

1p•
2p
3p

Dopen1 � JDopen1
� FDopen1

� KDopen1
→ Ropen

go

�1a

##

// amb //

!!

•2p

◦n

•1p

??
�1a

◦n

•1p

�1a

##

◦n

•1p // open

==

//

!!

•3p

�3a

�1a

◦n

•1p •3p

�3a

go

�1a3a

$$

◦n

1p•
2p
3p

Dopen2 � JDopen2
� FDopen2

� KDopen2
→ Ropen

go

�1a

$$

//

##

amb //

!!

•2p

◦n

•1p

??

// open

==

//

!!

•3p

�3a

go

�1a3a

$$

◦n

1p•
2p
3p

Dopen3 � ∅ � ∅ � ∅ → Ropen

Fig. 15. The minimal transitions generated by the rule popen.

JD
//

��

IPO

FD

��
D // // L

D��

��

PB

D∩I��

��

oooo

L Ioooo

FD

��

PO

JD��

��

// //oooo

=

D��

��

PO

D∩I��

��

//oooo

PO

R��

��
F J // //oooo '' 77G V //oooo H

(i) (ii) (iii)

Fig. 16. Diagrams used in Proposition 7.1.

Finally, the resulting graph H is obtained by replacing in G the sub-graph D with R.

As shown in Proposition 7.1, it can be computed in a DPO step of D � D ∩ I → R,

where D ∩ I is the pullback of D � L and I � L.

As an example, consider the BC rewriting step in Fig. 20. It is derivable by the minimal

transition for Din4 (in Fig. 23). First of all, note that there exist Din4 → G and ∅ → J

such that the square (2) in Fig. 13 commutes. Now, F is equal to J , since it consists

of the composition of FDin4
(i.e., ∅) and J . The new interface K is equal to F , since it

contains all and only the nodes of J and KDin4
(i.e., ∅). The arriving state H is obtained

simply by replacing Din4 with Rin.
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(InTau)
P≡(νA) C[n[in m.P1|P2]|m[P3]]

P
−−→(νA) C[m[n[P1|P2]|P3]]

(OutTau)
P≡(νA) C[m[n[out m.P1|P2]|P3]]

P
−−→(νA) C[m[P3]|n[P1|P2]]

(OpenTau)
P≡(νA) C[n[P1]|open n.P2]

P
−−→(νA) C[P1|P2]

Fig. 17. The internal transitions of the LTS D (for C[−] an enabling context).

8. A New LTS for Mobile Ambients

This section presents the LTS D directly defined over MAs processes. The inference rules

describing this LTS are obtained from the transitions of the LTS on graphs presented in

Section 7.4. The labels of the transitions are unary contexts, i.e., terms of the extended

syntax with a hole −. The formal definition of our LTS is shown in Figs. 17 and 18.

8.1. The labelled rules on processes...

The rules in Fig. 17 represent the τ -actions modeling internal computations. The labels of

the transitions are contexts composed of just a hole −, while the resulting states are pure

processes. Also, an enabling context may contain only ambients and parallel operators

The rule InTau enables an ambient n to enter a sibling ambient m. The rule OutTau

enables an ambient n to get out of its parent ambient m. Finally, the rule OpenTau

models the opening of an ambient n. These three rules exactly derive the MAs reduction

relation, thus they could be replaced with the rules in Table 10.

The rules in Fig. 18 model the interactions of a process with its environment, and

labels and resulting states contain process and name variables. We define the LTS DI
for MAs pure processes by instantiating all those variables.

Definition 8.1. Let P,Q be pure processes and let C[−] be a pure context. We have a

transition P
C[−]−−→DI Q if there exist a transition P

Cε[−]−−→D Qε and a substitution σ such

that Qεσ ≡ Q and Cε[−]σ = C[−].

Recall that substitutions map name variables into ambient names and process variables

into pure processes, and that they may never capture bound names.

(In)
P≡(νA)(in m.P1|P2) m 6∈A

P
x[−|X1]|m[X2]
−−−−−−−−→(νA)m[x[P1|P2|X1]|X2]

(OutAmb)
P≡(νA)(n[out m.P1|P2]|P3) m 6∈A

P
m[−|X1]
−−−−→(νA)(m[P3|X1]|n[P1|P2])

(InAmb)
P≡(νA)(n[in m.P1|P2]|P3) m 6∈A

P
−|m[X1]
−−−−→(νA)(m[n[P1|P2]|X1]|P3)

(Open)
P≡(νA)(open n.P1|P2) n6∈A

P
−|n[X1]
−−−−→(νA)(P1|X1|P2)

(CoIn)
P≡(νA)(m[P1]|P2) m 6∈A

P
−|x[in m.X1|X2]
−−−−−−−−−−→(νA)(m[x[X1|X2]|P1]|P2)

(CoOpen)
P≡(νA)(n[P1]|P2) n6∈A

P
−|open n.X1−−−−−−−→(νA)(P1|X1|P2)

(Out)
P≡(νA)(out m.P1|P2) m 6∈A

P
m[x[−|X1]|X2]
−−−−−−−−→(νA)(m[X2]|x[P1|P2|X1])

Fig. 18. The environmental transitions of the LTS D.
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The rule Open models the opening of an ambient provided by the environment. More

explicltly, it enables a process P with a capability open n.P1 at top level, for n ∈ fn(P ),

to interact with a context providing an ambient n that contains inside it some process

X1. The resulting state is the process over the extended syntax (νA)(P1|X1|P2), where

X1 represents a process provided by the environment. Note that the instantiation of the

process variable X1 with a process containing a free name that belongs to the bound

names in A is possible only α-converting the resulting process (νA)(P1|X1|P2) into a

process that does not contain that name among its bound names at top level.

The ruleCoOpen instead models an environment that opens an ambient of the process.

The rule InAmb enables an ambient of the process to migrate into a sibling ambient

provided by the environment, while in the rule In both ambients are so. In the rule CoIn

an ambient provided by the environment enters an ambient of the process. In the rule

OutAmb an ambient of the process exits from an ambient provided by the environment,

while in the rule Out both ambients are so.

The LTS D does not conform to the SOS style, since the premises of the inference

rules are just constraints over the process structure. This is due to the fact that the rules

of the LTS D are derived from the minimal transitions. Each rule corresponds to one

minimal transition presented in Section 7.4 and it is obtained as described below.

8.2. ...from the borrowed rules on graphs

Observe that a graph J � G representing a process P can perform a BC rewriting step in

Ramb if and only if there exists a mono D � G, for some D of a minimal transition, and a

morphism JD → J , such that the square (2) in Fig. 13 commutes. Moreover, the label and

the resulting graph of the borrowed transition for G are obtained from the label and the

resulting state of the minimal transition of D, respectively. Therefore, for each minimal

transition we obtain an inference rule: the conditions in the premise correspond to the

necessary and sufficient conditions for performing a transition from a graph G, while the

label and the resulting process are obtained from the label and the resulting state of the

borrowed transition, respectively. Since the labels of the LTS over graphs obtained by

the BC mechanism represent minimal graph contexts enabling a graph production, the

labels of our LTS over processes represent minimal process contexts enabling a reduction.

As the main example, in this section we closely look at the correspondence between

the rule Open and the first minimal transition in Fig. 15.

Consider a graph J � G representing the encoding for a process P . If there exists a

mono Dopen1 � G and a morphism JDopen1
→ J , such that the square (2) in Fig. 13

commutes, the graph J � G can perform a BC rewriting step in Ramb with label

J � F � K, where J , F and K respectively consist of JDopen1
, FDopen1

and KDopen1

together with the free names of P . Now, note that Dopen1 can be embedded in G and a

morphism JDopen1
→ J (such that the square (2) in Fig. 13 commutes) may exist if and

only if P ≡ (νA)(open n.P1|P2), for n 6∈ A. Indeed, the graph must contain an occurrence

of the operator open n.− on top, possibly further instantiated, since it includes Dopen1 ;

and since the interface J contains all the nodes of JDopen1
, we conclude that n must

belong to J , that is, n must be a free name of P . This is the premise of the rule Open.
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Starting from the label J � F � K of the BC transition we now obtain the label

of the process transition. By observing the shape of F , which contains all the items of

FDopen1
, we can say that the process context is composed of the ambient n. Moreover,

the context F is glued to G through J , which contains the free names of P and the nodes

of JDopen1
, i.e., the name n and the nodes representing the roots of the graph G (which

models P ). Since these two nodes represent the roots of the graph F (which models

ambient n), we conclude that the label of the process transition is a context with the

ambient n in parallel with a hole representing process P .

The graph K represents the interface of both graphs F and H. It contains all the

nodes of KDopen1
, i.e., the roots of F and the roots of the process inside the ambient

n. The nodes of the interface K represent the “handles” of F and H for interacting

with an environment. Therefore, the process node of K that is not the root of F can

be thought of as a process variable inside the ambient n in the label of the transition.

Therefore, we conclude that the label of the transition with source the process P can

be represented as the minimal context −|n[X1], where − is a hole and X1 is a process

variable. The resulting process (νA)(P1|X1|P2) exactly corresponds to the state H from

the BC transition. Indeed, in the interface K of the graph K → H also the node modeling

the process variable X1 occurs, which represents a process provided by the environment.

The reader should notice that while there are 13 minimal transitions, only 10 rules

occur in Figs. 17 and 18. This is due to the fact that each of the rules In, CoIn and Out

is actually derived by two minimal transitions. The rule In is generated by the minimal

transitions Din1 and D′
in1

, CoIn by Din3 and D′
in3

, and Out by Dout1 and D′
out1 . We

show the latter, since the others are analogous.

In the minimal transition withDout1 two ambients are borrowed from the environment.

The first one has name m (i.e., the ambient from which the process wants to exit), while

the second has a fresh name n (it is not restricted, since it occurs in KDout1
). This

transition thus corresponds to the rule

P ≡ (νA)(out m.P1|P2) m 6∈ A n 6∈ (A ∪ fn(P ))

P
m[n[−|X1]|X2]−−−−−−−−→ (νA)(m[X2]|n[P1|P2|X1])

In the minimal transition with D′
out1 the name n belongs to the process (it occurs

inside the graph Dout′1
) but, since the node n occur in JD′

out1
, it should appear in the

interface J , i.e., it must be free. Thus, this transition corresponds to the rule

P ≡ (νA)(out m.P1|P2) m 6∈ A n ∈ fn(P )

P
m[n[−|X1]|X2]−−−−−−−−→ (νA)(m[X2]|n[P1|P2|X1])

The conclusion of the two rules above is identical, thus we can put together their

premises, and compactly represent them via the rule Out of Fig. 18. Substituting the

name n with a name variable x basically guarantees that any actual name can be sub-

stituted to n, even m (thanks to Dout−c1), as long as it does not occur in A.



F. Bonchi, F. Gadducci, G.V. Monreale 20

9. A SOS Presentation for the Derived LTS D

In the previous two sections we described a semi-automatic methodology for distilling

a LTS D. This section introduces a set of SOS rules, tailored over D, such that the

associated LTS S coincides with the former one. The rules for S are shown in Fig. 19.

We assume the implicit presence of the rule (P ≡ P ′, P ′ Cε[−]−−→ Qε)⇒ P ′ Cε[−]−−→ Qε.

The rules in the first two rows of Fig. 19 model internal computations: they are obtained

from the rules in Fig. 17. Since these rules derive the same transition relation of the

reduction relation over MAs, we replace it with the reduction rules labelled with the

identity context −. So, we obtain the axioms modelling the execution of the capabilities

of the calculus, and a structural rule for each ambient, parallel and restriction operators.

The remaining rules in Fig. 19, modelling the interactions of a process with its envi-

ronment, are obtained from the rules in Fig. 18. More explicitly, for each one of these

latter we derive three rules. First, we determine the axiom by considering the minimal

process needed by the reduction to occur. For exemple, with respect to the rule In of the

LTS D, the minimal process allowing the reduction is in m.P1, and we thus determine

the axiom in m.P1
x[−|X1]|m[X2]−−−−−−−−→ m[x[P1|X1]|X2]. The next step consists in determining

the relative structural rules in SOS style. Once more, as far as the rule In of the LTS D
is concerned, if P

x[−|X1]|m[X2]−−−−−−−−→ Pε, then for the process P |Q there is a transition labelled

x[−|X1]|m[X2] leading to the process Pε with the process Q inside the ambient x, that

is, we have the transition P |Q x[−|X1]|m[X2]−−−−−−−−→ Pε{Q|X1/X1}. Instead, if P
x[−|X1]|m[X2]−−−−−−−−→ Pε

and m 6= a, then we have the transition (νa)P
x[−|X1]|m[X2]−−−−−−−−→ (νa)Pε.

This result is also confirmed by the analysis of the minimal transitions.

Deriving axioms As explained in Section 7.4, a minimal transition represents a BC

transition, where the starting graph is the smallest graph allowing a BC rewriting with

respct to a given rule and a given partial match. The graphD of a minimal transition thus

represents the minimal process needed to the reduction modeled by the BC transition to

occur. This means that each minimal transition represents an axiom of the SOS LTS.

Let us consider for example the minimal transition forDin1 . The graphsDin1 represents

the process in m.0, but all the remarks made below also hold for the extended process

in m.P1, where P1 represents any process. As explained in Section 7.4, starting from the

label of the BC transition we obtain the label of the process transition that in this case is

x[−|X1]|m[X2], with x name variable. The resulting process is instead represented by the

graph Rin that models the process x[P1|X1]|m[X2]. Therefore, this minimal transition

represents the axiom in m.P1
x[−|X1]|m[X2]−−−−−−−−→ m[x[P1|X1]|X2].

Now, let us consider the similar minimal transition for Din2 . It represents the axiom

n[(νA)(in m.P1|P2)]
−|m[X2]−−−−→ m[n[(νA)(P1|P2)]|X2]. Nevertheless, it is obvious that this

rule can be rewritten as the rule InAmb of Fig. 19, by using the transition derived

according to the rules In, InPar and InRes. Graphically, this is suggested by the fact

that the graph Din2 contains the partial match Din1 , which gives rise to the minimal

transition allowing us to derive the rule of the third row of Fig. 19.
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Deriving rules for the parallel operator The structural rules can be obtained by

analyzing the interface JD of the minimal transition, whose nodes represent the “handles”

of D for interacting with the environment. Since in a minimal transition JD contains the

root nodes of D, we can add a graph I representing a process Q in parallel with D,

obtaining a graph J � G where J consists of JD plus the free names of Q. Now, since

there are a mono D � G (since G consists of the graph D in parallel with I) and a

morphism JD → J such that the square (2) in Fig. 13 commutes, the graph J � G can

perform a BC rewriting step in Ramb with label J � F � K, where F and K consist

of FD and KD plus the free names of Q. Process-wise, this means that if P
C[−]−−→ Pε, then

also a transition labelled C[−] originating from P |Q.

Let us consider again the minimal transition for Din1
. By analyzing the interface JDin1

we may obtain the structural rule for the parallel operator. Since JDin1
contains the root

nodes of D, we can add a graph I representing a process Q in parallel with D, obtaining

a graph J � G where J consists of JDin1
plus the free names of Q. The graph J � G

can perform a BC rewriting step in Ramb with label J � F � K, where F and K

consist of FDin1
and KDin1

plus the free names of Q. This means that the graph context

J � F � K also represents the process context x[−|X1]|m[X2]. Process-wise, this means

that if P
x[−|X1]|m[X2]−−−−−−−−→ Pε, then also a transition labeled with x[−|X1]|m[X2] originates

from P |Q. The resulting process is represented by the graph H, obtained by replacing

Din1 with Rin in G. Note that the node •2p after the reduction is under the ambient x

and moreover it represents a process variable in Pε. This means that the graph modeling

Q (that has as root the node •2p) after the reduction is under the ambient x and it is in

parallel with the process variable X1. Therefore the resulting process is Pε{Q|X1/X1}.

Deriving rules for the restriction operator Also the structural rules for the restric-

tion operator can be obtained by analyzing the interface JD. Indeed, we know that a

graph J � G representing a process P can perform a BC rewriting step if and only if

there exist a mono D � G and a morphism JD → J such that the square (2) in Fig.

13 commutes. If we modify the interface J by removing one or more name nodes, then

the graph G with the new interface J ′ can also perform the same BC rewriting step if

and only if there exists a morphism JD → J ′ such that square (2) in Fig. 13 commutes.

This means that all the name nodes of JD must also belong to J ′, therefore as suggested

by the encoding, the ambient names of P that are in JD cannot be restricted. In terms

of processes, this means that if P
C[−]−−→ Pε, then for the process (νa)P there is also a

transition labelled C[−] if the names belonging to JD do not belong to a.

On the basis of the remarks above, starting from the minimal transition for Din1 , we

can derive a structural rule for the restriction operator. In particular, if P
x[−|X1]|m[X2]−−−−−−−−→ Pε,

then for the process (νa)P there is a transition with the same label leading to the process

(νa)Pε, if the name m (that belongs to the interface JDin1
) is not restricted.

Note that the interface JD also allows us to obtain a graph J � G that is composed

of the graph D with another graph on the top. However, it is easy to note that in this

case the graph J � G does not perform any BC transition because it is impossible to

find a morphism JD → J such that square (2) in Fig. 13 commutes.
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(InTau) (OutTau) (OpenTau)

n[in m.P |Q]|m[R]
−−→m[n[P |Q]|R] m[n[out m.P |Q]|R]

−−→n[P |Q]|m[R] open n.P |n[Q]
−−→P |Q

(TauAmb) (TauPar) (TauRes)

P
−−→P ′

n[P ]
−−→n[P ′]

P
−−→P ′

P |Q−−→P ′|Q
P

−−→P ′

(νa)P
−−→(νa)P ′

(In) (InPar) (InRes)

in m.P1
x[−|X1]|m[X2]
−−−−−−−−→m[x[P1|X1]|X2]

P
x[−|X1]|m[X2]
−−−−−−−−→Pε

P |Q
x[−|X1]|m[X2]
−−−−−−−−→Pε{Q|X1/X1

}

P
x[−|X1]|m[X2]
−−−−−−−−→Pε a6=m

(νa)P
x[−|X1]|m[X2]
−−−−−−−−→(νa)Pε

(InAmb) (InAmbPar) (InAmbRes)

P
x[−|X1]|m[X2]
−−−−−−−−→Pε

n[P ]
−|m[X2]
−−−−→Pε{n/x,0/X1

}

P
−|m[X2]
−−−−→Pε

P |Q
−|m[X2]
−−−−→Pε|Q

P
−|m[X2]
−−−−→Pε a6=m

(νa)P
−|m[X2]
−−−−→(νa)Pε

(CoIn) (CoInPar) (CoInRes)

m[P1]
−|x[in m.X1|X2]
−−−−−−−−−−→m[x[X1|X2]|P1]

P
−|x[in m.X1|X2]
−−−−−−−−−−→Pε

P |Q
−|x[in m.X1|X2]
−−−−−−−−−−→Pε|Q

P
−|x[in m.X1|X2]
−−−−−−−−−−→Pε a6=m

(νa)P
−|x[in m.X1|X2]
−−−−−−−−−−→(νa)Pε

(Out) (OutPar) (OutRes)

out m.P1
m[x[−|X1]|X2]
−−−−−−−−→m[X2]|x[P1|X1]

P
m[x[−|X1]|X2]
−−−−−−−−→Pε

P |Q
m[x[−|X1]|X2]
−−−−−−−−→Pε{Q|X1/X1

}

P
m[x[−|X1]|X2]
−−−−−−−−→Pε a6=m

(νa)P
m[x[−|X1]|X2]
−−−−−−−−→(νa)Pε

(OutAmb) (OutAmbPar) (OUtAmbRes)

P
m[x[−|X1]|X2]
−−−−−−−−→Pε

n[P ]
m[−|X2]
−−−−→Pε{n/x,0/X1

}

P
m[−|X2]
−−−−→Pε

P |Q
m[−|X2]
−−−−→Pε{Q|X2/X2

}

P
m[−|X2]
−−−−→Pε a6=m

(νa)P
m[−|X2]
−−−−→(νa)Pε

(Open) (OpenPar) (OpenRes)

open n.P1
−|n[X1]
−−−−→P1|X1

P
−|n[X1]
−−−−→Pε

P |Q
−|n[X1]
−−−−→Pε|Q

P
−|n[X1]
−−−−→Pε a6=n

(νa)P
−|n[X1]
−−−−→(νa)Pε

(CoOpen) (CoOpenPar) (CoOpenRes)

n[P1]
−|open n.X1−−−−−−−→P1|X1

P
−|open n.X1−−−−−−−→Pε

P |Q
−|open n.X1−−−−−−−→Pε|Q

P
−|open n.X1−−−−−−−→Pε a6=n

(νa)P
−|open n.X1−−−−−−−→(νa)Pε

Fig. 19. The LTS S.
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Equivalence between the LTSs As for D, also for S we define the LTS SI for pure

processes by instantiating all the variables of the labels and of the resulting states.

Definition 9.1. Let P,Q be pure processes and let C[−] be a pure context. Then, we

have a transition P
C[−]−−→SI Q if there exist a transition P

Cε[−]−−→S Qε and a substitution σ

such that Qεσ ≡ Q and Cε[−]σ = C[−].

As stated below, the LTSs SI and DI coincide (the proof is shown in Appendix A).

Theorem 9.1. Let P be a pure process and let C[−] be a pure context. Then, P C[−]−−→DI Q

if and only if P
C[−]−−→SI Q.

10. Equivalence between LTSs

This section shows the equivalence between our LTS SI defined on pure processes and

the LTS proposed by Rathke and Sobociński in (RS08b, Figs. 6, 7 and 8).

Their LTS, closed under structural congruence, is split in three components: the

process-view LTS C, the context-view LTS A, and the combined LTS CA. The labels

of the LTS CA have the shape α ↓ ~M : α is derived by LTS C and ~M by LTS A. If
P

α↓ ~M−−→CA Q, α identifies the minimal context needed by the pure process P to react and
~M is a list of pure processes and ambient names, instantiating the context components.

The first column of Table 5 shows the labels α of the LTS C, while the second col-

umn presents the context χα that each label identifies (the correspondence is formally

explained in (RS08b, Lemma 6)). Note that each context χα contains a set of typed

numbered holes: those of type N can be instantiated with ambient names, those of type

Pr with pure processes. Thus, in a transition P
α↓ ~M−−→CA P ′, the tuple ~M instantiates all

context components, that is, each hole of χα of process type Pr (different from 1Pr) and

of name type N . The hole 1Pr represents the hole that has to be instantiated with the

process P , and it corresponds to the hole denoted − in our contexts. For example, if

P
inm↓ ~M−−−−→CA P ′, then the tuple ~M instantiate the holes 2Pr, 3N and 4Pr of the context

χinm, i.e., it has the shape ~M : Q,n,R, for Q, R pure processes and n ambient name.

It is immediate to note that there exists a one-to-one correspondence between the

labels Cε[−] of our LTS S and the contexts χα listed in the second column of Table 5.

This correspondence is shown in the same table, where Cα
ε [−] (the third column) denotes

the label of our LTS S corresponding to the context χα of the second column.

For each label α, the contexts Cα
ε [−] and χα have the same shape. The hole − in

Cα
ε [−] corresponds to the hole 1Pr in χα, and there is a correspondence between name

and process variables of Cα
ε [−] and holes of χα of type N an Pr. Consider e.g. the label

Cinm
ε [−] = x[−|X1]|m[X2] and the context χinm = 3N [1Pr|2Pr]|m[4Pr]: they have the

same shape, and the name variable x corresponds to the hole 3N , the hole − to the hole

1Pr , and the process variables X1 and X2 to the holes 2Pr and 4Pr.

As explained in Section 9, a substitution σ for a context Cε[−] provides an instanti-

ation for its variables. For instance, a substitution for Cinm
ε [−] = x[−|X1]|m[X2] must

have the shape {Q/X1 ,
n /x,

R /X2} for Q, R pure processes and n ambient name. Since
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α χα Cα
ε [−] ~Mα

σ σα
M

in m 3N [1Pr|2Pr]|m[4Pr] x[−|X1]|m[X2] PnQ {P /X1 ,
n /x,Q /X2}

[in m] 1Pr|m[2Pr] −|m[X2] P {P /X2}
[in m] 4N [inm.2Pr|3Pr]|1Pr −|x[in m.X1|X2] PQn {P /X1 ,

Q /X2 ,
n /x}

out m m[3N [1Pr|2Pr]|4Pr] m[x[−|X1]|X2] PnQ {P /X1 ,
n /x,Q /X2}

[out m] m[1Pr|2Pr] m[−|X2] P {P /X2}
open n 1Pr|n[2Pr] −|n[X1] P {P /X1}
open n openn.2Pr|1Pr −|open n.X1 P {P /X1}
τ 1Pr − ∅ {}

Table 5. The correspondence between α, χα, C
α
ε [−], ~Mα

σ and σα
M .

there is a correspondence between holes of a context χα of type N and Pr, and name and

process variables of the context Cα
ε [−], any tuple ~M for χα determines a unique substi-

tution σM for Cα
ε [−], instantiating each variable with the value used by ~M to instantiate

the hole corresponding to that variable. Analogously, a substitution σ for Cα
ε [−] deter-

mines a unique substitution ~Mσ for χα. Consider again the context χinm and the tuple
~M = Q,n,R providing an instantiation for the holes 2Pr, 3N and 4Pr. The substitution

σM (induced by ~M) for the context Cinm
ε [−] = x[−|X1]|m[X2] is {Q/X1 ,

n /x,
R /X2}.

Analogously, it is possible to determine the tuple ~M from the substitution σM . The last

two columns of Table 5 show for each α the shape of the tuples ~Mα
σ and σα

M .

Proposition 10.1. Let P be a pure process. If P
α↓ ~Mα

−−−→CA Q, then there exists Qε such

that P
Cα

ε [−]−−→S Qε and Q ≡ Qεσ
α
M .

Proposition 10.2. Let P be a pure process and let σ be a substitution. If P
Cε[−]−−→S Qε

and Qεσ ≡ Q, then there exists α such that Cε[−] = Cα
ε [−] and P

α↓ ~Mα
σ−−−→CA Q.

From the two propositions above (their proofs are in Appendix B) and from the defi-

nition of the LTS SI (Definition 9.1) follows the main result of this section.

Theorem 10.1. Let P be a pure process. If P
α↓ ~M−−→CA Q, then there is a unique (up-to

≡) substitution σ such that P
Cα

ε [−]σ−−−→SI Q. Vice versa, if P
C[−]−−→SI Q, then there are α

and a unique (up-to ≡) tuple ~M such that C[−] = Cα[−] and P
α↓ ~M−−→CA Q.

11. Conclusions, related and future work

This paper exploits a graphical encoding for MAs (GM08) to distill a LTS on (pro-

cesses encoded as) graphs. This LTS is obtained semi-automatically by applying the BC

technique to the GTS associated to the calculus, after using two pruning techinques for

removing some reductions. The LTS defined on graphs is then used in order to infer a

novel LTS D directly defined on MAs processes. Moreover, a set of SOS rules for MAs

is presented, showing that the LTS SI they induce on pure processes coincides with DI .

Finally, we prove that our SI is equivalent with an alternative proposal in (RS08b).
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For the sake of simplicity, we considered the finite, communication-free fragment of

MAs. A graphical encoding for the whole calculus could be obtained along the lines of

the solution in (BGK06). Should the encoding for the whole calculus be defined, the

technique presented in this paper could be applied to obtain a LTS for it.

In spite of the interest for MAs, few works addressed their labelled semantics. After

early attempts by Cardelli and Gordon (GC03) and (via a graphical encoding) by Ferrari,

Montanari and Tuosto (FMT01), we are only aware of the papers by Merro and Zappa-

Nardelli, collected in (MZN05), and by Rathke and Sobociński (RS08b; RS10).

We already addressed the LTS introduced in (RS08b). We further remark that also

Rathke and Sobociński employ a general systematic procedure for deriving LTSs that

they previously introduced (RS08a), even if our use of the BC technique automatically

guarantees that the strong bisimilarity on the derived LTS is a congruence. With respect

to (RS08b), (RS10) presents a purely SOS presentation for the LTS, avoiding the use of

the structural congruence in deriving the transition relation. The solution boils down to

add to the previous set of rules some symmetric counterparts, dealing with the commu-

tativity of the parallell operator (compare e.g. (RS10, Figure 2) with (RS08b, Figure 2)).

The same technique could be pursued in our approach, at the expenses of a more complex

set of inferences rules. We refrained from following this path, since the focus of our paper

lies in the distillation of the labelled transitions via the BC mechanism However, we

remark that the key Theorem 10.1, stating the correspondence between ours and Rathke

and Sobociński’s LTS for MAs, would still hold in the novel setting.

The LTS proposed by Merro and Zappa-Nardelli (MZN05) is restricted to systems:

processes obtained by the parallel composition of ambients. For this reason, our rules

In, Open and Out have no counterpart. Instead, the rules InAmb, CoIn and OutAmb

exactly correspond to the rules (Enter), (Co-Enter), (Exit) in Table 6 of (MZN05). More-

over, our rule CoOpen roughly corresponds to their (Open). Indeed the former inserts

a process into the context −|open n.X1, while the latter into k[−|open n.X1|X2] (also

due to their restriction to systems). Differently from our LTS, their labels for the rules

(Enter) and (Exit) contain the name of the migrating ambient n, thus requiring two extra

rules (Enter Shh) and (Exit Shh) for dealing with the possible restriction of n.

For a practitioner, the main interest of our work lies on the presentation of a succinct

LTS for MAs, and the associated set of SOS rules. However, we believe that our work

represents a relevant case study for the theory of reactive systems (LM00). As pointed

out in the introduction, BC rewriting and bigraphical reactive systems (Mil06) are both

instances of this theory. Together with (BGK06), this paper shows that the BCs approach

is quite effective in deriving LTS for process calculi, and it seems to confirm the advantage

of BCs over graphs with interfaces with respect to bigraphs. In bigraphs, all reduction

rules must be ground, and thus also the labels and the arriving states of the derived

transitions are so. Instead, rewriting with BCs allows to employ few non ground rules

(as shown in this paper) and the resulting transitions have labels and arriving states

containing (process and name) variables. This feature was not relevant for calculi such

as CCS and π, since the variables in the labels occur “outside” of the arriving state and

can be forgotten. Consider e.g. the CCS transition a.b
−|ā.Y−−→ b|Y derived from the (non
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ground) rule a.X|ā.Y −→ X|Y . The behaviour of the process b|Y is equivalent to b: their

interaction is basically restricted to processes offering a b̄ action, and we can thus avoid

to consider Y . In the case of MAs, accounting for non ground states is fundamental,

because process variables may occur nested inside ambients in arriving states.

The relevance of this work for the theory of reactive systems is not limited to the

above observations. The first author has shown in (Bon08) that in reactive systems the

bisimilarity on the derived LTS is usually too strict, while saturated bisimilarity (i.e.,

the bisimilarity over the LTS having all contexts as labels) is often more adequate, as

for logic programming, open π-calculus (BKM06) and Petri nets (BM07). The present

work provides a further successful test of the above claim. In fact, the standard notion of

bisimilarity over our LTS is too strict, since it allows to observe the ability of an ambient

to migrate, while it should be unobservable, as pointed out in (MZN05). For this reason,

Rathke and Sobociński added two extra-rules to their LTS, while Merro and Zappa

Nardelli chose an asymmetric definition of bisimilarity. The latter solution recalls the

semi-saturated bisimulation (BKM06). Instead of requiring that two bisimilar processes

must perform transitions with the same label, semi-saturated bisimulation requires that

if P
C[−]−−→ P1 then C[Q] reduces to Q1 and P1 R Q1.

It is worth noting that the second and third points of Definition 3.2 in (MZN05) have this

shape (the labels ∗.entern and ∗.exitn are related to our contexts −|n[X1] and n[−|X1]).

We made precise this correspondence, introducing the notion of barbed bisimilarity for

reactive systems (BGM09c), and applying it to MAs. We further sketched a correspon-

dence between barbs and semi-saturation (BGM09b): the detailed presentation of the

framework obtained by combining the two proposals is going to appear elsewhere.
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Fig. 23. The minimal transitions generated by the rule pin.
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Proofs of Chapter 4

Appendix A. Equivalence between the LTS DI and the LTS SI

This section discusses the equivalence between the LTS DI , presented in Section 8, and

the LTS SI , introduced in Section 9. In particular, we provide a proof of Theorem 9.1,

and to this end, in the following we introduce two useful propositions.

Proposition A.1. Let P be a pure process. If P
C[−]ε−−→D Qε then there exists a linear

process Q′
ε such that P

C[−]ε−−→S Q′
ε and for each substitution σ, Qεσ ≡ Q′

εσ.

Sketch The proof is by cases on the rules to obtain P
C[−]ε−−→D Qε.

We begin by observing that the rules in Fig. 17 and the rules in the first two rows

of Fig. 19 exactly derive the same transition relation of the reduction relation of mobile

ambients. So for them the proposition trivially holds.

For the rules in Fig. 18 we show as an example the case of the In rule.

Assume that P
Cε[−]−−→D Qε by In rule. It means that P ≡ (νA)(in m.P1|P2), m 6∈ A,

Qε = (νA)(m[x[P1|P2|X1]|X2]) and Cε[−] = x[−|X1]|m[X2].

We can note that, by applying In rule, in m.P1
x[−|X1]|m[X2]−−−−−−−−→S m[x[P1|X1]|X2]. So, we

can apply InPar rule and obtain in m.P1|P2
x[−|X1]|m[X2]−−−−−−−−→S m[x[P1|P2|X1]|X2]. Since we

also knowm 6∈ A, thanks to InRes rule, we can conclude (νA)(in m.P1|P2)
x[−|X1]|m[X2]−−−−−−−−→S

Qε, therefore P
x[−|X1]|m[X2]−−−−−−−−→S Qε and trivially, for each substitution σ, Qεσ ≡ Qεσ.

Proposition A.2. Let P be a pure process. If P
C[−]ε−−→S Qε then there exists a linear

process Q′
ε such that P

C[−]ε−−→D Q′
ε and for each substitution σ, Qεσ ≡ Q′

εσ.

Sketch The proof is by cases on the rules to obtain P
C[−]ε−−→S Qε.

As in the proof above, for the rules in the first two rows of Fig. 19 the proposition

trivially holds. Instead, for the remaining rules of the same figure, we show as an example

the cases for In and InPar rules.

— Assume that P
Cε[−]−−→S Qε by In rule. It means that P ≡ in m.P1,Qε = m[x[P1|X1]|X2]

and Cε[−] = x[−|X1]|m[X2]. It is easy to check that P
x[−|X1]|m[X2]−−−−−−−−→D Qε by In rule,

so the proposition trivially holds.

— Assume that P
Cε[−]−−→S Qε by InPar rule. This means that P ≡ P ′|R′, Cε[−] =

x[−|X1]|m[X2], P
′ Cε[−]−−→S Q′

ε and Qε = Q′′
ε {R

′|X1/X1}.
By induction hypothesis, we have P ′ x[−|X1]|m[X2]−−−−−−−−→D Q′′

ε . This means that P ′ ≡
(νA)(in m.P1|P2), m 6∈ A and Q′′

ε = (νA)(m[x[P1|P2|X1]|X2]). Note that P ′|R′ ≡
(νA)(in m.P1|P2)|R′ and (νA)(in m.P1|P2)|R′ ≡ (νA′)(in m.P ′

1|P ′
2|R′), by consider-

ing (νA)(in m.P1|P2) α-equivalent to (νA′)(in m.P ′
1|P ′

2) and A′ ∩ fn(R′) = ∅. So,
thanks to In rule, P ′|R′ x[−|X1]|m[X2]−−−−−−−−→D Q′

ε, where Q′
ε = (νA′)(m[x[P ′

1|P ′
2|R′|X1]|X2])

and it is easy to check that for each substitution σ, Qεσ ≡ Q′
εσ
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Theorem 9.1 trivially follows from the two propositions above and from Definitions 8.1

and 9.1.

Appendix B. Correspondence between the LTS SI and the LTS CA

This section shows the proofs of Propositions 10.1 and 10.2 used to formally prove the

correspondence between our LTS SI , defined on pure processes of mobile ambients, and

the LTS CA for mobile ambients proposed by Rathke and Sobociński in (RS08b).

First of all, we introduce the proof of Proposition 10.1, needed to prove the first

statement of Theorem 10.1.

Proof sketch of Proposition 10.1 The proof is by cases on the rules to obtain P
α↓ ~Mα

−−−→CA
Q. We only show the proof for some rules, because the other cases are analogous.

— Assume that P
α↓ ~Mα

−−−→CA Q by Cλ rule. It means that P
α−→C A, A

~Mα↓−−→A Q and

α 6∈ {[inm], openn, τ}. Now we proceed by cases on the rules to obtain P
α−→C A with

α 6∈ {[inm], openn, τ}. As an example, we show the cases of the In and ||In rules.

Assume that P
α−→C A by In rule. It means that P ≡ in m.P1,A = λXxY.m[x[P1|X]|Y ]

and α = in m. We assume that ~Mα = R,n, S, for R,S processes and n ambient

name, therefore we have Q ≡ m[n[P1|R]|S]. We have to show that there exists Qε,

such that P
Cin m

ε [−]−−−−→S Qε and Q ≡ Qεσ
α
M , with σα

M = {R/X1 ,
n /x,

S /X2}. We take

Qε = m[x[P1|X1]|X2]. It is easy to check that in m.P1
Cin m

ε [−]−−−−→S m[x[P1|X1]|X2] by

In rule. Moreover, we have m[x[P1|X1]|X2]σ
α
M = m[n[P1|R]|S] ≡ Q.

Assume that P
α−→C A by ||In rule. It means that α = in m, P ≡ P1|P2, P1

inm−→C A′,

and A = λX.A′(P2|X). We assume that ~Mα = R,n, S, for R,S processes and n am-

bient name, therefore we have Q ≡ A′(P2|R,n, S). Let us consider ~M ′α = P2|R,n, S.

Since A
~Mα↓−−→A Q, then A′ ~M ′α↓−−→A Q. Therefore, we have P1

inm↓ ~M ′α
−−−−−→CA Q. By induction

hypothesis, there exists Q′
ε such that P1

Cin m
ε [−]−−−−→S Q′

ε and Q ≡ Q′
εσ

α
M ′ , where σα

M ′ =

{P2|R/X1 ,
n /x,

S /X2}. We have to show that there exists Qε, such that P
Cin m

ε [−]−−−−→S Qε

and Q ≡ Qεσ
α
M , with σα

M = {R/X1 ,
n /x,

S /X2}. We take Qε = Q′
ε{P2|X1/X1}. It

is easy to check that P1|P2
Cin m

ε [−]−−−−→S Q′
ε{P2|X1/X1} by InPar rule. Moreover, it is

obvious that Q′
ε{P2|X1/X1}{R/X1 ,

n /x,
S /X2} = Q′

ε{P2|R/X1 ,
n /x,

S /X2} ≡ Q.

— Assume that P
α↓ ~Mα

−−−→CA Q by coInλ rule. This means that α = [inm], P
[inm]−−→C A,

~Mα = R,S, n and A(λXY Zx.m[x[Y |Z]|X])
R,S,n↓−−−→A Q. Now we proceed by cases on

the rules to obtain P
[inm]−−→C A. As an example, we show the case of the coIn rule.

Assume that P
[inm]−−→C A by coIn rule. It means that P ≡ m[P1] and A = λZ.Z(P1),

and hence we have Q ≡ m[n[R|S]|P1]. We have to show that there exists Qε, such

that P
C[in m]

ε [−]−−−−−→S Qε and Q ≡ Qεσ
α
M , with σα

M = {R/X1 ,
S /X2 ,

n /x}. We take Qε =

m[x[X1|X2]|P1]. It is easy to check that m[P1]
C[in m]

ε [−]−−−−−→S m[x[X1|X2]|P1] by CoIn

rule. and m[x[X1|X2]|P1]{R/X1 ,
S /X2 ,

n /x} = m[n[R|S]|P1] ≡ Q.
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Now we show the proof of Proposition 10.2, needed to prove the second statement of

Theorem 10.1.

Proof sketch of Proposition 10.2 The proof proceeds by cases on the rules to obtain

P
Cε[−]−−→S Qε. We only show some cases, because the other ones are analogous.

— Assume that P
Cε[−]−−→S Qε by In rule. This means that α = in m, P ≡ in m.P1,

Cinm
ε [−] = x[−|X1]|m[X2] and Qε = m[x[P1|X1]|X2]. Moreover, the substitution σ

has the following shape {P2/X1 ,
n /x,

P3 /X2}, for some ambient name n and some pro-

cesses P1 and P2. Therefore, we haveQ ≡ Qεσ = m[x[P1|X1]|X2]{P2/X1 ,
n /x,

P3 /X2} =

m[n[P1|P2]|P3]. We have to show that P
inm↓ ~Mα

σ−−−−−→CA Q, where ~Mα
σ = P2, n, P3. It

is easy to check that P
inm−→C λXxY.m[x[P1|X]|Y ] tanks to In rule in Figure 6 of

(RS08b). Moreover, we can apply Inst rule shown in Figure 7 of (RS08b), and say

λXxY.m[x[P1|X]|Y ]
~Mα

σ ↓−−→A m[n[P1|P2]|P3]. Therefore, thanks to Cλ rule in Figure 8

of (RS08b), we can conclude P
inm↓ ~Mα

σ−−−−−→CA Q.

— Assume that P
Cε[−]−−→S Qε by InPar rule. This means that α = in m, P ≡ P1|Q1,

Cinm
ε [−] = x[−|X1]|m[X2], P1

Cin m
ε [−]−−−−→S Pε and Qε = Pε{Q1|X1/X1}. Moreover, the

substitution σ has the following shape {P2/X1 ,
n /x,

P3 /X2}, for some ambient name n

and some processes P1 and P2. Consider the substitution σ′ = {Q1|P2/X1 ,
n /x,

P3 /X2}.

Note that Pεσ
′ = Qεσ ≡ Q. Since P1

Cin m
ε [−]−−−−→S Pε, then, by applying the induction

hypothesis, we have P1

inm↓ ~Mα
σ′−−−−−→CA Pεσ

′, where ~Mα
σ′ = Q1|P2, n, P3. We have to show

that P
inm↓ ~Mα

σ−−−−−→CA Qεσ, where ~Mα
σ = P2, n, P3. We know that P1

inm↓ ~Mα
σ′−−−−−→CA Pεσ

′.

This means that P1
inm−→C A and A

~Mα
σ′↓−−→A Pεσ

′. Since P1
inm−→C A, thanks to ||In rule

of Figure 6 in (RS08b), we have P1|Q1
inm−→C λX.A(Q1|X). It is easy to check that if

A
~Mα

σ′↓−−→A Pεσ
′, then we also have λX.A(Q1|X)

~Mα
σ ↓−−→A Pεσ

′. Therefore, by applying Cλ

rule in Figure 8 of (RS08b), we obtain P1|Q1
inm↓ ~Mα

σ−−−−−→CA Pεσ
′ and so P

inm↓ ~Mα
σ−−−−−→CA Q.

— Assume that P
Cε[−]−−→S Qε by CoIn rule. This means that α = [in m], P ≡ m[P1],

C
[inm]
ε [−] = −|x[in m.X1|X2] and Qε = m[x[X1|X2]|P1]. Moreover, the substitution

σ has the following shape {P2/X1 ,
P3 /X2 ,

n /x}, for some ambient name n and some

processes P1 and P2. So, we have Q ≡ Qεσ = m[n[P2|P3]|P1]. We have to show that

P
[inm]↓ ~Mα

σ−−−−−→CA Qεσ, where ~Mα
σ = P2, P3, n. It is easy to check that P

[inm]−−→C λZ.Z(P1),

by CoIn rule in Figure 6 of (RS08b). Moreover, by Inst rule shown in Figure 7 of

(RS08b), (λZ.Z(P1))(λXY Zx.m[x[Y |Z]|X])
~Mα

σ ↓−−→A m[n[P2|P3]|P1]. Therefore, thanks

to CoInλ rule of Figure 8 of (RS08b), we can conclude P
[in m]↓ ~Mα

σ−−−−−−→CA m[n[P2|P3]|P1],

and so P
[in m]↓ ~Mα

σ−−−−−−→CA Q.


